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Abstract

An open challenge is to integrate XML and conceptual modeling in order to satisfy large-scale
enterprise needs. Because enterprises typically have many data sources using different assump-
tions, formats, and schemas, all expressed in—or soon to be expressed in—XML, it is easy to
become lost in an avalanche of XML detail. This creates an opportunity for the conceptual
modeling community to provide improved abstractions to help manage this detail. We present
a vision for Conceptual XML (C-XML) that builds on the established work of the conceptual
modeling community over the last several decades to bring improved modeling capabilities to
XML-based development. Building on a framework such as C-XML will enable better manage-
ment of enterprise-scale data and more rapid development of enterprise applications.

1 Introduction

A challenge1 for modern enterprise modeling is to produce a simple conceptual model that

• works well with XML and XML Schema;

• abstracts well for conceptual entities and relationships;

• scales to handle both large data sets and complex object interrelationships;

• allows for queries and defined views via XQuery; and

• accommodates heterogeneity.

The conceptual model must work well with XML and XML Schema because XML is rapidly be-
coming the de facto standard for business data. Because conceptualizations must support both
high-level understanding and high-level program construction, the conceptual model must abstract
well. Because many of today’s huge industrial conglomerations have large, enterprise-size data sets
and increasingly complex constraints over their data, the conceptual model must scale up. Because
XQuery, like XML, is rapidly becoming the industry standard, the conceptual model must smoothly
incorporate both XQuery and XML. Finally, because we can no longer assume that all enterprise

∗Supported in part by the National Science Foundation under grant No. IIS-0083127.
1As a note of interest, we mention that Michael Carey issued this challenge directly to the conceptual modeling

community in his ER2003 keynote address in Chicago.
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data is integrated, the conceptual model must accommodate heterogeneity. Accommodating het-
erogeneity also supports today’s rapid acquisitions and mergers, which require fast-paced solutions
to data integration.

We call the answer we offer for this challenge Conceptual XML (C-XML). C-XML is first and
foremost a conceptual model, being fundamentally based on object-set and relationship-set con-
structs. As a central feature, C-XML supports high-level object- and relationship-set construction
at ever higher levels of abstraction. At any level of abstraction the object and relationship sets are
always first class, which lets us address object and relationship sets uniformly, independent of level
of abstraction. These features of C-XML make it abstract well and scale well. Secondly, C-XML
is “model-equivalent” [LEW00] with XML Schema, which means that C-XML can represent each
component and constraint in XML Schema and vice versa. Because of this correspondence between
C-XML and XML Schema, XQuery immediately applies to populated C-XML model instances and
thus we can raise the level of abstraction for XQuery by applying it to high-level model instances
rather than low-level XML documents. Further, we can define high-level XQuery-based mappings
between C-XML model instances over in-house, autonomous databases, and we can declare vir-
tual views over these mappings. Thus, we can accommodate heterogeneity at a higher level of
abstraction and provide uniform access to all enterprise data.

Besides enunciating a comprehensive vision for answering Carey’s XML/conceptual-modeling
challenge, our contributions in this paper include: (1) mappings to and from C-XML and XML
Schema, (2) defined mechanisms for producing and using first-class, high-level, conceptual abstrac-
tions, and (3) XQuery view definitions over both standard and federated conceptual-model instances
that are themselves conceptual-model equivalent. As a result of these contributions, C-XML and
XML Schema can be fully interchangable in their usage over both standard and heterogeneous
XML data repositories. This lets us leverage conceptual model abstractions for high-level under-
standing while retaining all the complex details involved with low-level XML Schema intricacies,
view mappings, and integration issues over heterogeneous XML repositories.

We present the details of our contributions as follows. Section 2 describes C-XML. Section 3
shows that C-XML is “model-equivalent” with XML Schema by providing mappings in both
directions—from C-XML to XML Schema in Section 3.1 and from XML Schema to C-XML in
Section 3.2. Section 4 describes C-XML views. Section 4.1 defines and illustrates both high-level
object-set views and high-level relationship-set views. Section 4.2 explains how XQuery immedi-
ately applies to C-XML as a query language and thus, also immediately provides a view-definition
mechanism. Section 4.3 further extends the usage of XQuery to integration mappings and supports
views over an enterprise-wide federated database system. Although we present a solution for the
central issues embodied in the challenge, it is clear that there are many closely related issues we
must resolve to fully realize the potential of the approach. These include, for example, a formal
foundation, query optimization, the need for a simple programming model that facilitates very high
level programming, and updates that involve workflow and custom API calls. We believe that the
approach we propose opens the door to a resolution of these issues. In Section 5 we briefly explain
how C-XML lends itself to a solution. We report the status of our implementation and make a few
concluding remarks in Section 6.

2 C-XML: Conceptual XML

C-XML is a conceptual model consisting of object sets, relationship sets, and constraints over these
object and relationship sets. Graphically a C-XML model instance M is an augmented hypergraph
whose vertices and edges are respectively the object sets and relationship sets of M , and whose
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Figure 1: Customer/Order C-XML Model Instance.

