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Abstract. This paper describes a simple method for estimating the
surface radiance function from single images of smooth surfaces made
of materials whose reflectance function is isotropic and monotonic. The
method makes use of an implicit mapping of the Gauss map between
the surface and a unit sphere. By assuming the material brightness is
monotonic with respect to the angle between the illuminant direction
and the surface normal, we show how the radiance function can be rep-
resented by a polar function on the unit sphere. Under conditions in
which the light source direction and the viewer direction are identical,
we show how the recovery of the radiance function may be posed as that
of estimating a tabular representation of this polar function. A simple
differential geometry analysis shows how the tabular representation of
the radiance function can be obtained using the cumulative distribution
of image gradients. We illustrate the utility of the tabular representation
of the radiance function for purposes of material classification.

1 Introduction

The modeling of surface reflectance is a topic that is of pivotal importance,
and has hence attracted considerable effort in both, computer vision and com-
puter graphics communities. Broadly speaking, the methods used to model or
approximate the bidirectional reflectance distribution function (BRDF) can be
divided into those that are physics-based, semi-empirical or empirical in nature.
Although the literature from physics is vast, it is perhaps the work of Beckmann
on smooth and rough surface reflectance that is the best known in the vision and
graphics communities [1]. Despite being based upon physically meaningful sur-
face parameters, the Beckmann theory is intractable for analysis problems since
it relies on the evaluation of the Kirchhoff wave scattering integral. Further, it
breaks down when either the surface roughness or the scattering angle are large.
However, recently, Vernold and Harvey [2] have overcome this latter problem
by developing a model which accounts for self shadowing on rough surfaces. By
contrast, in the graphics community it is the development of computationally
efficient tools for the purposes of realistic surface rendering that is of primary
interest, and hence it is empirical models that have been the focus of activity
[3, 4]. One of the most popular models is that developed by Phong [4]. However,
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neither the models developed in physics nor the computational models developed
in graphics are well suited for surface analysis tasks in computer vision. It is for
this reason that Wolff [5] and Nayar and Oren [6] have developed phenomeno-
logical, or semi-empirical, models that account for departures from Lambertian
reflectance. Despite these efforts, the physical and phenomenological modeling
of the BRDF remains an elusive task. An alternative is to empirically estimate
or to learn the BRDF under controlled lighting and viewing conditions of rough
and specular objects [7–11]. There have also been attempts to model the re-
flectance properties of human skin from real-wold imagery [12, 13]. Hertzmann
and Seitz [14] have shown how the BRDF can be recovered making use of a
reference object and multiple views of the scene.

The main problem with existing approaches is that the BRDF has four de-
grees of freedom that correspond to the zenith and azimuth angles for the light
source and the viewer relative to the surface normal direction. As a result, the
tabulation of empirical BRDF’s can be slow and labour intensive. Furthermore,
extensive lighting control and prior knowledge of the surface geometry is often
required for the BRDF estimation process.

In this paper, we focus our attention in estimating the radiance function from
single images without the use of expensive cameras and complex calibration pro-
cedures. Hence, we are interested in a computationally cheap alternative to the
complicated setups employed by measurement-intensive approaches. Of course,
acquiring a BRDF for purposes of photorealistic rendering from a single image
is hard due to technical issues. Here, we aim at recovering a qualitatively good
estimate that can be used for purposes of object classification or material library
indexing.

We present an essentially non-parametric method for estimating the re-
flectance function from image data that avoids using basis functions or a prede-
termined parameterisation of the BRDF to characterise the specular spike and
limb. Our method makes implicit use of the Gauss map, i.e. the projections of
the surface normals onto a unit sphere. We map implicitly the brightness values
for a single image onto locations on the unit sphere which have identical surface
normal directions. Under conditions in which the light source and the viewer di-
rections are identical, we show how the reflectance function can be represented
by a polar function on the unit sphere. We pose the problem of recovering the
reflectance function as that of estimating a tabular representation of this polar
function. To overcome the problem that we do not have the field of surface nor-
mals at hand, under conditions of isotropic reflectance, we show how to estimate
the zenith angles on the unit sphere using image brightness gradients. A simple
analysis shows how the tabular representation of the reflectance function can be
obtained using the cumulative distribution of image gradients.

