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Abstract. This study presents the application of Bayesian networks (Bn) to ex-
plain Neonatal Intensive Care Unit relationships. Information was compiled ret-
rospectively from the medical records at two neonatal intensive care units of 
523 neonates (63 deaths). A total of 31 variables were used for the model, 
eleven to characterize admission conditions and severity of illness as well as the 
20 technologies. With mortality as the output variable, the K2 search algorithm 
and Geiger-Heckerman quality measures were used in the training that gener-
ated the Bn. Evidence propagation was used to assess the training, which 
yielded a sensitivity of 77.78% and a specificity of 91.30%, in the classification 
of mortality. Clinical criteria, correlations and logistical regression were used to 
analyse the relationships the model provided. The Bn found clinically coherent 
relationships as recognizable conditions that directly affect mortality such as 
congenital malformations are seen and it exposes the least effective technolo-
gies among those studied, bicarbonate treatment.  

1   Introduction 

Effectiveness in medical technology is essential for improving the quality of health-
care [1]. When multiple medical technologies are used together, such as in premature 
births, Intensive Care Units (ICU), Acute Immune Deficiency Syndrome (AIDS) or 
multiple failure [2], it is necessary to establish the sequence (or causal order) in which 
the technologies are applied, to evaluate an individual technology’s impact on the 
outcome. The limitations of using non-causal models in this area have become appar-
ent [3-4].   

Having a model that represents the causal way in which medical technologies are 
applied, delivers valuable clinical evidence concerning medical practices. In addition 
it offers the possibility of determining how changes to the order in which technologies 
are employed, impact the outcome, through the use of simulations. 

Techniques such as decision analysis, Markov chains and path analysis have been 
used to describe the interaction of multiple technologies when few technologies are 
under scrutiny [4-5]. Such methods cannot cope with the surge in combinations when 
using more than five technologies, and do not have sufficiently efficient pruning 
mechanisms to be able to derive an easily interpretable model. 

The current work explores the use of Bayesian networks (Bn) as an alternative to 
modelling the causal relationships in the utilization of multiple technologies. We have 
chosen a typical problem that requires the use of multiple technologies; Neonatal 
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Intensive Care Units (NICU). These units have proven their effectiveness at reducing 
neonatal mortality. Yet the continual rise in the introduction of new technologies in 
such units has not been adequately addressed. Little is known about how these tech-
nologies are used in daily medical practices, particularly in developing countries.  

In medicine most Bayesian network applications centre on automatic diagnosis and 
in aiding treatment [6-7]. However, no Bayesian network applications are known of 
that assess health technologies. The closest study to the current work is that of Sierra 
et al [8], in which Bayesian networks are applied to intensive care units (ICU) aiming 
to improve the classification of patients within a unit, but the work does examine the 
use of ICU medical technologies.  

In ICU there is no clear indication of the causal order in which the technologies are 
applied within the ICU; currently it is only possible to recognize the initial variables 
(admission conditions and the severity of the ailment) and the network’s output vari-
ables (such as morbidity or mortality). Our proposal is to use structural learning for 
the Bn to determine just how medical technologies are used in the unit and how these 
relate to mortality. 

2   Methods 

2.1   Data Collection and Pre-processing 

Data was collected retrospectively, from the medical records of the Fernandes Fi-
gueira Institute and the Pediatric Center of Lagoa, two neonatal intensive care units 
(NICU) in Rio de Janeiro, Brazil. A complete list of the variables collected is given in 
Table 1, which corresponds to health conditions at birth or admission, diagnostic 
hypotheses, and technology utilization. While the list is not exhaustive, the technolo-
gies selected, including both diagnostic and therapeutic means, were representative of 
the NICU armamentarium of the early 90s. Technologies used in nearly 100 % of the 
neonates, such as incubators and sedation, were not analysed. Cases involving in-
ternment over 45 days were also not included. 