augmentations consist of decorations that represent constraints. Figure 1 shows an example.
In the notation2 boxes represent object sets—dashed if lexical (e.g. CustomerName in Figure 1)

and not dashed if nonlexical because their objects are represented by object identifiers (e.g. Order
in Figure 1). With each object set we can associate a data frame (as we call it) to provide a
rich description of its value set and other properties. A data frame lets us specify, for example,
that OrderDate is of type Date or that ItemNr values must satisfy the value pattern “[A-Z]{3}-
\d{7}”. Lines connecting object sets are relationship sets; these lines may be hyper-lines (hyper-
edges in hyper-graphs) with diamonds when they have more than two connections to object sets
(e.g. the relationship set among the object sets Order, Item, Qty, and SalePrice in Figure 1).
Optional or mandatory participation constraints respectively specify whether objects in a connected
relationship may or must participate in a relationship set (an “o” on a connecting relationship-set
line designates optional while the absence of an “o” designates mandatory). Thus, for example,
the C-XML model instance in Figure 1 declares that an Order must include at least one Item
but that an Item need not be included in any Order. Arrowheads on lines specify functional

2Although based on [EKW92], the particular notation we use to represent C-XML is not significant. The hyper-
graph foundation, however, is significant because it is more directly amenable to the requirements of XML and XML
Schema. Thus, this choice simplifies translations, abstraction definitions, and view generation. We can translate
standard ER model instances to this hypergraph notation by letting hypergraph nodes represent both entities and
attributes, by letting hypergraph edges represent both relationships and entity/attribute connections, and by adding
appropriate constraints to capture the restrictions imposed by an ER diagram.
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constraints. Thus, Figure 1 declares that an Item has a Price and a Description and is in a one-to-
one correspondence with ItemNr and that an Item in an Order has one Qty and one SalePrice. In
cases when optional and mandatory participation constraints along with functional constraints are
insufficient to specify minimum and maximum participation, explicit min..max constraints may
be specified. The 0..5 participation constraint in Figure 1 specifies that there can be at most
five delivery requests for items from manufacturers. Triangles denote generalization/specialization
hierarchies (ISA hierarchies, subset constraints, or inclusion dependencies), so that in Figure 1
RegularCustomer and PreferredCustomer are subsets of object set Customer. We can constrain
ISA hierarchies by partition (�), union (∪), or mutual exclusion (+) among specializations; thus
in Figure 1 all customers are either regular or preferred, and no customer is both. Any object-
set/relationship-set connection may have a role, but a role is simply a shorthand for an object
set that denotes the subset consisting of the objects that actually participate in the connection.
In Figure 1 PreviousItem is a role on the recursive relationship set connecting current items to
previous items they replaced in the inventory.

3 Translations between C-XML and XML Schema

Many translations between C-XML and XML Schema are possible. In recent ER conferences,
researchers have described varying conceptual-model translations to and/or from XML or XML
DTD’s or XML-Schema-like specifications. (See, for example, [BGH00, CSF00, MLM01, dSMH01,
EM01, EWH+02, CLL02].) It is not our purpose here to argue for or against a particular translation.
Indeed, we would argue that a variety of translations may be desirable. For any translation,
however, we require information and constraint preservation. This ensures that an XML Schema
and a conceptual instantiation of an XML Schema as a C-XML model instance correspond and
that a system can reflect manipulations of the one in the other.

To make our correspondence exact, we need information- and constraint-preserving translations
in both directions. We do not, however, require that translations be inverses of one another—
translations that generate members of an equivalence class of XML Schema specifications and
C-XML model instances are sufficient. In Section 3.1 we present our C-XML-to-XML-Schema
translation, and in Section 3.2 we present a XML-Schema-to-C-XML translation. In Section 3.3
we formalize the notions of information and constraint preservation and show that the translations
we propose preserve information and constraints.

3.1 Translation from C-XML to XML Schema

In this section we describe our process for translating a C-XML model instance C to an XML
Schema SC . We illustrate our translation process with the C-XML model instance of Figure 1
translated to the corresponding XML Schema of Figure 2.

Fully automatic translation from C to SC is not only possible, but can be done with certain
guarantees regarding the quality of SC . Our approach is based on our previous work [EM01], which
for C generates a forest of scheme trees FC such that (1) FC has a minimal number of scheme trees,
and (2) XML documents conforming to FC have no redundant data with respect to functional and
multivalued constraints of C. For our example in Figure 1, the algorithms in [EM01] will generate
the following two nested scheme trees.

(Customer,CustomerName,CustomerAddr,Discount
(Order,OrderID,OrderDate,

(Item, SalePrice,Qty)∗)∗)∗
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1: <?xml version="1.0" encoding="UTF-8"?>