2 Preliminaries

In this section, we provide the background for our method. Our overall aim is to
make an estimate of the reflectance distribution function from a single image of a
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piecewise smooth surface. We limit our study to those surfaces whose reflectance
function is isotropic and monotonic. Surfaces of this kind are those of shiny and
moderately rough objects, terse objects and mate materials. Examples of these
are porcelain, smooth terracotta, plastics, etc.

We simplify the problem of estimating the radiance function by using the
differential properties of the Gauss map of the surface under study onto a unit
sphere. For an orientable surface S ∈ �3, the Gauss map G : S �→ Ŝ maps
points on the surface S onto locations on the unit sphere Ŝ which have identical
surface normal directions. Our aim is to use correspondences between surface
normal directions to map brightness values from the image onto the unit sphere.
The polar distribution of brightness values on the unit sphere Ŝ is the radiance
function for the surface. To avoid ambiguities, we assume that points on the
surface with identical surface normal directions have identical brightness values.

Of course, when only a single image is at hand, the mapping of the brightness
values from the image onto the unit-sphere is not straightforward. In fact, the
task of estimating surface normal directions from measured brightness values
is an underconstrained one, which has preoccupied researchers in the field of
shape-from-shading for several decades. Even for surfaces which exhibit simple
Lambertian reflectance, the problem is not tractable in closed-form. Further-
more, for non-Lambertian reflectance the situation is more complex. In the case
of non-Lambertian reflectance, provided that the reflectance properties of the
surface are isotropic and homogeneous, the problem is simplified considerably if
the viewer and light source directions are identical. The isotropy assumption will
ensure that circles of latitude on the unit sphere will still have constant bright-
ness. The problem of recovering the distribution of the brightness with respect
to the latitude becomes that of estimating the zenith angle from the distribution
of brightness values.

Hence, we limit our discussion to the case where the image plane Π is chosen
so that the viewer direction vector V and the light-source direction vector L
are coincident, i.e. L = V . Suppose that the point p on the unit sphere has
zenith angle θ and azimuth angle α. Under the Gauss map, the brightness value
associated with this point is denoted by the polar radiance function fO(θ, α) = I,
where I is the measured brightness at the point s in the image of the surface S.
Thus, when the viewer and light source directions are identical, then provided
that the reflectance process is isotropic, the distribution of radiance across the
unit sphere can be represented by a function g(θ) of the zenith angle alone. As a
result, the observed brightness values mapped onto the unit sphere by the Gauss
map G can be generated by revolving the function g(θ) = fO(θ, 0) in α about the
axis defined by the viewer and light source directions. The problem of describing
the brightness distribution over the Gauss sphere hence reduces itself to that of
approximating the function g(θ) and computing its trace of revolution.

To develop our analysis, and to show how to map brightness values onto the
unit sphere, it will prove useful to consider the image of the unit sphere under
orthographic projection onto the plane Π̂ that is perpendicular to the viewer
direction. The Cartesian image can be represented using the polar coordinates
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of the unit sphere and is given by IΠ̂(sin(θ) cos(α), sin(θ) sin(α)) = fO(θ, α). In
fact, when the light source and viewer directions are identical, then the image is
circularly symmetric and we can write IΠ̂(sin(θ) cos(α), sin(θ) sin(α)) = g(θ).

3 Radiance Function Estimation

When the viewer and light source directions are identical, then the task of es-
timating the radiance function reduces to that of estimating the distribution
of brightness values with respect to the zenith angle on the unit sphere, i. e.
to estimate g(θ). We show how this can be performed by using the differential
structure of the observed brightness on the image plane Π . Hence, we commence
by rewriting g(θ) as the integral of the partial derivative of the observed bright-
ness with respect to the angular variable θ. To do this, we assume the radiance
function fO(θ, α) to be monotonically decreasing for θ ∈ [0, π

2 ] and write

g(θ) =
1
2π

∫ 2π

0

(
fO(0, α) +

∫ θ

0

∂fO(θ, α)
∂θ

dθ

)
dα (1)

In other words, the generating function g(.) on the unit sphere can be expressed
in terms of the cumulative distribution of the derivatives of the radiance function
or, alternatively, the derivatives of the image brightness.