Initially, 78 different diagnostic hypotheses were found and these were grouped 
into the eight main diagnostic categories listed in Table 1. A consultant neonatologist 
who classified the neonate’s condition as not affected, mild or severe for each diag-
nostic category reviewed each medical record. For the category congenital malforma-
tions, the number of different malformations was added up, assuming mild = 1 and 
severe = 2. These eight diagnostic variables, along with birth weight, gestational age, 
and the Apgar score (5th min), were used as a proxy for severity of illness. 

Diagnostic methods and clinical procedures such as blood transfusions are exam-
ples of discrete technologies. The measure of the intensity of usage of these technolo-
gies was taken as the number of applications of the specific technology to each neo-
nate. On the other hand, technologies that tend to be used on a continuous basis, such 
as drugs or mechanical ventilation, had their “dosage” measured by the total length of 
their application in days (Table 1). The day each treatment began was also recorded. 

The Bayesian network adopted in this study requires the variables the model com-
prises to be represented by discrete values, which would later be transformed into 
binary values. For birth weight three ranges are used: low, normal and overweight; 
four states are defined for gestational age considering morphological criteria and 
foetal maturity. The 10 values for the Apgar score are grouped into four states. Diag-
nostic hypotheses are coded directly in three states; absent = 0, medium = 1 and se-
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vere = 2, apart from congenital malformations for which six values are used, and 
correspond to the maximum value of the sum of the ailments found in the database. 
Medical technology usage (diagnostic and therapeutic) can be represented directly 
with binary values, taking 0 as not having used the technology and 1 as having used 
the technology, irrespective of how extensively it is employed. Finally, the output 
variable, mortality, considers 0 as surviving and 1 as dead. 

Table 1. List of input variables and regression coefficients whit mortality. 

Variable Mean ± SD Regress. 

Coeffi. 
Variable Mean ± SD Regress. 

Coeffi. 
Birth/admission 
weight (Weight) 

2321 ± 865 
[grams] -11,81 * 

Electrolytes 
(Elect) 

2.20 ± 2.77 
[events]! 15,76 * 

Gestational age 
(GAge) 

36 ± 3 
[weeks] -4,45 

White blood 
cell count (WBCC) 

2.42 ± 1.98 
events! -0,15 

Apgar 5th min. 
(Apgar) 

7.2 ± 2.2 -6,68 * 
Antibiotics (An-

tib) 
13.5 ± 13.4 
[days]" -6,70 

Congenital 
malformations 
(ConMa) 

0.19 ± 0.72 
[sum] 17,27 * 

Inotropic agents 
(InoAg) 

0.97 ± 4.22 
[days]" 10,54 * 

Obstetrical 
conditions 
(ObsCo) 

0.02 ± 0.17 
[class]# -2,44 

Diuretics 
(Diure) 

1.89 ± 7.54 
days" -2,03 

Respiratory 
conditions 
(ResCo) 

0.82 ± 0.68 
[class]# -0,29 

Anticonvulsive 
therapy (Antic) 

1.63 ± 6.95 
[days]" 7,89 

Asphyxia  
(Asphy) 

0.36 ± 0.64 
[class]# 1,22 

Sodium bicar-
bonate (SodBi) 

0.29 ± 1.12 
[days]" 26,16 * 

Cardiovascular 
conditions 
(CarCo) 

0.03 ± 0.23 
[class]# -5,66 * CPAP (CPAP) 0.71 ± 1.81 

[days]" -1,64 

Haematologic 
conditions 
(HaeCo) 

0.16 ± 0.46 
[class]# 0,91 

Oxygen therapy 
(oxihood) (Oxiho) 

0.79 ± 1.61 
[days]" -24,58 * 

Infections (In-
fec) 

0.19 ± 0.59 
[class]# -4,82 * 

Mechanical 
ventilation 
(MecVe) 

0.91 ± 3.10 
[days]" -3,80 

Metabolic condi-
tions (MetCo) 

0.07 ± 0.28 
[class]# -3,11 

Phototherapy 
(Photo) 

2.18 ± 2.94 
[days]" -3,38 

Blood gases 
(BloGa) 