2: <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

3: elementFormDefault="qualified" attributeFormDefault="unqualified">

4: <xs:element name="Document">

5: <xs:complexType>

6: <xs:choice minOccurs="0" maxOccurs="unbounded">

7: <xs:element ref="Customer"/>

8: <xs:element name="Item">

9: <xs:complexType>

10: <xs:sequence>

11: <xs:element name="ItemMR" minOccurs="0" maxOccurs="5">

12: <xs:complexType>

13: <xs:attribute name="Manufacturer" type="xs:string" use="required"/>

14: <xs:attribute name="RequestDateTime" type="xs:date" use="required"/>

15: <xs:attribute name="Qty" type="xs:positiveInteger" use="required"/>

16: </xs:complexType>

17: </xs:element>

18: <xs:element name="PreviousItem" minOccurs="0" maxOccurs="unbounded">

19: <xs:complexType>

20: <xs:attribute name="ItemNr" type="xs:positiveInteger" use="required"/>

21: </xs:complexType>

22: <xs:keyref name="r1" refer="ItemKey">

23: <xs:selector xpath="."/>

24: <xs:field xpath="@ItemNr"/>

25: </xs:keyref>

26: </xs:element>

27: </xs:sequence>

28: <xs:attribute name="ItemNr" type="xs:positiveInteger" use="required"/>

29: <xs:attribute name="Description" type="xs:string" use="required"/>

30: <xs:attribute name="Price" type="xs:decimal" use="required"/>

31: </xs:complexType>

32: </xs:element>

33: </xs:choice>

34: </xs:complexType>

35: <xs:key name="OrderKey">

36: <xs:selector xpath=".//Order"/>

37: <xs:field xpath="@OrderID"/>

38: </xs:key>

39: <xs:key name="ItemKey">

40: <xs:selector xpath=".//Item"/>

41: <xs:field xpath="@ItemNr"/>

42: </xs:key>

43: </xs:element>

44: <xs:element name="Customer" abstract="true"/>

45: <xs:element name="PreferredCustomer" substitutionGroup="Customer">

46: <xs:complexType>

47: <xs:group ref="CustomerDetails"/>

48: <xs:attribute name="Discount" type="xs:string" use="required"/>

49: </xs:complexType>

50: </xs:element>

51: <xs:element name="RegularCustomer" substitutionGroup="Customer">

52: <xs:complexType>

53: <xs:group ref="CustomerDetails"/>

54: </xs:complexType>

55: </xs:element>

56: <xs:group name="CustomerDetails">

57: <xs:sequence>

58: <xs:element name="CustomerName" type="xs:string"/>

59: <xs:element name="CustomerAddr" type="xs:string"/>

60: <xs:element name="Order" minOccurs="0" maxOccurs="unbounded">

61: <xs:complexType>

62: <xs:sequence>

63: <xs:element name="OrderItem" minOccurs="0" maxOccurs="unbounded">

64: <xs:complexType>

65: <xs:attribute name="Qty" type="xs:positiveInteger" use="required"/>

66: <xs:attribute name="SalePrice" type="xs:decimal" use="required"/>

67: <xs:attribute name="ItemNr" type="xs:positiveInteger" use="required"/>

68: </xs:complexType>

69: <xs:keyref name="r3" refer="ItemKey">

70: <xs:selector xpath="."/>

71: <xs:field xpath="@ItemNr"/>

72: </xs:keyref>

73: </xs:element>

74: </xs:sequence>

75: <xs:attribute name="OrderID" type="xs:positiveInteger" use="required"/>

76: <xs:attribute name="OrderDate" type="xs:date" use="required"/>

77: </xs:complexType>

78: </xs:element>

79: </xs:sequence>

80: </xs:group>

81: </xs:schema>

Figure 2: XML Schema for the C-XML Model Instance in Figure 1
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(Item, ItemNr,Description, Price,
(PreviousItem)∗, (Manufacturer,RequestDateT ime,Qty)∗)∗

Observe that the XML Schema in Figure 2 satisfies these nesting specifications. Item in the
second scheme tree appears as an element on Line 8 with ItemNr, Description, and Price defined
as its attributes on Lines 28–30. PreviousItem is nested, by itself, underneath Item, on Line 18,
and Manufacturer, RequestDateTime, and Qty are nested underneath Item as a group on Lines
13–15. The XML-Schema notation that accompanies these C-XML object-set names obscures the
nesting to some extent, but, as we explain in our continuing discussion, this additional notation is
necessary either to satisfy the syntactic requirements of XML Schema or to allow us to specify the
constraints of the C-XML model instance.

As we continue, recall first that each C-XML object set has an associated data frame that
contains specifications such as type declarations, value restrictions, and any other annotations
needed to specify information about objects in the object set. For our work here, we let the
kind information that appears in a data frame correspond exactly to the kind of data constraint
information specifiable in XML Schema. One example we point out explicitly is order information,
which is usually absent in conceptual models, but unavoidably present in XML. Thus, if we wish to
say that CustomerName precedes CustomerAddr, we add the annotation “≺ CustomerAddr” to
the CustomerName data frame and add the annotation “� CustomerName” to the CustomerAddr
data frame. In our discussion, we assume that these annotations are in the data frames that
accompany the object sets CustomerName and CustomerAddr in Figure 1.

Our conversion algorithm preserves all annotations found in C-XML data frames. This is
where we obtain all the type specifications in Figure 2. We capture the order specification,
CustomerName≺ CustomerAddr, by making CustomerName and CustomerAddr elements (rather
than attributes) and placing them, in order, in their proper place in the nesting—for our example
in Lines 58 and 59 nested under CustomerDetails.

In the conversion from C-XML to XML Schema we use attributes instead of elements where
possible. An object set can be represented as an attribute of an element if it is lexical, is functionally
dependent on the element, and has no order annotations. The object sets OrderID and OrderDate,
for example, satisfy these conditions and appear as attributes of an Order element on Lines 75 and
76. Both attributes are also marked as “required” because of their mandatory connection to Order
as specified by the absence of an “o” on their connection to Order in Figure 1.

When an object set is lexical but not functional and order constraints do not hold, the object
set becomes an element with minimum and maximum participation constraints. PreviousItem in
Line 18 has a minimum participation constraint of 0 and a maximum of unbounded.

Because XML Schema will not let us directly specify n-ary relationship sets (n ≥ 2), we convert
them all to binary relationship sets by introducing a tuple identifier. We can think of each diamond
in a C-XML diagram as being replaced by a nonlexical object set containing these tuple identifiers.
To obtain a name for the object set containing the tuple identifiers, we concatenate names of non-
functionally dependent object sets. For example, given the n-ary relationship set for Order, Item,
SalePrice, and Qty, we generate an OrderItem element (Line 63). If names become too long, we
abbreviate names using only the first letter of some object-set names. Thus, for example, we gen-
erate ItemMR (Line 11) for the relationship set connecting Item, Manufacturer, RequestDateTime,
and Qty.

