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Abstract. A problem often present in skeletonization of gray-tone digital im-
ages is that the obtained skeleton includes an excessive number of branches. In 
this respect, a regularization process should be performed in order to partially, 
or totally, remove branches which are not meaningful in the problem domain. In 
this paper, we propose a skeletonization algorithm which is active only on a 
suitable subset of the image, mainly constituted by regions understood as rele-
vant from a perceptual point of view. The notion of dominance of a region, 
which is defined in terms of geometrical features, gray-value and adjacency re-
lations, plays a central role in the selection of the regions of the subset. The ob-
tained skeleton turns out to be more representative and its simpler structure will 
allow one to perform the regularization phase with a reduced computational ef-
fort. 

1   Introduction 

Generally, the skeleton of a gray-tone digital image could be defined as a set having a 
“graph-like” structure which, ideally, should represent a sketch of the subset of the 
image which is understood as the foreground in a specific problem domain. However, 
since it is often difficult to distinguish clearly which regions belong to the foreground, 
the obtained skeleton may include branches found in correspondence with non sig-
nificant regions, and its structure may result too busy for representation purposes. In 
this respect, the representation power of the skeleton can be improved noticeably by 
taking into account a regularization process, which modifies the skeleton structure by 
using context information and domain knowledge [1], [2], [3]. 

In this paper, we propose a skeletonization algorithm which is active only on a 
suitable subset of the image, mainly constituted by regions understood as relevant 
from a perceptual point of view. Purpose of this selection of the image subset is to 
highlight the regions which are more likely to belong to the foreground. The advan-
tages inherent in this approach with respect to previous work, e.g., [4], are: i) a re-
duced computational effort during skeletonization, since the skeleton is searched only 
in a subset of the image. ii) a skeleton having a simpler structure and therefore more 
representative. iii) a reduced computational effort during the regularization phase, 
since the skeleton is likely to be constituted by a smaller number of branches.  

To find the regions belonging to the image subset of interest, we introduce the no-
tion of dominant region. This notion involves geometrical features, gray-value and 
adjacency relations of a region, and turns out to be useful in classifying a region as 
perceptually more relevant than (some of) its adjacent regions. The image subset will 
consist of the dominant regions and of a number of other regions, called induced re-
gions. The induced regions, although not perceptually meaningful, are important be-
cause are placed along an ideal path connecting a dominant region with another 
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dominant region with higher gray-value, and their presence allow connectedness pres-
ervation during the pixel removal phase.  

The proposed skeletonization algorithm follows the scheme described in a previous 
paper [4], which allows a computationally convenient analysis of the regions to be 
processed. Besides the region selection phase, it includes a labeling phase guided by 
distance transformation [5], [6], [7], and a pixel removal phase accomplished by to-
pology preserving reduction operations [8], [9]. 

2   Preliminaries 

Let G be a gray-tone digital image. Pixels in G are assigned one out of a finite number 
of increasing integer values gk k=0,1,...,N, which indicates for any pixel p the gray-
value or status g(p) of the pixel itself. We assume that G is bordered by a frame of 
pixels with gray-value higher than gN. In the following, pixels will be described as 
darker as their gray-value is higher. 

The neighbors of p are its 8-adjacent pixels. They constitute the neighborhood N(p) 
of p and are denoted by n1,n2,...,n8, where the sub indexes increase clockwise from the 
pixel n1 placed to the left of p. 

A gray-tone digital image is a mosaic constituted by regions, which we regard as 
maximal 4-connected sets of pixels with the same gray-value. 

Two regions in the mosaic are adjacent if they are 4-adjacent. 
The area of a region is the number of its pixels. 
The perimeter of a region is the number of its pixels 4-adjacent to the adjacent re-

gions.  
The length of the common border between a region and an adjacent one is the 

number of its pixels 4-adjacent to that region. 
A “higher neighboring component” (shortly, HNC) of a region R is a maximal 

connected set of adjacent regions, each having gray-value higher than the one of R. 
A “lower neighboring component” (shortly, LNC) of a region R is a maximal con-

nected set of adjacent regions, each having gray-value lower than the one of R. 

3   Regions 

In a gray-tone image where there is no a priori knowledge of its contents, we consider 
the darker areas as foreground and those clearer as background. To regard a region as 
darker does not depend on its real gray-value, but only on the existence of neighbor-
ing regions with lower gray-value. In a broad sense, darker regions are perceptually 
more relevant and, under certain conditions, we say that they dominate the neighbor-
ing regions. 