4.49 ± 3.30 
[events]! 4,44 

Intravenous so-
lutions (InSol) 

4.85 ± 5.30 
[days]" 4,55 

X rays (XRays) 2.76 ± 8.40 
[events]! 6,92 

Parenteral nutri-
tion (PaNut) 

1.75 ± 4.54 
[days]" 0,28 

Ultrasound 
(UlSou) 

0.79 ± 1.09 
[events]! -6,59  

Packed red cells 
transfusion (PRCT) 

0.52 ± 1.69 
[events]! 14,39 * 

Microhaema-
tocrit (MiHem) 

8.55 ± 8.72 
[events]! -18,77 * 

Exchange trans-
fusion (ExTra) 

0.08 ± 0.38 
[events]! 6,98  

Blood culture 
(BloCu) 

2.05 ± 1.71 
[events]! 0,26    

Note: 7 diagnostic categories have been coded as 14 binary variables thus increasing the total number of 
input variables to 31.  
# classified as absent = 0, mild = 1, or severe = 2.  
! number of applications of technology to each neonate. 
" total number of days of use in each neonate. *Significant coefficients at 5%. 
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2.2   Bayesian Network Analysis 

A Bayesian network is a directed acyclical graph whose nodes represent stochastic 
variables and the arc the conditioned dependencies between two related variables. The 
procedure for modelling a problem using Bn can be divided into two steps, learning 
and the propagation of evidence. 

The learning process on which this work focuses involves two principal tasks: in-
duction of a graphical model that best represents the problem at hand (structural learn-
ing), and the extraction of conditional probabilities that define a graphical model’s 
dependencies (parametrical learning). 

Learning, based on a database, is two-part process. First, a search algorithm tries to 
determine the possible parents of each node (conditional dependence of a precedent 
variable) and, second, a measure (or metric) of quality. The measure of quality calcu-
lates how successful the network is from the data. For its part, the search algorithm 
attempts to identify the structure offering the best measure of quality. As a rule, this is 
an NP-Complete problem and certain heuristic approximations are used to restrict the 
search space and so avoid the combinatorial explosion. 

Structural learning is needed to find the order of technology application. We em-
ployed the most commonly used search algorithm at present for discrete variables, 
called K2 [8-10]. This algorithm searches for a network structure on the basis of dis-
crete data, considering that the input variables are independent and that these are ini-

tially ordered. Wit this restriction there are 
21nn2 /)( −

 possible structures for represent-
ing a problem with n variables. The basic idea is to use a measure of quality to 
evaluate the quality of the network formed. In initial stages all the nodes lack parents, 
but in later stages those nodes that maximize the value of the measure of quality are 
added to the parental set. The process stops when addition of new nodes results in no 
improvement of quality or when the maximum number of parents u has been reached, 
this number being fixed for a particular problem. The complexity of the worst case for 
this algorithm is O(n4), when the maximum number of parents u is equal to the num-
ber of variables n.   

Two different measures of quality were tried, the first was obtained from the Gei-
ger-Heckerman measure (G-H) while the second is known as the Cooper-Herskovits 
measure (C-H) [11-12].  

All of the algorithms used in this work were executed in release 12.1 of MATLAB 
software version 6.0 for the PC. 

2.3   Initial Order and Evaluation 

One of the K2 algorithm’s requirements is that the variables that will comprise the 
Bayesian network are ordered first. Normally, expert opinion is sought when under-
taking this initial ordering. For our purposes though, it was possible to employ the 
distribution of the first application of technologies during a patient’s internment in the 
NICU as our criteria. To quantify these values we considered the first day of applica-
tion of each technology, as the point when the technology had been applied in at least 
80% of cases.  

The dependability of network learning has to be determined when choosing the 
best network and to compare the measures of quality used. Thus, it was necessary to 
run a group of cases independently of the training group and to assess the results. 
Evidence propagation was performed using an exact method of general propagation, 
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known as “clustering” [10]. Training was carried out using 85% of the cases in the 
training set (445 cases) and 15%, selected at random, for the test set (78, 69 survivors 
and 9 deaths). 