When a lexical object set has a one-to-one relationship with a nonlexical object set, we use the
lexical object set as a surrogate for the nonlexical object set and generate a key constraint. In
our example, this generates key constraints for Order/OrderID in Lines 35–38 and Item/ItemNr
in Lines 39–42. We also use these surrogate identifiers, as needed, to maintain explicit referential
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integrity. Observe that in the scheme trees above, Item in the first tree references Item in the root of
the second scheme tree and also that PreviousItem in the second scheme tree is a role and therefore
a specific specialization (or subset) of Item in the root. Thus, we generate keyref constraints, one
in Lines 69–72 to ensure the referential integrity of ItemNr in the OrderItem element and another
in Lines 22–25 for the PreviousItem element.

Another construct in C-XML we need to translate is generalization/specialization. XML Schema
uses the concept of substitution groups to allow the use of multiple element types in a given context.
Thus, for example, we generate an abstract element for Customer in Line 44, but then specify in
Lines 45–55 a substitution group for Customer that allows RegularCustomer and PreferredCustomer
to appear in a Customer context. We model content that would normally be associated with the
generalization by generating a group that is referenced in each specialization (in Lines 47 and 53).
In our example, we generate the group CustomerDetails3 and nest the details of Customer such
as CustomerName, CustomerAddr, and Orders under CustomerDetails as we do beginning in Line
56. Further, we can nest any information that only applies to one of the specializations directly
with that specialization; thus, in Line 48 we nest Discount under PreferredCustomer.

Finally, XML documents need to have a single content root node. Thus, we assume the existence
of an element called Document (Line 4) that serves as the universal content root.

3.2 Translation from XML Schema to C-XML

We translate XML Schema instances to C-XML by separating structural XML Schema concepts
(such as elements and attributes) from non-structural XML Schema concepts (such as attribute
types and order constraints). Then we generate C-XML constructs for the structural concepts and
annotate generated C-XML object sets with the non-structural information. We now describe the
structural concepts of XML Schema.

XML Schema [XML01] has complex types and simple types. Simple types are fundamentally
strings: built-in types (e.g. date, integer), restrictions of built-in types (e.g. 4-digit integers), list
types (e.g. IDREFS ), and union types which combine multiple simple types into a single type (e.g.
date or integer). Complex types define elements that can have attributes and one of three kinds
of content: simple (content is defined by a simple type), mixed (content may be text interspersed
with elements), or complex (content may include other elements). Further, complex content may
be defined as group, choice, or sequence structures. Complex-content group structures are used
to factor out a portion of a schema to be reused in multiple regions of a schema (for example,
CustomerDetails in Figure 2 is defined in Line 56 and referenced at lines 47 and 53). Choice
structures allow alternation (choose exactly one alternative from a given set). Sequence structures
specify a list of elements, possibly restricted by minimum/maximum occurrence constraints.

There are more structural details we need to consider. For example, attributes can be declared
in attribute groups (like complex content groups, this permits reuse of attribute declarations).
Attributes can only occur once, so there are no explicit maximum participation constraints. By
default, attributes are optional, but they can be marked as required. Attributes are unordered
within an element. Complex content groups can come in three flavors: all, choice, and sequence.
And elements may be declared substitutable for each other, creating equivalence classes among
the elements. Further, elements may be declared abstract, indicating that they cannot be directly
instantiated, but instead a substitutable element must be used.

Understanding these structures, we can convert an XML Schema S to a C-XML model instance
CS by generating object sets for each element and attribute type, connected by relationship sets

3In general, we name such a group by Details concatenated with the abstract element.
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Figure 3: C-XML Model Instance Translated from XML Schema Instance of Figure 2.

according to the nesting structure of S. Figure 3 shows the result of applying our conversion
process to the XML Schema instance of Figure 2.4 Note that we nest object and relationship sets
inside one another corresponding to the nested element structure of the XML Schema instance.
Whether we display C-XML object sets inside or outside one another has no semantic significance.
The nested structure, however, is convenient because it corresponds to the natural XML Schema
instance structure.

The initial set of generated object and relationship sets is straightforward. Each element or
attribute generates exactly one object set, and each element that is nested inside another element
generates a relationship set connecting the two. Each attribute associated with an element e
always generates a corresponding object set a and a relationship set r connecting a to the object
set generated by e. Participation constraints for attribute-generated relationship sets are always
1..* on the a side and are either 1 or 0..1 on the e side. Participation constraints for relationship
sets generated by element nesting require a bit more work. If the element is in a sequence or
a choice, there may be specific minimum/maximum occurrence constraints we can use directly.

4The particular graphical layout is human-created. Our algorithm only supplies the C-XML structure. We have
used automated layout algorithms like AGLO, but humans generally need to adjust the output anyway.
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For example, according to the constraints on Line 60 in Figure 2 a CustomerDetails element may
contain a list of 0 or more Order elements. However, an Order element must be nested inside a
CustomerDetails element. Thus, for the relationship set connecting CustomerDetails and Order,
we place participation constraints of 0..* on the CustomerDetails side, and 1 on the Order side.

In order to make the generated C-XML model instance less redundant, we look for certain pat-
terns and rewrite the generated model instance when appropriate. For example, since ItemNr has
a key constraint, we infer that it is one-to-one with Item. Further, the keyref constraints on ItemNr
for PreviousItem and OrderItem indicate that rather than create two additional ItemNr object
sets, we can instead relate PreviousItem and OrderItem to the ItemNr nested in Item. Another
optimization is the treatment of substitution groups. In our example, since RegularCustomer and
PreferredCustomer are substitutable for Customer, we construct a generalization/specialization
for the three object sets and factor out the common substructure of the specializations into the
generalization. Thus, CustomerDetails exists in a one-to-one relationship with Customer.

