
A. Sanfeliu et al. (Eds.): CIARP 2004, LNCS 3287, pp. 478–486, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Fast Algorithm
to Find All the Maximal Frequent Sequences in a Text

René A. García-Hernández, José Fco. Martínez-Trinidad,
and Jesús Ariel Carrasco-Ochoa

National Institute of Astrophysics, Optics and Electronics (INAOE)
Puebla, México

{renearnulfo,fmartine,ariel}@inaoep.mx

Abstract. One of the sequential pattern mining problems is to find the maximal
frequent sequences in a database with a β support. In this paper, we propose a
new algorithm to find all the maximal frequent sequences in a text instead of a
database. Our algorithm in comparison with the typical sequential pattern min-
ing algorithms avoids the joining, pruning and text scanning steps. Some ex-
periments have shown that it is possible to get all the maximal frequent se-
quences in a few seconds for medium texts.

1 Introduction

The Knowledge Discovery in Databases (KDD) is defined by Fayyad [1] as “the non-
trivial process of identifying valid, novel, potentially useful and ultimately under-
standable patterns in data”. The key step in the knowledge discovery process is the
data mining step, which following Fayyad: “consisting on applying data analysis and
discovery algorithms that, under acceptable computational efficiency limitations,
produce a particular enumeration of patterns over the data”. This definition has been
extended to Text Mining (TM) like: “consisting on applying text analysis and discov-
ery algorithms that, under acceptable computational efficiency limitations, produce a
particular enumeration of patterns over the text”. So TM is the process that deals with
the extraction of patterns from textual data. This definition is used by Feldman [2] to
define Knowledge Discovery in Texts (KDT). In both KDD and KDT tasks, especial
attention is required in the performance of the algorithms because they are applied on
a large amount of information. In especial the KDT process needs to define simple
structures that can be extracted from texts automatically and in a reasonable time.
These structures must be rich enough to allow interesting KD operations [2].

The frequent sequences are of interest in some areas, such as data compression,
human genome analysis and in the KDD process. But some of these areas are more
interested in the maximal frequent sequences (MFS) because these areas search the
longest pattern that could match or that could be extracted from the database. The
sequential pattern mining problem is defined by Agrawal [3] as the problem of find-
ing MFS in a database; this is a data mining problem. Therefore, we are interested in
finding all the MFS in a text, in order to do text mining for the KDT process.

MFS have received special attention in TM because this kind of patterns can be ex-
tracted from text independently of the language. Also they are human readable pat-
terns or descriptors of the text. MFS can be used to predict or to determine the causal-
ity of an event. For information retrieval systems, MFS can be used to find keywords;
in this case, the MFS are key phrases. MFS allow constructing links between docu-

A Fast Algorithm to Find All the Maximal Frequent Sequences in a Text 479

ments in an automatic way. MFS could help in the definition of stop-phrases instead
of stop-words. Also, they can be used for text summarization.

In this paper, we propose a fast algorithm which gets all the MFS from a simple
structure. This structure is relatively easy to extract from the text.

The paper organization is as follows: In section 2, the problem definition is given.
In section 3 the related works are presented. Section 4 describes our algorithm and in
section 5 a complexity analysis of it is presented. Section 6 presents some experi-
ments. Section 7 gives a discussion about our algorithm. Finally, in section 8 the con-
clusions and future work are given.

2 Problem Definition

A sequence S is an ordered list of at least two elements called items. The ith element or
item in the sequence is represented as si. A sequence is frequent if it appears in the
text twice or more. And S is maximal if S is not a subsequence of any other frequent
sequence. The number of elements in a sequence S is called the length of the sequence
and is denoted by |S|. A sequence with length k is denoted as k-sequence.

Let P=p1p2…pn and S=s1s2…sm be sequences, P is contained or is a subsequence of

S, denoted P⊆S, if there exists an integer 1≤i such that p1=si, p2=si+1,

p3=si+2,…,pn=si+(n-1). P is a proper subsequence of S, P⊂S, if P is a subsequence of S,
but P≠ S.

Let X⊆S and Y⊆S then X and Y are mutually excluded if X and Y do not share items
i.e., if (xn=si and y1=sj) or (yn=si and x1=sj) then i<j.

Given a text T expressed as a sequence and a user-specified threshold β. A se-
quence S is β-frequent in T, if it is contained at least β times in T in a mutually ex-
cluded way.