We now turn our attention to the image of the unit sphere on the plane Π̂ .
Suppose that F (r, θ) is a parametric polar function that represents the distri-
bution of radiance values over the image of the unit sphere. The radial coor-
dinate of the function is the Euclidean distance between the point p and the
center-point of the unit sphere Ŝ on the viewer plane Π̂ , i.e. r = sin(θ) =√

(sin(θ) cos(α))2 + (sin(θ) sin(α))2. Hence

F (r, θ) =

[
r

g(θ)

]
=

[
sin(θ)

1
2π

∫ 2π

0

(
fO(0, α) +

∫ θ

0
∂fO(θ,α)

∂θ
dθ

)
dα

]
(2)

As noted earlier, since the surface normals are not at hand, the correspon-
dences between locations on the surface and the unit sphere are not available.
Hence, the quantity θ is unkown. In other words, the function F (r, θ) only allows
the surface S to be mapped onto the unit sphere Ŝ in an implicit manner.

To overcome this lack of correspondance information, we commence by show-
ing the relation between the image brightness gradient and the function g(θ).
Let the magnitude of the brightness gradient be given by

| ∇I |=
√(

∂I

∂x

)2

+
(

∂I

∂y

)2

Since the image is circularly symmetric, the image gradient can be rotated
about the z-axis without any loss of generality. We align the image gradient with
the azimuth direction using the rotation matrix Rz, which rotates the vector ∇I
by an angle α in a clockwise direction about the z-axis. The image brightness
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derivatives may be related to those of the function g(θ) using the inverse Jacobian
J−1 via the following matrix equation

Rz

[ ∂I
∂x
∂I
∂y

]
= J−1

[
∂g(θ)

∂θ
∂g(θ)

∂α

]
(3)

Using the rotation on the image plane and the coordinate transformation
between the image plane and the unit sphere, we find that

|∇I| =
1

cos(θ)
∂g(θ)
∂θ

=
∂g(θ)

∂ sin(θ)
(4)

In this way, we can relate the image gradient to the derivative of the function
g(θ) with respect to the zenith angle θ. In terms of finite differences, the rela-
tionship between the magnitude of the image gradient and the changes ∆g(θ) in
g(θ) and ∆ sin(θ) in θ is the gradient of the function F (r, θ), i.e. |∇I| = ∆g(θ)

∆ sin(θ) .
The image gradient ∇I can be computed using the formula

∇I =
1
δ

[
I(j + 1, k) − I(j − 1, k)
I(j, k + 1) − I(j, k − 1)

]
(5)

where δ is the spacing of sites on the pixel lattice. Furthermore, on the unit sphere
Ŝ, it is always possible to choose points to be sampled so that the difference in
brightness is a constant τ . As a result, we can write

∆ sin(θ) =
τ

| ∇I | (6)

To recover θ from the expression above we perform numerical integration. To
do this, we sort the image gradients according to the associated image brightness
values. Accordingly, let ∇Il be the image gradient associated with the brightness
value l. The numerical estimate of sin(θ) is then given by

sin(θ) =
∫ l=m

l=0

τ

| ∇Il |dIl + κ ≈
m∑

l=0

τ

| ∇Il | + κ (7)

where κ is the integration constant and m is the maximum brightness value for
the surface under study. Hence, we can use the cumulative distribution of inverse
gradients to index the zenith angle on the unit sphere. This indexation property
means that we can approximate the function F (r, θ), or equivalently g(θ), by
tabulation.

To pursue this idea, in principle, we only require a single image gradient cor-
responding to each of the distinct brightness levels in the image. In practice, we
make use of the cumulative distribution of image gradients in order to minimise
the approximation error by averaging. Let Ql = {s | I = l} be the set of pixels
with brightness value l. For the brightness value l = g(θ), the average gradient
is given by

h(l) =

∑
s∈Ql

| ∇I |
| Ql | (8)
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The distribution of average gradients is then stored as a vector h. Zero entries
of the vector, which correspond to brightness values that are not sampled in
the image, can cause divide-by-zero errors when the radiance function is com-
puted. To overcome this problem, we smooth the components of the vector by
performing piecewise linear interpolation of the adjacent non-zero elements. The
resulting vector is denoted by ĥ. With the average image gradient at hand, we
define the tabular approximation F̂ to F (r, θ) as the set of Cartesian pairs