The general lack of work presenting the relationships of how neonatal intensive 
care units are used and the clinical knowledge required of such units makes quantita-
tive means of comparison necessary. For such purposes, first the correlations of 23 
real variables from the model are calculated (Admission weight, Gestational age, 
Apgar and the 20 technologies) followed by a logistical regression of the 31 variables 
shown in Table 1, using mortality as the output variable. 

3   Results 

Data were collected on 523 cases corresponding to 268 cases (48 deaths) from the 
Fernandes Figueira Institute and 255 (15 deaths) from the Paediatric Centre of Lagoa. 
The mean ± SD of the admission weight was 2320 ± 865 g (range 670-5680 g) and 
the gestational age was 36 ± 3 weeks (range 24-43 weeks). Table 1 gives the distribu-
tion of the other variables. 

Training began with an initial ordering of the variables. The first 11 (admission 
conditions), used to approximate the severity of illness, are the primary candidates, as 
they are obtained at the point of admission to the unit. The technologies were then 
ordered, as described, by date of  application. Table 2 shows the initial ordering, con-
sidering the day most of the technologies had been applied. 

The process of generating the Bayesian network took a maximum of u=10 parents 
for each node as the training parameter. Two networks were then obtained, one for 
each measure of quality with the training group (445 cases). Evidence propagation 
was then applied to the remaining 15% of cases (78 cases) to the two models. The 
results of the classification for the test group, expressed by sensitivity and specificity 
are presented in Table 3 for both measures of quality used. 

While the two network structures are very similar, sensitivity and specificity analy-
sis shown in Table 3 differ in that the G-H measure is more sensitive to the detection 
of deaths, and provides us the best tool for classifying the survival of a patient. 

Table 2. Initial order of application of the technologies. 

Technology 0Day Technology 1Day 

Intravenous solutions 2 Mechanical ventilation 4 
Blood culture 2 Exchange transfusion 5 
Blood gases 2 Diuretics 6 
Microhaematocrit 2  CPAP 6 
X rays 2 Parenteral nutrition 7 
White blood cell count 2 Anticonvulsive therapy 7 
Antibiotics 2 Inotropic agents 7 
Electrolytes 3 Sodium bicarbonate 7 
Phototherapy 4 Ultrasound 8 
Oxygen therapy 4 Packed red cells transfusion 8 
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Table 3. Results of the classification when applying propagation of the evidence with 15% of 
the test group cases, for the two quality measures. 

Measure Sensitibity Specifity 
Cooper-Herskovits 55.56% 92.75% 
Geiger-Heckerman 77.78% 91.30% 

For the comparative analysis the correlations are doing for the 12-variable sub-
group (from a total of 23 real variables). Results of the logistical regression on mortal-
ity are presented in Table 1. 

Structural learning algorithms provided results ordering the parent nodes for each 
variable, using the probability of adding a new parent node and the probability once 
the node is added. For easier graphical interpretation we preferred to show a graph, 
simply showing the order in which each parent of the variable was chosen in the arc 
(between the parent and child). The graph for the network obtained from the G-H 
measures is shown as Figure 1. 

4   Discussion 

We will centre analysis of the results on comparison with basic existing neonatologi-
cal relationships, correlations between the real variables of the studied data set, and 
the logistical regression of mortality (Table 1). 

The first significant relationship provided by the chosen network (Figure 1) is that 
between birth weight and gestational age. This is well known in neonatology, since 
both variables are representative of immaturity and a high correlation exists between 
the two (r=0.75).  

Asphyxia dependency on the Apgar score is accounted for, as the states of asphyxia 
are required as a component in calculating the Apgar points. The path that flows from 
asphyxia up to anticonvulsive therapy is also clearly explainable, as severe asphyxia 
induces convulsions. 