In order to detect the dominant regions, it is preliminarily convenient to distinguish 
four types of regions: top, bottom, saddle and slope. 

− A top is a region with gray-value higher than the gray-value of all its adjacent re-
gions. 

− A bottom is a region with gray-value lower than the gray-value of all its adjacent 
regions. 

− A saddle is a region for which there exist at least either two HNCs or two LNCs. 
− A slope is a region for which there exists exactly one HNC and one LNC.  
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Since the perceptual relevance of a region depends on the local context in which it 
is placed, the tops assume a determinant role since they are characterized by a locally 
maximum gray-value. Thus, all tops should be represented by branches of the skele-
ton. On the contrary, the bottoms have a locally minimum gray-value and are very 
likely to be part of the background. Such regions should not be represented by 
branches of the skeleton.  

More questionable is the decision regarding saddles and slopes.  
A saddle is a region that separates two HNCs (or two LNCs) and may correspond 

either to an abrupt change of gray-value with respect to the gray-values of these com-
ponents or to a smooth transition between those gray-values. Whichever the case, we 
regard a saddle as part of the background if its gray-value is closer to the gray-values 
of the LNCs than to the ones of the HNCs, and as part of the foreground if this is not 
true, i.e., the saddle appears sharply defined. Thus, a saddle cannot be considered 
automatically as a dominant region, and certain measurements have to be performed 
to this purpose. See Fig. 1 (a,b). 

Slopes correspond to perceptually relevant regions if they are elongated and mostly 
surrounded by regions with a suitably lower gray-value, i.e., are sharply defined. In 
this case, they are dominant regions and skeleton branches should be found in corre-
spondence with them. In other cases, they could be understood as belonging either to 
the foreground or to the background, depending on the context. Particularly, we re-
gard them as part of the foreground if they are useful (to contribute) to establish a 
connection between dominant regions with different gray-values.  

To define the set of the dominant regions, we propose the four criteria below, 
which take into account gray-value, elongation, and local context. 

c1: the region is not a bottom; 
c2: the region is a top; 
c3: the region is a sharp saddle; 
c4: the region is an elongated and sharp slope; 

Then, we say that a region is dominant if the following condition is verified: 

c1 AND (c2 OR c3 OR c4) 

Once the dominant regions have been found, it is important to establish which 
other regions can be understood as belonging to the foreground, and whose detection 
can be induced by the presence of the dominant regions. For instance, if we identify 
an elongated slope as a dominant region, then it is important that it be connected to 
the part of the foreground (i.e., already detected dominant regions) of which it is per-
ceived as a protrusion. To this purpose, it is necessary to consider as belonging to the 
foreground also the slopes placed between the protrusion and the foreground. Once 
detected, an induced region will induce in turn other regions with higher and higher 
gray-values until a dominant region is found. See Fig. 1c. 

4   Skeletonization 

The skeletonization process can schematically be divided in 5 phases. The first phase 
regards the preprocessing. The aim is to simplify the input image by using an iterative 
merging process, which creates macro regions including input regions whose gray-
values can vary only within a given range [10]. We don’t discuss this phase since it is 
described in detail in a previous paper [4]. The second phase regards the extraction of 
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data characterizing the regions. The third phase regards the detection of both the 
dominant regions and the regions induced by these ones. The fourth phase regards the 
extraction of the skeleton from the regions previously selected. We will only briefly 
outline this phase, since it is not significantly different from a similar one described in 
detail in [4]. The last phase regards the post processing, tailored to originate a one-
pixel-thick skeleton.  

4.1   Data Characterizing Regions 

During this phase we collect useful data regarding the regions. In order to keep these 
data, we use a list R of records; every record of R has 10 fields and contains the data 
concerning a region. The first field is a natural number that is ascribed to the region 
and has the role of ID of the region; the fields from 2 to 5 contain respectively the 
gray-value, the area, the length of the common border with the regions having lower 
gray-value, the length of the common border with the regions having higher gray-
value; the fields 6 and 7 contain numbers 0, 1 or 2 depending on whether the number 
of HNCs (LNCs) is = 0 or = 1 or > 1; the fields 8 and 9 points to two other lists of 
records: the first one points to a list containing the ID of the adjacent regions of the 
examined region; the second points to a list C of records keeping the coordinates of 
the pixels of the region. Finally the last field is a Boolean field that will assume true 
or false value depending on whether the region will be considered as foreground or 
background. 

