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Abstract. Geometric moments have been proven to be a very efficient tool for 
description and recognition of binary shapes. Numerous methods for effective 
calculation of image moments have been presented up to now. Recently, Sossa, 
Yañez and Díaz [Pattern Recognition, 34(2):271-276, 2001] proposed a new al-
gorithm based on a morphologic decomposition of the image into a set of closed 
disks. Their algorithm yields approximative results. In this paper we propose a 
refinement of their method that performs as fast as the original one but gives 
exact results. 

1   Introduction  

Image moments and various types of moment-based invariants play a very important 
role in object recognition and shape analysis [3], [1]. The (p+q)th order Cartesian 

geometric moment Mpq of a two-dimensional grey-level image ( )yxf ,  (for short 2-
D moment) is defined as  

( ) !,2,1,0,       , == ∫ ∫
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qpdxdyyxfyxM qp
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In a binary image the characteristic function takes only the values 1 or 0, supposing 
that for the interest region R holds f(x,y)= 1. Thus, the definition simplifies to the form  

∫∫=
R

qp
pq dxdyyxM ,     (2) 

In the discrete case, the double integral must be replaced by a summation. The most 
common way how to do that is to employ the rectangular (i.e. zero-order) method of 
numeric integration. Then (1) turns to the well-known form  
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where N is the size of the image and ijf  are the grey levels of individual pixels 

( ) 2, Zyx ∈ . Finally, for binary region R we get  
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Fast and exact computation of 2-D geometric moments of binary objects has been 
considered as an important problem for its importance in numerous image-processing 
applications.  

Since direct calculation of discrete moments from eq. (4) is time-consuming (it re-
quires O(pqN2) operations), a large amount of effort has been spent in the last decade 
to develop more effective algorithms. 

Recently, Flusser [2] pointed out that the formula (4), commonly used in the litera-
ture for the calculation of the discrete moments of a rectangular block yields inaccu-
rate results. In the same paper, Flusser presented a correction of the method originally 
proposed by Spiliotis and Mertzios [6]. 

In this paper we show that the recent method by Sossa et al. [5] also suffers by this 
inaccuracy and we propose how to correct it. We use the same block-wise image 
representation as Sossa et al. proposed in [5] but we present a different scheme to 
calculate the block moments. We show that the new method yields more accurate 
results than the original one.  

2   Original Method by Sossa et al.  

In [5], a novel approach to the calculation of geometric moments of binary image was 
introduced. This method was based on morphologic erosion of the original shape.  

The method performs in three basic steps:  

1. Decompose the given image into a union of disjoint disks; 
2. Compute the geometric moments for each of these disks;  
3. Obtain the final moments as a sum of the moments computed for each disk.  

Various metrics defined on a discrete plane can be employed in Step 1. The use of 
different metrics leads to different image decompositions. Sossa et al. used d8 ''maxi-
mum'' metric defined as  

 

( ) { }2121218 ,max, yyxxPPd −−=     (5) 
 

where iP  is a point whose coordinates are ( )ii yx , . It should be noted that a circular 

disk in d8 metric is a square in Euclidean metric. The basic algorithm used by Sossa et 

al. to obtain the desired decomposition of a binary region 2ZR ⊂  iteratively erodes R 
until the maximal disk completely contained in the original region R is obtained. Then 
this disk is eliminated from the region R and the remaining shape is assigned to R. 
The algorithm repeats this procedure until R becomes empty.  

To calculate the moments of a disk r
pD  of radius r with center ( )cc YX ,  in 

2Zp ∈ , Sossa et al. used eq. (4). The explicit formulae for the first ten geometric 
moments of this disk in d8 metric are:  

( )2
00 12 += rm  cXmm 0010 = cYmm 0001 =  Ymm 1011 =  
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cYmm 2021 =  cXmm 0212 =  (6) 
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To obtain these expressions, Sossa et al. used the well-known formulae for sums of 
integer powers:  
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For details on the Sossa et al. method we refer to [5].  

3   Refined Method  

In this Section, we present a refinement of Sossa et al. method, which uses different 
formulae for calculation of disk moments. To explain the idea, we recall the original 
definition of moments in the continuous domain:  

( )∫ ∫
∞

∞−

∞

∞−
= dxdyyxfyxM qp

pq ,    (7) 

where ( )yxf ,  is, in this case, the characteristic function of a disk. Clearly, eq. (4) is 

only an approximation of eq. (7). An error pqpq mM −  is introduced due to the 

zero-order approximation and numeric integration of qp yx  over each pixel of the 
disk. Below we show how to calculate the geometric moments of a disk exactly with-
out any approximation.  

Given a closed disk r
pD  of radius r with center ( )cc YX ,  in 2Zp ∈  with corner 

pixels centered in ( )rYrX cc −− , , ( )rYrX cc −+ , , ( )rYrX cc +− ,  and 

( )rYrX cc ++ , . The characteristic function of this disk is  
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According to eq. (7), the exact moments of the disk r
pD  are given as  
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The reader can easily see that the corrected set of expressions for the first ten mo-

ments of the closed disk r
pD  becomes:  
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(9) 

4   Comparison of the Two Methods  

While eq. (8) provides exact results, eq. (4) calculates some moments with errors due 

to the approximation. It can be shown that there is always pqpq mM ≥ ; the error 

pqpq mM −  depends on the values of p and q. Comparing eqs. (9) and (6), we can 

evaluate this errors easily, for instance  
 

( )( )

( )( )

( )( )

.
12
1

25.05.012
3
1

123236
3
1

1225.05.13236
3
1

00

2322

2322
2020

m

rr

rrrrXrX

rrrrXrXmM

cc

cc

=

++=

+++++

−++++++=−

 

Similarly,  
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On the other hand, for some moments both methods produce exact results:  

,00000 =− mM ,00101 =− mM ,01010 =− mM .01111 =− mM   (11) 

5   Impact on the Values of the Invariants  

In object recognition we rarely use directly the geometric moments as the features 
because they are sensitive to particular position of the object in the image plane. In-
stead, we employ certain functions of moments, called moment invariants, that are 
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invariant to expected intraclass variations of the objects. Typically, shift and rotation 
invariance is required in many practical tasks. In this Section, we analyze how the 

values of various moment invariants differ depending on if pqm  or pqM  are used.  