In this paper, we are interested in the problem of finding all the maximal β-
frequent sequences in a text.

3 Related Work

Most of the algorithms that get all MFS [3,4,5,6] have been developed to work in a
database of sequences. In [7], an algorithm was developed for a text collection, which
is different from finding all the MFS into a single text. The algorithms for getting all
MFS can be classified as Apriori-based (typical) and Pattern-growth methods [8].

Into the typical methods the first approach was the AprioriAll algorithm [3] and
some approaches, like GSP [9], were after developed. These typical algorithms oper-
ate in a bottom-up breadth-first way. These methods use the joining, pruning and text
scanning steps, for the candidate generation phase. In the fig.1a the general algorithm
for the Apriori methods is shown. The fig. 1b shows an example of the different k-
sequences that are generated for this kind of algorithms. The subindex in the se-
quences of fig. 1b indicates the frequency of each sequence.

Unlike the typical methods, the pattern-growth methods avoid the joining, pruning
and scanning steps. These pattern-growth methods try to find the MFS more directly,
expanding the growth of the k-sequences, beginning with 2-sequences. For this rea-
son, these methods are faster than the typical methods, when there are long sequences.
Examples of this category are the PrefixSpan [5] and SPADE [6] algorithms

480 René A. García-Hernández et al.

Fig. 1. a) General algorithm for the typical methods; b) Example of how to get the MFS with
the joining and pruning steps for the text “esadeladesad”

4 Proposed Algorithm

Our algorithm belongs to pattern-growth methods class; because it uses a bottom-up
strategy without candidate generation. The main idea consists in to generate only all
the distinct pairs of items from the text, i.e. the 2-sequences, and do not lose the rela-
tion between them, in order to allow the growth of the sequences. The input data of
the algorithm are a text (T) and a β threshold. The proposed algorithm has three
phases. These phases are as follows:
Phase 1. - Get the alphabet from the text. The algorithm gets an id for each different
item (chars or words) from the text.

Fig. 2. Algorithm to construct the array structure (phase 2)

Phase 2. - Construct an array structure for text representation (fig. 2). The algorithm
constructs an array structure from the text T. Each element of the array contains two
id’s corresponding to a distinct pair (ti,ti+1), the frequency of this pair and a list of the
positions where this pair appears in the text (see fig. 3a). Each position node of the
positions list contains the position where the pair appears, together with the next-index
of the following pair in each position (see fig. 3b). The phase 2 works as follows: for
each item ti get the index of the pair (ti,ti+1) in the array and in this position add a
Position node at the end of the list of positions. Increase the frequency (Freq) of this
pair and link this position node with the previously added position node in order to
build the NextPos list, which stores the text representation. In fig. 3a an example of
this array is shown.

A Fast Algorithm to Find All the Maximal Frequent Sequences in a Text 481

Fig. 3. a) Array for the text: “esadeladesad”. b) Node for Positions list

Fig. 4. Algorithm to find all MFS (phase 3)

Phase 3. – Find all MFS (fig. 4). For each element i of the NextPos list, check if it has
a frequency ≥ β, in order to determine if this pair can become a possible maximal
sequence PMS. If frequency ≥ β then grow forward all the elements in the NextPos
list w.r.t i. If after this growth there is (in the NextPost list) a number of elements ≥ β,
then the PMS can grow. When the PMS cannot grow it is added to the MFS list if
only if the PMS is not a subsequence of any previously stored MFS, and all the MFS
that are subsequence of the PMS are deleted from the MFS list. The table 1 shows
how the algorithm finds the first four MFS for the example of the fig. 3a.

In the example of figure 3a, the generated PMS does not contain cycles since all its
pairs are different. For our algorithm each PMS can be classified as a PMS with and
without cycles. A cycle is detected when the first pair is repeated if it happens, the
cycle function is used to get the PMS. The cycle function guarantees the mutually
excluded property. If the PMS obtained from cycle function can grow, then it is
treated as a PMS without cycles, because it could grow.