Since it is important to access the data regarding a region also by starting from the 
ID value, we have chosen as ID the progressive numbers starting from 1. In this way, 
we can use an array of pointers in which the generic element “i” points to the record 
containing the data of the i-th region. 

The extraction from the image G of the data of interest regarding every region is 
carried out in two steps, and in different ways.  

The first step is concerned with a raster scan of the image G during which, every 
time that a new region is detected, the progressive number is ascribed as ID to the 
region, and a new record is created where the ID and the gray-value of the region are 
inserted. All the pixels of the region are then detected and labeled with their ID in a 
new array F. While the pixels of a region are detected, the border pixels regarding the 
region itself are inserted into the list C and the value of the area is also computed. 
Once the entire region has been examined, also this value will be inserted in the rela-
tive field of the record.  

a )  b)  c)  

Fig. 1. a-b) Region A is a saddle. Depending on the context, A can be dominant (a) or not (b).
c) Region A is a bottom. Region H is a top. Regions B-G are slopes. Slopes D, E, F, and G are 
induced from the elongated and sharp slope C. 
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The second step is concerned with the analysis of the list R, in order to assign to 
every region the ID of the adjacent regions and the lengths of the common border 
with its adjacent regions. To this purpose, we consider, for every region, the list C of 
the border pixels. Every member of C is a pair of coordinates characterizing a pixel in 
F. The set of the regions 4-adjacent to the border pixels identifies the regions adjacent 
to the examined region. Every time that a new adjacent region is found, its ID is in-
serted in the list of the region under examination. By analyzing the 4-neighbors of the 
pixel in F it is also possible to know the gray-value of the adjacent regions. Therefore, 
after analyzing the list C, the length of the common border with the regions with 
higher and lower gray-values will be known and these lengths can be inserted in the 
relative fields of the record. 

The R list is analyzed again in order to detect, for every region, the HNCs and the 
LNCs; in particular, it is necessary to know the number (0, 1, >1) of HNCs and LNCs. 
First, we consider the case of the HNCs. The description is referred to a generic re-
gion found when scanning the list R, since the procedure is the same for all the re-
gions. We consider the list of the adjacent regions and construct a new list L of re-
gions including only the regions with gray-value higher than the one of the examined 
region. If L is empty, the number of HNCs is equal to zero, else we analyze L in order 
to check, by considering the adjacency of the regions stored in L, whether all these 
regions constitute only one connected set in the image F. To this purpose, we consider 
a new list L’, initially empty. We remove the first element from L and place it in L’. 
For every region E of L, we consider its list of adjacent regions in order to detect 
whether an element of  L’ is in it. If this happens, we remove the region E from L and 
insert it in L’. When the analysis of all the elements of L terminates, one of the fol-
lowing three cases can occur. i) The list L is empty; in this case the procedure termi-
nates and the number of components found is equal to 1. ii) The list L is not empty, 
but at least one removal has been done; in this case L must be scanned again. iii) The 
list L is not empty and no removal has been done; in this case the procedure termi-
nates and the number of components found is greater of 1.  

The procedure to detect the LNCs is analogous; the only difference occurs in the 
construction of L, where the elements with lower gray-value will be inserted. 

4.2   Selection of Dominant and Induced Regions 

The conditions c1, c2, c3, c4 mentioned above (see section 3) are taken into account 
to decide whether a region is dominant. 

The first condition says that the region should not be a bottom. This information is 
available since if a region is a bottom, the number of its LNCs is equal to 0.  

The second condition says that the region should be a top. Also this information is 
available since a top has the number of HNCs equal to 0.  

The third condition says that the region should be a sharp saddle. If the region is a 
saddle the number of HNCs (LNCs) is equal at least to 2. If this is the case, it is nec-
essary to check whether this region is sharp. To this purpose, it is necessary to have a 
measure for the “nearness” of the saddle with respect to the HNCs and with respect to 
the LNCs. In our opinion, a crucial role in defining the quality of the context for the 
HNCs (LNCs) is played both by the gray-value of the regions that constitute the 
HNCs (LNCs) and by their spatial extensions. Thus, we ascribe to the HNCs (LNCs) 
a weight equal to the sum of the products between the gray-value and the area of 
every region of the HNCs (LNCs), divided by the area of the HNCs (LNCs). We 
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indicate such values with d_hnc and d_lnc respectively. If there results that 
d_hnc<d_lnc, that is if the gray-value of the region is nearer to d_hnc than to d_lnc, 
we take the region as a dominant region. In order to evaluate d_hnc and d_lnc, only 
the data regarding the gray-values and the areas of the adjacent regions are necessary; 
thus one scan of the list of the adjacencies of the considered region is sufficient.  

