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Abstract. In this work, we present an algorithm for increasing spectral resolu-
tion in DEM. The algorithm is based on the 8-connected skeleton of polygons 
formed by the contour lines and to prune this skeleton by translating it into a 
graph. This is an alternative to the processes of vector interpolation. With this 
approach, it is possible to find new elevation data from the information con-
tained in DEM and generate new data with the same spatial resolution.  

1   Introduction 

Nowadays, Digital Elevation Models (DEM) have gained popularity in applications 
for simulating natural disasters. Nevertheless, these applications require a huge 
amount of data. In many cases, the available data do not present enough quality for 
simulation processes. The Statistics, Geography and Informatics National Institute of 
Mexico (INEGI) produces DEM with 50 meters of resolution [1][2], but some simu-
lation processes require a better level of detail (1 meter is the standard). In all cases, 
DEM are generated by means of contours. These have different representations and 
thresholds of separation. For instance, in the topological maps of INEGI, the contours 
are separated by 10 meters and 5 meters near the coast. In Simulation processes like 
flooding simulations we need more detailed information (less than 1m. of resolution).  

In this work, we propose an algorithm to increase spectral resolution of DEM for 
simulation processes; the algorithm is based on a skeletonization. In [3], we present 
an application to handle the huge quantity of data contained in DEM for real-time 
rendering by discriminating the less significant elevation data, without changing the 
semantics of the raster data. However, we cannot improve the quality of the more 
relevant data to obtain additional information. In [4], we extended the algorithm to 
increase the spatial resolution of DEM. In this paper, we introduce a method for in-
creasing spectral resolution of DEM. It is important to lineout that the algorithms 
mentioned above were developed to be used with raster data sets, although similar 
considerations can be taken for vector data sets. 

By using the algorithm presented in this work and the previous jointly, we can 
solve the problem of 3D data representation and generate virtual scenes, which are 
ready to navigate, either by simulations or by defined trajectories [5].  

In the next section, we present some frameworks of the underlying theory of the 
skeletonization making different approaches. In Section 3, we give the pertinent con-
siderations for the application of skeletonization in DEM and outline the proposed 
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approach. In Section 4, some results and tests are presented and analyzed. Finally, 
Section 5 describes our conclusions.  

2   Skeletonization 

The skeleton of a region is defined by means of the Medial Axes Transform (MAT) 
proposed by Blum [6]. The MAT of a region R with edge B is defined as follows: 
Find the nearest neighbor for each point p of R, if p has more than one neighbor then 
p belongs to the medial axis (skeleton) of R. The concept “nearest” depends on a 
distance, while the results of MAT depend on the selection of a distance measure. 
Fig. 1 shows some examples that use Euclidean distance as measure [7]. 

                                         

Fig. 1. Medial Axis of some simple geometrical shapes 

Strictly speaking, the skeleton of a region should fulfill the following conditions: 
• Be a connected subset of points from the original region. 
• Represent the geometric characteristics of the original region. 
• Preserve some topological characteristics of the original region, such as connec-

tivity and holes. 
In general, all skeletonization methods of binary images can be classified in two 

groups: pixel-based methods and non-pixel-based ones. In the first case, every pixel 
belonging to an object in the image is used for computation of the skeleton (thinning 
and distance transformations).  

On the other hand, non-pixel-based methods attempt to determine analytically the 
symmetric points of a shape from opposite points in the shape edge. The thinning 
techniques provide different types of skeletons, depending on the connectivity desired 
for the skeleton. In general, there are four types of skeleton connectivity (Eqn. 1) 
They are: 8-connected, 4-connected, 6-right-connected and 6-left-connected. 
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For a pixel p, from an image I, exists four types of neighborhoods, depending on 
the type of connectivity, they are denoted by v8, v4, v6R y v6L. In Fig. 2 the neighbor-
hoods mentioned are depicted. 

Thinning is the process that consists of deleting all pixels of a set of objects with 
region R and edge B, which fulfill the following conditions: 
• Pixel p is not an extreme, i.e. it has just one neighbor belonging to the object. 
• If p is deleted, the connectivity must not be affected. 
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(a) (b) (c) (d) 

Fig. 2. Set of neighbors for a pixel p using different connectivity criteria. (a) 8-connected.  
(b) 4-connected. (c) 6R-connected. (d) 6L-connected 

A classic thinning algorithm consists of the following stages: First, determining the 
edge pixels. To determine these pixels, it is necessary to use a dual connectivity crite-
ria (if we want a 8-connected skeleton, then we must use 4-connected criteria). Once 
determined the edge pixels, we must delete the pixels that are not necessary. The 
conditions for determining if a pixel p can be deleted are defined in Eqn. 2 (the ro-
tated versions of masks are conditions too). 
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Eqn. 2 can be explained by the masks that result from all possible combinations of 
the equations (see Fig. 3).  If an edge pixel gives a true result by applying any of the 
masks of Fig. 3, then this pixel cannot be deleted. Additionally, it is necessary to test 
if the pixel is an extreme one (Eqn. 3). If it is true, then the pixel cannot be deleted. 

},7,5,3,1{,1 ∈=∑ ipi  (3) 

This process is iteratively repeated, while we can delete pixels. The result of the 
process is the 8-connected skeleton of the original object. 
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Fig. 3. Masks used to obtain the 8-connected skeleton 

3   Applying Skeletonization   
for Increasing DEM Spectral Resolution 

In this paper, we propose the use of a skeletonization to obtain a new contour be-
tween two known ones. In previous section, we present the process to compute the 
skeleton of a binary image. In this section we define how to generate the new contour 
from the skeleton of the region between the two known contours. We will call this 
region Equi-Heigth region or EH regions. 
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Generally, we do not have the DEM of a whole world, i.e. we should work with 
DEM that describe a region. Due to this, many times the contours are interrupted in 
the edges of the image. Hence, the EH regions can be incomplete; in this case we 
have identified three cases (See Fig. 4): 

• Case A. The contours that define EH region are completely inside of the image, 
forming a blob with at least one hole. 