F̂ = {((τ
l∑

i=0

ĥ(l)−1 + κ
)
, l); l = 0, 1, 2, . . . , nmax} (9)

All that remains is to compute the constants τ and κ. We do this by making
use of the maximum and minimum values of sin(θ) for θ ∈ [0, π

2 ]. Since the
maximum and minimum values of sin(θ) are unity and zero when θ = π

2 and
θ = 0, we can set κ to unity and evaluate the numerical integral for l = m, which
yields

τ = −
( m∑

i=0

ĥ(i)−1

)−1

(10)

4 Experiments

Object 1 Object 2 Object 3 Object 4

Object 5 Object 6 Object 7 Object 8

Fig. 1. Images used in our experiments.

In this section, we
illustrate the utility
of the method for
purposes of classifi-
cation of shiny and
rough materials. To
this end, we have
computed a set of
pairwise distances for
eight terracotta and
porcelain objects cap-
tured using a sim-
ple setup which com-
prises only a Olympus
E10 digital camera and a collimated 200W white tungsten light source. With the
images at hand, we compute a similarity measure between pair of objects mak-
ing use of the the reflectance map on the sphere computed from the reflectance
function delivered by our method. This similarity measure is then used for pur-
poses of separating images of shiny objects from those that correspond to rough
objects.

The process described above is as follows. We compute a distance matrix D
whose entry d(a, b) is given by the error between the reflectance-map spheres
corresponding to the objects indexed a and b. Hence, for a pair of reflectance-
map spheres with a set of sample points Ω projected onto the pixel lattice, the
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pairwise distance is given by d(a, b) = 1
|Ω|

∑
q∈Ω | Ia(u) − Ib(u) |, where Ia(u)

and Ib(u) are the measured brightness values at the point q on the pixel lattice
whose coordinates are u = (i, j). With the matrix of pairwise distances at hand,
we compute an affinity matrix W . Ideally, the smaller the distance, the stronger
the weight, and hence the mutual affinity to a cluster. The affinity weights are
required to be in the interval [0, 1]. Hence, for the pair of reflectance spheres
indexed a and b the affinity weight is taken to be W (a, b) = exp

(−k d(a,b)
max(D)

)
where k is a constant.

For visualisation purposes, we have performed multidimensional scaling (MDS)
[15] on the pairwise distance matrices. We have done this in order to embed the
reflectance-map spheres in an eigenspace. Broadly speaking, the method can
be viewed as embedding the objects in a pattern space using a measure of their
pairwise similarity to one another. It is interesting to note that when the distance
measure used is the L2 norm, then MDS is equivalent to principal components
analysis.

In the top row of Figure 2, we show, from left-to-right, the distance matrix,
the affinity matrix and the MDS plot for the eight porcelain and terracotta ob-
jects. The indexing of the objects corresponds to that shown in shown in Figure
1. Based on the visualisation provided by MDS, it is clear that the reflectance
function delivered by our method may be suitable for the purposes of separating
shiny and rough objects. It is important to stress that, since the distance has
been computed using the reflectance map on the sphere, computed from the
input images, and not the images themselves, we are effectively capturing the
differences in the reflective properties of the objects and not only the differences
in color.
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Fig. 2. Left-hand column: Distance matrices; Middle column: affinity matrices; Right-
hand column: MDS plots.
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To take our analysis further, we have performed experiments on four sandpa-
per rolls whose grades are 100, 150, 180 and 240. In the bottom row of Figure 2,
we show the distance matrix, the affinity matrix and the MDS plot for the four
sandpaper rolls. From the MDS plot its clear that the eigenspace embeddings
describe a scattering that is in close accordance with a straight line. Further,
the distribution of the distances describes a trace whose arrangement suggests
an ordering from course to fine in the eigenspace, and hence, a way of classifying
by grade the sandpaper rolls.

5 Conclusions

In this paper, we have presented a novel approach for approximating the ra-
diance functions and hence the BRDF of objects whose reflectance is isotropic
and monotonic from a single image. Although the new method is applicable
only when the light source and viewer directions are approximately equal, it
can be used as a computationally cheap alternative to other methods which use
measurement-intensive approaches. Thus, the reflectance function estimated us-
ing the method may be used for tasks which require a computationally cheap
estimate of the reflectance properties of the object, such as material classifica-
tion.
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