The fourth condition says that the region should be a sharp and elongated slope, 
understood as a protrusion. We note that, if the region is a slope, the number of HNCs 
and of LNCs must be equal to 1, therefore this information is available. With regard 
to the sharpness, we follow the procedure used for the saddles. What remains to 
evaluate, is whether the slope is a protrusion. Our criterion is to estimate the ratio 
between the respective lengths of the common border with LNC and with HNC. If 
this ratio is greater than a threshold, the slope is a protrusion. In this paper, we have 
chosen a threshold value equal to 3. This ratio is readily available since the data re-
garding the lengths of the common borders are already known.  

To select the dominant regions is therefore sufficient one scan of the list R, then a 
true or false value will be inserted depending on whether the region is dominant or 
not.  

Once the dominant regions have been detected, the induced regions should be 
found. In fact, every dominant region induces the adjacent regions with higher gray-
value to become themselves dominant regions.  

In order to find the induced regions, it is necessary to consider a process starting 
from the detected dominant regions. Thus, we perform one more scan of the list R 
during which, every time that we detect a dominant region, we begin an iterative 
process. This process starts from the dominant region and analyzes step by step the 
regions with higher gray-values adjacent to the created induced regions, and proceeds 
until an already detected dominant region (possibly, a top) is found. In Fig. 2, a pre-
processed input image is shown (a), together with the extracted dominant and induced 
regions (b). 

a)  b)  

Fig. 2. a) Preprocessed input image. b) Dominant and induced regions. 

4.3   Skeleton Extraction and Post Processing 

The dominant regions and the induced regions are the only regions involved in the 
skeletonization process. The skeletonization procedure that we use was introduced in 
[4]. There, the skeleton was computed by applying topology preserving reduction 
operations to the pixels of the image, which is analyzed region by region. We outline 
below the modifications to bring to that algorithm in order to allow its use in the 
framework of this paper. The algorithm described in [4] is performed in three phases: 
region labeling, end point detection and pixel removal. Regarding the region labeling 
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phase, this is replaced by the phases described in subsections 4.1 and 4.2 to which one 
has to add, with the same modalities described in [4], the computation of the distance 
transform for every region. Regarding the end point detection phase, no change is 
needed. As for the pixel removal phase, the only modification consists in estimating, 
every time that a new region is considered, if the region is of interest; if this is not the 
case, its analysis is skipped and the process continues on the remaining regions. The 
set obtained at the end of this phase is not ensured to be one-pixel-thick, so that a post 
processing phase is required. The image is considered as a binary image where the 
skeleton constitutes the foreground and its complement the background, so it is suffi-
cient to apply well-known topology preserving reduction operations designed for 
binary images [8] to the set obtained above, during one raster scan of the image.  

5   Conclusions 

In this paper we have proposed a skeletonization algorithm for gray-tone images, 
based on region analysis. The aim of this analysis has been to try to foresee which 
regions could reasonably be understood as belonging to the foreground, so as to ex-
clude the remaining ones from the skeletonization process. We have characterized 
four types of regions, by taking into account the gray-values of the regions and their 
spatial relations with the adjacent regions. We have also proposed some criteria to 
highlight a number of regions, called dominant regions, that are perceptually relevant 
and should be part of the foreground. The process of region selection foresees the 
detection of further regions, called induced regions, which allow one to link to each 
other the dominant regions. The dominant regions and the induced regions constitute 
the image subset on which the skeletonization algorithm is applied. The resulting 
skeleton (see Fig.3) is more representative than a skeleton obtained by considering all 
the regions of the image. Moreover, its simpler structure allows one to implement 
with a reduced computational effort the regularization phase, which should necessar-
ily be considered to obtain a skeleton meaningful in the problem domain. 

a)  b)  

Fig. 3. Skeleton, superimposed on the preprocessed input, computed by considering all the 
regions (a) and by considering only the dominant and induced regions (b). 
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