482 René A. García-Hernández et al.

Table 1. Example of how to get a PMS for the text “esadeladesad” with the structure presented
in figure 2.a, using the algorithm of figure 4 with β=2. Since the first pair “es” has two ocur-
rences in the text (frequency ≥ β) in the positions 1 and 9 (temporal list), this pair becomes the
new PMS. Then, the next item is “a” for both ocurrences. Therefore, the PMS can grow in one
(PMS=“esa”), it is, the positions are increased in one (temporal={2,10}). The same happends
w.r.t. the “d” item and the PMS=“esad”. Since the next item has frequency < β the PMS cannot
grow and it is store. Then, this process is repeated to get more PMS

Actual Pos temporal PMS_Freq Action PMS

1 1 1,9 2 PMS_Freq ≥ β, PMS=Pair=Tpos + Tpos+1 es

2 2 2,10 2 PMS_Freq ≥ β, Grow PMS= PMS + Tpos+1 esa

3 3 3,11 2 PMS_Freq ≥ β, Grow PMS= PMS + Tpos+1 esad

4 4 4 1 PMS_Freq is not ≥ β, Store the PMS
2 2 2,10 2 PMS_Freq ≥ β, PMS=Pair=Tpos + Tpos+1 sa

3 3 3,11 2 PMS_Freq ≥ β, Grow PMS= PMS + Tpos+1 sad

4 4 4 1 PMS_Freq ≥ β, Store the PMS

Fig. 5. Algorithm for finding a PMS with cycles

Cycle function (fig. 5). Using the size of the cycle (number of elements between the
first and the repeated pair) find all the groups of occurrences of the cycle in order to
build a list of intervals with the beginning and end of such positions. Using this list of
intervals it is possible to find the longest PMS. Given the size of the interval, this
function tests in decreasing way (because we search the longest PMS) how many
PMS are contained in each interval, therefore the sum of this local frequency becomes
the total frequency that must be ≥ β. In such case, the PMS has as size the size of the
interval that can appear β times into the text. If the size of the interval was not decre-
mented then it is a PMS that can grow. The table 2 shows an example of how to find a
PMS with cycles.

A Fast Algorithm to Find All the Maximal Frequent Sequences in a Text 483

Table 2. Example of the PMS obtained from the cycle function for the text “abcabcabMabc
GabcabcabMabc“ with β =2. When the algorithm of phase 3 detects that the initial pair “ab” is
repeated in the PMS=“abcab”, then the cycle function is activated. In step 1, all the groups of
occurrences of cycles are found. In the Step 2, the CycleSize and ActualGrpSize are caculated.
In the Step 3, the frequency of apparition is computing for each group using CycleSize and
ActualGrpSize. In the Step 4, if the total frequency ≥ β, then the length of the PMS is Actu-
alGrpSize and the PMS starts in the originial inital position, but if total frecuency < β, then
decrement ActualGrpSize and return to step 3. In this example, the PMS obtained from Cycle
function is “abcabcab”. But, if ActualGrpSize is not decremented, then the PMS obtained is
treated as a PMS without clycles and the phase 3 gets the PMS=“abcabcabMabc”

5 Complexity Analysis for the Proposed Algorithm

Let T a Text and n=|T|, then the required space in the worst case is O(n) because no
additional space is needed. Only the space for the array structure is used. As example,
if n =100,000 chars (approx. 50 pages), the required space is approx. 3 MB. The time
complexity to get the MFS is O(kn) where k is the length of longest the PMS, in the
worst case k=n/2 in such case the complexity is O(n2), but in the practice the PMS’s
are not very long, for example in [7] the longest PMS has a length of 22.

484 René A. García-Hernández et al.

6 Experiments

From the collection given in [10] we chose the text “Autobiography” by Thomas
Jefferson corresponding to: 243,115 chars, 31,517 words (approx. 100 pages), 5,499
different words and 18,739 different pairs. Also, we chose the text “LETTERS” by
Thomas Jefferson with around 1,812,428 chars and 241,735 words (approx. 800
pages). In both texts the stop words were not removed and only the numbers and
punctuation symbols were omitted. In order to show the behavior of the processing
time against the number of words in the text, we compute the MFS using our algo-
rithm for the minimum threshold value, β =2. Each chart in fig. 6 corresponds to one
text, processing different quantities of words. The figure 6a starts with 5,000 words
and uses an increment of 5,000, in order to see how the processing time grows when
the number of processed words is augmented in the same text. In the fig. 6b, an in-
crement of 40,000 words was used in order to see how the processing time grows for
a big text. Also, in both charts the time for phases (1 and 2) is shown.

Fig. 6. Processing time for: a) “Autobiography” and, b) “LETTERS”

For the same documents the whole text was processed to find all the MFS, in order
to appreciate (fig. 7) how the performance of our algorithm is affected for different
values of the β threshold. Fig. 7a shows the time in seconds for “Autobiography” and
fig. 7b for “LETTERS”.