Another complication in XML Schema is the presence of anonymous types. For example, the
complex type in Line 5 of Figure 2 is a choice of 0 or more Customer or Item elements. We need
a generalization/specialization to represent this, and since C-XML requires names for object sets,
we simply concatenate all the top-level names to form the generalization name CustomerItem.

There are striking differences between the C-XML model instances of Figures 1 and 3. The
translation to XML Schema introduced new elements Document, CustomerDetails, OrderItem, and
ItemMR in order to represent a top-level root node, generalization/specializations, and decomposed
n-ary relationship sets. If we knew that a particular XML Schema instance was generated from
an original C-XML model instance, we could perform additional optimizations. For example, if
we knew CustomerDetails was fabricated by the translation to XML Schema, we could observe
that in the reverse translation to C-XML it is superfluous because it is one-to-one with Customer.
Similarly, we could recognize that Document is a fabricated top-level element and omit it from
the reverse translation; this would also eliminate the need for CustomerItem and its generaliza-
tion/specialization. Finally, we could recognize that n-ary relationship sets have been decomposed,
and in the reverse translation reconstitute them. The original C-XML to XML Schema translation
could easily place annotation objects in the generated XML Schema instance marking elements for
this sort of optimization.

3.3 Information and Constraint Preservation

To formalize information and constraint preservation for schema translations, we use first-order
predicate calculus. We represent any schema specification (which for C-XML is a model instance
and for XML is an XML Schema instance) in predicate calculus by generating an n-place predicate
for each n-ary tuple container and a closed formula for each constraint [EKW92]. Using the
closed-world assumption, we can then populate the predicates to form an interpretation. If all
the constraints hold over the populated predicates, the interpretation is valid.

For any schema specification SA of type A (e.g. SC−XML or SXMLSchema in our discussion
here) there is a corresponding valid interpretation ISA

(i.e. a valid, populated model instance for
a C-XML model instance or a conforming XML document for an XML Schema instance). We
can guarantee that a translation T translates a schema specification SA to a constraint-equivalent
schema specification SB by checking whether the constraints of the generated predicate calculus for
the schema specification of type B imply the constraints of the generated predicate calculus for the
schema specification of type A (i.e. by checking whether Constraints(SPC

B ) ⇒ Constraints(SPC
A ),

where the superscript PC denotes that the schema is predicate calculus). A translation T that
translates a schema specification SA into a schema translation SB induces a translation T ′ from
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an interpretation ISA
for a schema of type A to an interpretation ISB

for a schema of type B.
We can guarantee that a T -induced translation T ′ translates any valid interpretation ISA

into
an information equivalent valid interpretation ISB

by translating both of the corresponding valid
interpretations to predicate calculus interpretations ISPC

A
and ISPC

B
and checking for information

equivalence.

Definition 1 A translation T from schema specification SA to a schema specification SB preserves
information if there exists a procedure P that for any valid interpretation ISA

corresponding to SA

computes ISA
from ISB

where ISB
is the interpretation corresponding to SB induced by T . �

Definition 2 A translation T from schema specification SA to a schema specification SB preserves
constraints if the constraints of SB imply the constraints of SA. �

Lemma 1 Let ISC−XML
be a valid interpretation for a populated C-XML model instance SC−XML.

There exists a translation tC−XML that correctly represents ISC−XML
as a valid interpretation

ISPC
C−XML

in predicate calculus.
Proof(Sketch): We construct tC−XML as follows. We generate 1-place predicates for object sets
(e.g. OrderDate(x)), n-place predicates for relationship sets (e.g. Order OrderDate(x, y)), and
closed formulas corresponding to the constraints (e.g. ∀x(∃yOrder OrderDate(x, y) ⇒ Order-
Date(x))). We then populate the predicates with corresponding constants representing each object
and relationship in the model instance to obtain tC−XML. Since tC−XML includes all and only all
objects in 1-place predicates and all and only all relationships in n-place predicates and represents
all and only all constraints, tC−XML correctly represents ISC−XML

as a valid interpretation ISPC
C−XML

in predicate calculus. See [EKW92] for details. �

Lemma 2 Let ISXMLSchema
be an XML document that conforms to an XML Schema instance

SXMLSchema. There exists a translation tXMLSchema that correctly represents ISXMLSchema
as a

valid interpretation ISPC
XMLSchema

in predicate calculus.
Proof(Sketch): We construct tXMLSchema as follows. Similar to [EKW92], we generate 1-place
predicates for elements and attributes (e.g. PreferredCustomer(x)), 2-place predicates for each
attribute of an element and for each element nested within another element (e.g. Preferred-
Customer Discount(x, y)), and closed formulas corresponding to the constraints (e.g. ∀x(Prefer-
redCustomer(x)⇒ Customer(x)). We generate constants corresponding to the data in the doc-
ument, and populate the 1- and 2-place predicates accordingly. Since tXMLSchema includes all
and only all objects in 1-place predicates and all and only all relationships in n-place predicates
and represents all and only all constraints, tXMLSchema correctly represents ISXMLSchema

as a valid
interpretation ISPC

XMLSchema
in predicate calculus. �

Theorem 1 Let T be the translation described in Section 3.1 that translates a C-XML model
instance SC−XML to an XML Schema instance SXMLSchema. T preserves information and con-
straints.
Proof (Sketch): Let T ′ be the induced translation of T that translates a valid, populated model
instance ISC−XML

for SC−XML to an XML document ISXMLSchema
for SXMLSchema. By Lemma 1,

we can obtain ISPC
C−XML

as a valid interpretation for ISC−XML
in predicate calculus; similarly by

Lemma 2, we can obtain ISPC
XMLSchema

as a valid interpretation for ISXMLSchema
in predicate calcu-

lus. According to Definition 1 we must show that there is a procedure P that can construct each
populated predicate in ISPC