Probably the most popular set of moment invariants was derived by Hu [3]. These 
features are invariant to translation and rotation of the object. In continuous domain 
the first two are defined as  

02201 µµφ += , ( ) 11
2

02202 4µµµφ −−=    (12) 

where  

( ) ( ) ( )∫ ∫
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∞
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t
p

tpq ,µ   (13) 
 

is the central moment of the object ( )yxf ,  and ( )tt yx ,  are the coordinates of the 

object centroid. Hu also showed that scaling invariance can be achieved via normali-

zation of each central moment by ( ) 2/2
00

++qpµ . 

It can be easily observed that both algorithms give the same position of object cen-
troid: 
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M
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Thus, central moments are affected exactly in the same way as geometric moments. 

However, since 10µ  and 01µ  equal zero by definition, the relations (10) simplify to 

the form  

12
00

2020
m=−Μ µ , 

12
00

0202
m=−Μ µ , 

03030 =−Μ µ , 02121 =−Μ µ , 01212 =−Μ µ , 00303 =−Μ µ  

where pqµ  denotes the central moments calculated by traditional method while 

pqΜ  stands for the central moments calculated by the refined method.  

Now we can observe an interesting fact: The only Hu's invariant whose values de-
pend on the method of calculation is the first one. Clearly,  

( ) ( ) .
6
00

11
µµφφ =−Μ pqpq  

3φ , 4φ , 5φ  and 7φ  contains only 3rd-order moments, so they cannot be affected. 2φ  

and 6φ  stay also constant due to the error cancellation effect. The same observation 

can be found in [4].  
Another set of invariants called affine moment invariants (AMI's) was proposed by 

Flusser and Suk [1]. They are more general than Hu's invariants because they are 
invariant not only to rotation and scaling but to general affne transformation. Thanks 
to this, they can be successfully used in object recognition on images deformed by 
slant or anisotropic scaling. The first six AMI's are shown below.  
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We can easily prove that, for the same reason as in the previous case, 2I  stays the 

same irrespective of the calculation algorithm. However, other AMI's change if pqΜ  

are used instead of pqµ . We can observe that, for instance,  
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Similar (but more complicated) relations can be derived for other AMI's too.  
Summarizing the above analysis, we can conclude that when using Hu's invariants, 

one does not need to use the refined algorithm for moment calculation (with exception 

of 1φ ). On the other hand, the AMI's should be computed using the refined method if 

accurate values are required.  

6   Numerical Experiments  

In this Section, we experimentally demonstrate the difference between classical and 
new formula for moment calculation. From the theoretical analysis given above im-
plies that some moments and moment invariants are identical regardless of the fact 
whether eq. (4) or eq. (8) is used. In this experiment we show the differences between 

second-order central moments, first Hu's invariant 1φ  and six affne moment invari-

ants 61 ,, II …  for three binary images.  

In Fig. 1, one can see our test objects called ''Plane'', ''Duck'', and ''Snake'', respec-
tively. In Table 1, the relative errors of the moments and of the invariants are shown. 
The errors we have investigated are defined as follows:  
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Fig. 1. Test objects used in the experiment: Plane(left), Duck(middle), and Snake(right). 

Table 1. Relative differences between traditional and new formulae for moment calculation. 
For simplicity, all values were multiplied by 104.  

 e1 e2 e3 e4 e5 e6 e7 e8 e9 

Plane 0.16 0.23 0.19 0.40 0 0.21 0.63 0.91 1.63 
Duck 0.19 0.41 0.26 0.81 0 0.41 1.24 2.08 3.27 
Snake 0.18 54.89 0.37 56.73 0 -6.52 2.02 2.21 145.07 

 
The most important observation that is based on this experiment can be summa-

rized in the following way. For elongated objects (where elongation is parallel to one 
of the axes) the relative errors can be high and might, in some cases, cause misclassi-

fication. An extreme case is a one-pixel thick horizontal line, for which 002 =µ  but 

02Μ  is proportional to its length. Relative errors of other objects are much smaller, 

as can be seen in Table 1 when comparing Plane or Duck to Snake. Thus, when deal-
ing with elongated objects, it is recommended to use the refined formula (8) for mo-
ment calculation. On the other hand, for objects having ''regular'' shapes traditional 
computation according to eq. (4) can be used without significant loss of accuracy.  

7   Conclusion  

In this paper, we presented a new method for calculating geometric moments and, 
consequently, of moment invariants of binary objects. This method is a refinement of 
Sossa et al. algorithm that was based on a decomposition of the object into disjoint 
disks. In the original paper by Sossa et al., zero-order approximation was used for 
numerical integration when calculating moments of the disks. In this paper we pro-
posed an exact formula with no approximation. We analyzed (both theoretically and 
experimentally) the differences between these two formulae and the influence of the 
refined method on the values of moment invariants. We demonstrated that for some 
shapes the new method yields a significant increase in accuracy.  
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