• Case B. The contours begin and end outside of the image, forming a strip across 
the image.  

• Case C. The same as case B, but there are holes in the strip. 

   
(a) (b) (c) 

Fig. 4. Cases considered in the raster analysis 

In Fig. 5 we present the skeletons obtained for EH regions of Fig. 4. As we can 
see, each skeleton has a lot of branches that are not suitable for being part of the con-
tour. We can discriminate the noise branches (prune the skeleton). In same Fig. 5 the 
noise lines are in light gray, while the contour is in black.  

   
(a) (b) (c) 

Fig. 5. The skeletons for the examples depicted in Fig. 4 

Once having the skeleton, it is necessary to obtain the contour from it by pruning 
the skeleton. To perform this, we propose to generate a graph that describes the mor-
phology of the skeleton. Thus, it is possible to find the contour of EH region by using 
a graph that describes the skeleton (see Fig. 6). In other words; it is possible to prune 
the skeleton using its graph; see in the following. 

To generate the graph from the skeleton, we use on the fact that the skeleton is 8-
conncted. Let I be a binary image containing a skeleton and pij the value of the image 
matrix I(i,j). The first element of the image f is defined by Eqn. 4. 



554      Rolando Quintero et al. 

  

Fig. 6. Transformation of skeleton into graph 
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Let p be a pixel of the image and n(p) the number of 8-connected neighbors. Then 
we define T as the set of terminal pixels (Eqn. 5). Similarly, we define A as the set of 
edge pixels (Eqn. 5) and R as the set of triad pixels (Eqn. 5). While, the set of vertices 
V is given by Eqn. 6.  
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Let p be an image pixel and N(p) the set of the 8-connected neighbors of p, then 
we define a branch s by Eqn. 7. Also, l(s) denotes the length of a branch s, and first(s) 
and last(s) defines the extreme elements of a branch s.  
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We now define the graph representing the skeleton of the image as G(V, E) where 
E={s : s is a branch}. Also, we define a path w on the graph G by Eqn. 8. Moreover, 
we define the length of a path λ(w), the set of all paths in G as W(G), and ω(G) is the 
longest path in G. 
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Once we have obtained the graph from skeleton, we simply take the following cri-
teria for discriminating noise branches: 

• If there are loops in graph, then all branches that are not in one loop are elimi-
nated. 
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• If a branch is in more than one loop, then that branch is eliminated. 
• If there are not loops in graph, then all branches outside of the longest path in 

graph are eliminated. 
The next definitions are used to discriminate branches. A path b is a loop if 

last(sn)=first(s1). So, let B(G) be the set of all loops in graph G and SR(G) the set of 
redundant branches in G (Eqn. 9). Then we define the candidate contour C as is de-
noted in Eqn. 9. 
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Finally, let CN be the resulting contour within the skeleton, defined by Eqn. 10. 
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4   Tests and Results 

We have developed an application implementing the described process. The contours 
that have been obtained compose DEM. Nevertheless, we have found some patho-
logical cases in the skeletonization as in well as the pruning process. Fig. 7 is de-
picted a pathological case in the skeletonization process: parasite branches (circled in 
Fig. 7.a). This case has been solved by applying some morphological operations (ero-
sion, dilatation and aperture) to the image before obtaining the skeleton. The result is 
shown in Fig. 7.b.  

  
(a) (b) 

Fig. 7. Pathological case in the skeletonization 

A pathological case of the pruning is illustrated in Fig. 8: there are no loops in the 
graph and there is a triad pixel near the edge of the image, Also the larger branch 
does not accomplish the edge of the image. Hence, the larger branch becomes para-
site, so it does not belong to the contour. The problem can be easily solved by defin-
ing the set of edge pixels and requested the larger path in the graph begins and ends at 
edge pixel. 

Fig. 9 shows the final step of processing of our algorithm. Moreover, Fig. 9.a de-
picts the found contour in the context of the DEM. This contour is integrated into 
DEM (Fig. 9.b).  
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Fig. 8. Pathological case in the pruning 

  
(a) (b) 

Fig. 9. Final result. (a) Contour discovered into original DEM. (b) Modified DEM according to 
the source 

5   Conclusions 

In this work, we have presented an algorithm for increasing spectral resolution in 
DEM. The algorithm is based on the 8-connected skeleton of polygons formed by the 
contour lines; and to prune this skeleton by transforming it into a graph.  

The skeletonization algorithm provides 8-connected skeleton. We identify some 
pathological cases in which the skeleton has parasite branches. These branches do not 
affect the pruning algorithm. Nevertheless we reduce the number of parasites by ap-
plying morphological operations (erosion, dilatation and aperture) on the EH regions. 

For the definition of the pruning algorithm, we describe the cases that can be 
DEM. This algorithm consists of the transformation of the skeleton into a graph. In 
the graph, the singular pixels (extreme, terminal and triad pixels) are the vertices and 
all other pixels form the edges of the graph. Once obtained the graph, criteria for 
deleting edges and vertices are defined. This conversion of the skeleton into graph 
can be used in other pruning algorithms, by changing the deletion criteria. 

The algorithm is an alternative to the processes of vector interpolation. With this 
approach, it is possible to find new elevation data from the information contained in 
DEM, and generate new data with the same spatial resolution. The use of this ap-
proach jointly with the previous works [3][4] allow processing huge quantity of data 
contained in DEM for in simulation and visualization processes, optimizing its per-
formance. 
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