C−XML
from ISPC

XMLSchema
. The 1-place predicates map directly, but the
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n-place predicates are more interesting since ISPC
XMLSchema

has binary predicates decomposed from
n-place predicates. To recover the original n-place predicates, we join the binary predicates and
project the n required columns. According to Definition 2, we must also show that the constraints
of ISPC

XMLSchema
imply the constraints of ISPC

C−XML
. This requires a case analysis of the generated

constraints. See [EKW92] for a list of cases. �

Theorem 2 Let T be the translation described in Section 3.2 that translates an XML Schema
instance SXMLSchema to a C-XML model instance SC−XML. T preserves information and con-
straints.
Proof (Sketch): Like Theorem 1, the proof is by case analysis, showing how each XML Schema
construct maps to C-XML. Again we use Lemmas 1 and 2 to provide predicate calculus interpreta-
tions, and then we need to show that (1) each predicate in the XML Schema interpretation can be
constructed from those in the C-XML interpretation, and (2) each constraint in the XML Schema
interpretation is implied by the constraints of the C-XML interpretation. �

4 C-XML Views

This section describes three types of views—simple views that help us scale up to large and complex
XML schemas (Section 4.1), query generated views over a single XML schema (Section 4.2), and
query generated views over heterogeneous XML schemas (Section 4.3).

4.1 High-Level Abstractions in C-XML

We create simple views in two ways. Our first way is to nest and hide C-XML components inside
one another [EKW92]. Figure 3 shows how we can nest object sets inside one another. We can
pull any object set inside any other connected object set and we can pull any object set inside
any connected relationship set (e.g. in Figure 1 we can pull Qty and/or SalePrice inside the
diamond). Whether an object set appears on the inside or outside has no effect on the meaning.
Once we have object sets on the inside, we can implode the object set or relationship set and thus
remove the inner object sets from the view. We can, for example, implode Customer, Item, and
PreferredCustomer in Figure 3, presenting a much simpler diagram showing only five object sets
and two generalization/specialization components nested in Document. To denote an imploded
object or relationship set, we shade the object set or the relationship-set diamond. Later, we can
explode object or relationship sets and view all details. Since we allow arbitrary nesting, it is
possible that relationship-set lines may cross object- or relationship-set boundaries. In this case,
when we implode, we connect the line to the imploded object or relationship set and make the line
dashed to indicate that the connection is to an interior object set.

Our second way to create simple views is to discard C-XML components that are not of interest.
We can discard any relationship set, and we can discard all but any two connections of an n-ary
relationship set (n > 2). We can also discard any object set, but then must discard (1) any
connecting binary relationship sets, (2) any connections to n-ary relationship sets (n > 2), and
(3) any specializations and relationship sets or relationship-set connections to these specializations.
Figure 4 shows an example of a high-level abstraction of Figure 1. In Figure 4 we have discarded
Price and its associated binary relationship set, the relationship set for PreviousItem, and the
connections to RequestDateTime and Qty in the n-ary relationship set involving Manufacturer. We
have also hidden OrderID, OrderDate, and all customer information except CustomerName inside
Order, and we have hidden SalePrice and Qty inside the Order -Item relationship set. Note that
both the Order object set and the Order -Item relationship set are shaded, indicating the inclusion
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ItemNrDescription

Item

OrderCustomerName

Figure 4: High-Level View of Customer/Order C-XML Model Instance.

of C-XML components; that neither the Item object set nor the Item-Manufacturer relationship
set are shaded, indicating that the original connecting information has been discarded rather than
hidden within; and that the line between CustomerName and Order is dashed, indicating that
CustomerName connects, not to Order directly, but rather to an object set inside Order.

Theorem 3 Simple, high-level views constructed by properly discarding C-XML components are
valid C-XML model instances.
Proof : Straightforward. (See [BE03] for explanatory details.) �

Corollary 1 Any simple, high-level view can be represented by an XML Schema.
Proof : By Theorem 3 any simple, high-level view V is a C-XML model instance C. Thus, by
Theorem 1, we can represent C as an XML Schema. �

4.2 C-XML XQuery Views

We now consider the use of C-XML views to generate XQuery views. As other researchers have
pointed out [CHdSM03, CLL03], XQuery can be hard for users to understand and manipulate. One
reason XQuery can be cumbersome is because it must follow the particular hierarchical structure of
an underlying XML schema, rather than the simpler, logical structure of an underlying conceptual
model. Further, different XML sources might specify conflicting hierarchical representations of
the same conceptual relationship [CHdSM03]. Thus, it is highly desirable to be able to construct
XQuery views by generating them from a high-level conceptual model-based description. [CLL03]
describes an algorithm for generating XQuery views from ORA-SS descriptions. [CHdSM03] also
describes how to specify XQuery views by writing conceptual XPath expressions over a conceptual
schema and then automatically generating the corresponding XQuery specifications. In a similar
fashion, we can generate XQuery views directly from high-level C-XML views. In some situations
a graphical query language would be an excellent choice for creating C-XML views [LEW00], but
in keeping with the spirit of C-XML we define an XQuery-like textual language called C-XQuery.