Fig. 7. Time performance for different values of β for: a) “Autobiography” and b) “LETTERS”

Furthermore, we have included in fig. 8 an analysis of the growth of the amount of
MFS obtained from the same texts for different values for β.

A Fast Algorithm to Find All the Maximal Frequent Sequences in a Text 485

Fig. 8. Amount of MFS generated for different values of β for: a) “Autobiography” and, b)
“LETTERS”

Additionally to these experiments, we processed the biggest text from the collec-
tion [10] “An Inquiry into the nature …” by Adam Smith with 2,266,784 chars corre-
sponding to 306,156 words (approx. 1000 pages) with β=2, all MFS were obtained in
353 sec. approx. 5.88 min.

7 Discussion

The sequential pattern mining algorithms have been designed for working on a data-
base. The comparison of our algorithm against this kind of algorithm is difficult since
they have different assumptions and they were not designed to work on one text. First,
with respect to the space the typical methods have a reasonably performance for 2-
sequences, but the performance drastically decrease when any of the MFS becomes
longer because if a l-sequence is a MFS, it implies the presence of 2l-2 candidates (as
example if l=100 then 2100-1≈1030), and each candidate must be explicitly examined
[4,5]. The pattern-growth methods, for example PrefixSpan [5], need to get the fre-
quent prefixes in order to keep all the projected databases, but it is very expensive. In
contrast, our algorithm does not need to generate any extra auxiliary set of sequences
or projected databases. Consequently, the required space for our algorithm is much
smaller than pattern-growth methods. Moreover, our algorithm avoids the text scan to
see if a sequence is frequent or it exists in the source. Our algorithm goes directly to
find the PMS. Finally in comparison with others algorithms, our algorithm can run
different values for β using the same structure; getting better times.

8 Conclusions

This paper proposes a fast algorithm to find all the MFS in one text, requiring only the
β parameter. The algorithm uses a simple structure and does not need to use hash
tables or any other auxiliary structure. In texts with cycles the algorithm uses the cycle
function to become faster. As future work we are going to adapt this algorithm to
work over a text collection, in order to allow a fair comparison against the other
methods. Since our algorithm constructs an alphabet at phase 1, and the following
phases work over this alphabet, it can be applied on any data represented as a se-
quence, for example DNA sequences in human genome analysis.

486 René A. García-Hernández et al.

Acknowledgement

This work was financially supported by CONACyT (Mexico) through project
J38707-A.

References
1. Fayyad, U., Piatetsky-Shapiro G. “Advances in Knowledge Discovery and Data mining”.

AAAI Press, 1996.
2. Feldman, R and Dagan, I. “Knowledge Discovery in Textual Databases (KDT)”, In Pro-

ceedings of the 1st International Conference on Knowledge Discovery (KDD-95) 1995.
3. Agrawal, R and Srikant, R. “Mining Sequential Patterns” in Proceedings of the Interna-

tional Conference on Data Engineering, 1995.
4. Lin, Dao-I. Fast Algorithms for Discovering the Maximum Frequent Set, Ph. Thesis, New

York University, 1998.
5. Pei, J, Han, et all: “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected

Pattern Growth” in Proc International Conference on Data Engineering (ICDE 01), 2001.
6. Mohammend j. Zaki, SPADE: An Efficient Algorithm for Mining Frequent Sequences,

Machine Learning, Kluwer Academic Publishers, 2000.
7. Ahonen, H. “Finding All Maximal Frequent Sequences in Text”. ICML-99 Workshop: Ma-

chine Learning in Text Data, 1999.
8. Antunes, C., Oliveira A. Generalization of Pattern-growth Methods for Sequential Pattern

Mining with Gap Constraints. Third IAPR Workshop on Machine Learning and Data Min-
ing MLDM´2003, 2003.

9. Srikant, R., and Agrawal, R. Mining sequential patterns: Generalizations and performance
improvements. In 5th Intl. Conf. Extending Database Discovery and Data Mining, 1996.

10. Public domain documents from American and English literature as well as Western phi-
losophy. http://www.infomotions.com/alex/

	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Proposed Algorithm
	5 Complexity Analysis for the Proposed Algorithm
	6 Experiments
	7 Discussion
	8 Conclusions
	References