The exchange transfusion dependence on haematologic conditions and birth weight 
is explained in the knowledge that this therapeutic technology is used in situations of 
incompatible blood with the mother, low birth weight and in cases of underdeveloped 
digestive systems that cause jaundice, which then requires a full blood transfusion. 

One group of relationships that stand out include variables belonging to respiratory 
disorders. 

Respiratory conditions as the parent of blood gases and x rays, which are the par-
ents of mechanical ventilators and oxygen therapy, complete a classical cycle in 
medicine: problem (respiratory disorders), diagnosis (blood gases and x rays) and 
therapy (mechanical ventilators and oxygen therapy). All dependencies are confirmed 
by the correlations up 0.63. It is also possible to follow a route for cases in which 
respiratory infection is suspected that would require diagnosis using x rays, a dearer 
technology than blood gases, followed by a course of antibiotics to treat the infection. 
It is also worth noting that while CPAP ventilation therapy is applied after oxygen 
therapy, the former presents no relationship with mechanical ventilation. 

The relationship between microhematocrit and antibiotics (r=0.97), and between 
antibiotics and electrolytes  (r = 0.88)  present the highest correlations. It is possible to  
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Fig. 1. Bayesian network with the Geiger-Heckerman measure. 
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Parent 2         Therapy technologies 
Parent 3         Diagnostic technologies 
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explain this as both microhematocrits and electrolytes (r=0.8) are employed as antibi-
otic control technologies. Yet the Bayesian network affords further information on 
indicating that the microhematocrit is conducted before the use of antibiotics, while 
the electrolytes is applied afterwards. On examining the network however, it is possi-
ble to conclude that this relationship is, in reality, indirect, as it arises from the rela-
tionship caused by using antibiotics. 

The only admission condition variables that are directly linked to mortality are 
congenital malformations, which is confirmed by high regression coefficient values 
(Table 1). The lack of technology intervention in this relationship indicates the effec-
tiveness of technologies used in such disorders. In a significant number of cases of 
congenital malformations, and especially in more severe cases, medical intervention 
contributes little to patient recovery.  

Various admission conditions, such as low birth weight, respiratory or cardiovascu-
lar conditions lead to the use of bicarbonate following the application of several diag-
nostic and therapeutic technologies. The relationship here with mortality is unequivo-
cal and direct. Logistical regression sets bicarbonate as the variable most closely 
related with mortality. The clinical explanation for this is that this treatment technol-
ogy is applied to compensate for acidosis of the blood arising from respiratory insuf-
ficiency. Use of bicarbonate treats the symptoms of the respiratory problem, but does 
not manage to revert the demise of the patient. The lower relationship between me-
chanical ventilators and mortality and the existence of multiple paths in the Bayesian 
network, reveal that this technology is more effective than bicarbonate at altering the 
initial morbid outlook.  

A general comparison between the logistical regression model and Bayesian net-
work of Figure 1, clearly shows a regression model’s limitations at representing such 
problems, since the regressions solely manage to identify variables that are directly 
and only linked to the outcome (mortality), but do not manage to represent the series 
of causal relationships that exist in the NICU before the results are known. 

5   Conclusions 

The network shown in Figure 1 enables people to obtain and to interpret the relation-
ships clearly between admission conditions, usage of technology and outcome, in 
forming a better idea than is possible with conventional statistical methods of a com-
plex usage of technologies in medical establishments such as in ICUs. It is also possi-
ble to trace out an idea of the effectiveness of certain technologies with regard to 
others, on comparing their direct or indirect association with the results.  

A method is surely needed though to quantify the impact of the technologies upon 
results; a direct measure of effectiveness. This would require designing a method that 
enables the simulation of amendments to the application of a technology in the Bayes-
ian network, and to establish the impact of such modifications on the results. A simple 
way of generating such a method would be to eliminate arcs or nodes in the trained 
Bayesian network and then use a propagation of evidence that would allow the propa-
gation of cases in networks with different structures to those for which they were 
trained. This would make it possible to quantify the simulation of changes represent-
ing the non-deployment or different ways of employing a particular technology to a 
group of patients. 
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