Figure 5 shows a high-level view written in C-XQuery over the model instance of Figure 1.5 We
introduce a view definition with the phrase define view, and specify the contents of the view with

5All the XQuery samples in this paper were tested using BEA’s excellent LiquidData product. In the case of
C-XQuery, we first translated to normal XQuery and then tested.
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define view CustomersByItemsOrdered
{ for $item in Item

return
<Item>

{$item/ItemNr, $item/Description}
{ for $customer in $item/Order/Customer

return
<Customer>

{$customer/CustomerName, $customer/CustomerAddr}
{ for $order in $customer/Order,

$item2 in $order/Item
where $item2 = $item
return
<Order>

{$order/OrderDate, $item2/Qty, $item2/SalePrice}
</Order>

}
</Customer>

}
</Item>

}

Figure 5: C-XQuery View of Customers Nested within Items Ordered.

FLWOR (for, let, where, order by, return) expressions [XML03]. The first for $item in Item phrase
creates an iterator over objects in the Item object set. Since there is no top-level where clause, we
iterate over all the items. Also, since C-XML model instances do not have “root nodes” the idea
of context is different. In this case, Item defines the Item object set as the context of the path
expression. For each such item, we return an <Item> ... </Item> structure populated according
to the nested expressions.

C-XQuery is much like ordinary XQuery, with the main distinguishing factor that our path
expressions are conceptual, and so, for example, they are not concerned with the distinction between
attributes and elements. Note particularly that for the data fields, such as ItemNr, CustomerName,
and OrderDate, we do not care whether the generated XML treats them as attributes or elements.
A more subtle characteristic of our conceptual path expressions is that since they operate over a flat
C-XML structure, we can traverse the conceptual-model graph more flexibly, without regard for
hierarchical structure. Thus, we generalize the notion of a path expression so that the expression
A//B designates the path from A to B regardless of hierarchy or the number of intervening steps
in the path [LEW00]. This can lead to ambiguity in the presence of cycles or multiple paths
between nodes, but we can automatically detect ambiguity and require the user to disambiguate
the expression (say, by designating an intermediate node that fixes a unique path).

Given a view definition, we can write queries against the view. For the view in Figure 5, for
example, the query in Figure 6 finds customers who have purchased more than $300 worth of
nitrogen fertilizer within the last 90 days. To execute the query, we unfold the the view according
to the view definition and minimize the resulting XQuery as Figure 7 shows. See [TH04] for a
discussion of the principles underlying this process.

The view in Figure 6 illustrates the use of views within views. Indeed, applications can use
views as first-class data sources, just like ordinary sources, and we can write queries against the
conceptual model and views over that model. In any case, we translate the conceptual queries to
XQuery specifications over the XML Schema instance generated for the C-XML conceptual model.
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define view RecentNitrogenFertilizerCustomers
{ for $i in CustomersByItemsOrdered/Item

where $i/Description = “Nitrogen Fertilizer”
return
<Customer>

{ for $c in $i/Customer
let $total := sum( for $o in $c/Order

where $o/OrderDate > add-days(current-date(),-90)
return $o/Qty * $o/SalePrice )

return
{$c/CustomerName, Total=$total}

}
</Customer>

}

for $c in RecentNitrogenFertilizerCustomers/Customer
where $c/total > 300
return
<PotentialThreatCustomer>

{$c/CustomerName, $c/Total}
</PotentialThreatCustomer>

Figure 6: C-XQuery over the View of Customers Nested within Items Ordered.

for $item in document(URL)/Document/Item,
$c in document(URL)/Document/RegularCustomer

let $daysAgo90 := xf:add-days(xfext:date-from-dateTime(xf:current-dateTime()), -90)
where $item/@Description = ”Nitrogen Fertilizer” and

some $o in $c/Order satisfies
( $o/@OrderDate > $daysAgo90 and some $oi in $o/OrderItem satisfies

($oi/@ItemNr = $item/@ItemNr) ) and
sum(for $o in $c/Order, $oi in $o/OrderItem

where $o/@OrderDate > $daysAgo90 and $oi/@ItemNr = $item/@ItemNr
return $oi/@Qty * $oi/@SalePrice) > 300

return
<PotentialThreatCustomer>

{ $c/CustomerName }
<Total>{ sum( for $o in $c/Order, $oi in $o/OrderItem

where $o/@OrderDate > $daysAgo90
and $oi/@ItemNr = $item/@ItemNr

return $oi/@Qty * $oi/@SalePrice) }</Total>
</PotentialThreatCustomer>

Figure 7: XQuery Corresponding to Figure 6.
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for $item in document(URL)/Document/Item
return
<Item>

{$item/@ItemNr, $item/@Description}
{

for $customer in document(URL)/Document/Customer
where some $o in $customer/Order satisfies

( some $oi in $o/OrderItem satisfies ($oi/@ItemNr = $item/@ItemNr) )
return
<Customer>

{$customer/CustomerName, $customer/CustomerAddr}
{

for $order in $customer/Order,
$orderItem in $order/OrderItem

where $item/@ItemNr = $orderItem/@ItemNr
return
<Order>

{$order/@OrderDate, $orderItem/@Qty, $orderItem/@SalePrice}
</Order>

}
</Customer>

}
</Item>

Figure 8: XQuery Generated for C-XML Query in Figure 5 over XML Schema in Figure 2.

Figure 8 shows the generated XQuery corresponding to the C-XQuery view of Figure 5 (with respect
to the XML Schema instance of Figure 2).

Theorem 4 A C-XQuery view Q over a C-XML model instance C can be translated to an XQuery
query QC over an XML Schema instance SC .
Proof (Sketch): By Theorem 1 we can translate C to SC . Using the principles highlighted in
this section we can translate Q to QC . Following the correspondence of C to SC , we rewrite each
conceptual path of Q as an XQuery path expression in QC , often with additional constraints in
where clauses. We also designate fields as elements or attributes in QC where necessary. Figure 8
gives the XQuery translation of the C-XQuery view in Figure 5. �

Observe that by the definition of XQuery [XML03], any valid XQuery instance generates an
underlying XML Schema instance. By Theorem 4, we thus know that for any C-XQuery view we
retain a correspondence to XML Schema. In particular, this means we can compose views of views
to an arbitrary depth and still retain a correspondence to XML Schema.

4.3 XQuery Integration Mappings

To motivate the use of views in enterprise conceptual modeling, suppose through mergers and
acquisitions we acquire the catalog inventory of another company. Figure 9 shows the C-XML of
the acquired company’s catalog. We can rapidly integrate this catalog into the full inventory of
the parent company by creating a mapping from the acquired company’s catalog in Figure 9 to
the parent company’s catalog in Figure 1. Figure 10 shows the mapping we need. In order to
integrate the source (Figure 9) with the target (Figure 1), the mapping needs to generate the same
names found in the target. In this example, CatalogItem, CatalogNr, and ShortName correspond
respectively to Item, ItemNr, and Description. We must compute Price in the target from the
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Figure 9: C-XML Model Instance for the Catalog of an Acquired Company.

define view CatalogItemToItem
{ for $cItem in CatalogItem

let $itemNr := CatalogNr-to-ItemNr($cItem)
let $price := $cItem/MSRP * (1 + $cItem/MarkupPercent)
return

<Item>
<ItemNr>{$itemNr}</ItemNr>
<Description>{$cItem/ShortName}</Description>
<Price>{$price}</Price>

</Item>
}

Figure 10: C-XQuery Mapping over the C-XML Model Instance in Figure 9

MSRP and MarkupPercent values in the source, as shown in Figure 10. We assume the predicate
CatalogNr-to-ItemNr is either a hand-coded lookup table, or a manually-programmed function
to translate source catalog numbers to item numbers in the target. The underlying structure of
this mapping query corresponds directly to the relevant section of the C-XML model instance in
Figure 1, so integration is now immediate.

The mapping in Figure 10 creates a C-XQuery view over the acquired company’s catalog in
Figure 1. When we now query the parent company’s items, we also query the acquired company’s
catalog. Thus, the previous examples are immediately applicable. For example, we can find those
customers who have ordered more than $300 worth of nitrogen fertilizer from either the inventory
of the parent company or the inventory of the acquired company by simply issuing the query in
Figure 6. With the acquired company’s catalog integrated, when the query in Figure 6 iterates over
customer orders, it ultimately iterates over data instances for both Item in Figure 1 and CatalogItem
in Figure 10. (Now, if the potential terrorist has purchased, say $200 worth of nitrogen fertilizer
from the original company and $150 worth from the acquired company, the potential terrorist will
appear on the list, whereas the potential terrorist would have appeared on neither list before.)

We could also write a mapping query going in the opposite direction, with Figure 1 as the source
and Figure 9 as the target. Such bidirectional integration is useful in circumstances where we need
to shift between perspectives often, as is often the case in enterprise application development. This
is especially true because all enterprise data is rarely fully integrated.

In general it would be nice to have a mostly automated tool for generating integration mappings.
In order to support such a tool, we require two-way mappings between both schemas and data
elements. Sometimes we can use automated element matchers [RB01, BE03] to help us with the
mapping. As illustrated in Figure 10, however, in other cases the mappings are intricate and require
programmer intervention (e.g. calculating Price from MSRP plus a MarkupPercent or converting
CatalogNr to ItemNr). In any case, we can write C-XQuery views describing each such mapping,
with or without the aid of tools (e.g. [MHH00]), and we can compose these views to provide larger
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Figure 11: A Form Program Specification.

C-XQuery schema mappings. Of course there are many integration details we do not address here,
such as handling dirty data, but the approach of integrating by composing C-XQuery views is
sound.

Theorem 5 A C-XQuery view Q over a C-XML model instance C of an external, federated XML
Schema can be translated to an XQuery query QC over an XML Schema instance SC .
Proof : Similar to Theorem 4. �

5 C-XML Issues—Future Work

In this section we briefly discuss some of the issues, in addition to the ones we have already
discussed, that need to be resolved to fully realize the potential impact of the C-XML approach
to enterprise modeling. We focus on providing a simple high-level programming model based
on C-XML. Done well, this can resolve a number of issues, including (1) the need for very high
level declarative programming, (2) the need for expressing complex updates through workflow
specifications, and (3) the need for API layers over both conceptual data declarations and conceptual
workflow specifications.

Given a conceptual model like C-XML, one way to provide very high level declarative languages
that is likely to work well in large enterprises is to use form specifications [Emb89]. When a
customer orders items, for example, the customer usually fills out a form; a form specification
language would allow us to directly use a new-order form as a program specification from which
code can be generated. Figure 11 gives an example of a program specification for the view in
Figure 9 that can be used to add new catalog items. The programmer-added annotations “(add)”
and “(new)” direct the processing so that it adds a new item and catalog number and associates
their values with other appropriate (possibly new or possibly already existing) data. We claim,
and intend to show in future work, that we can convert the program specification in Figure 11 into
code in much the same way we convert C-XQuery to code (as shown earlier in this paper).

Specifying a simple database update with a single form might be sufficient, but this simplicity
will not scale up. In general, we need a way to express complex updates through workflow specifi-
cations. In our conceptual modeling work, we have defined both an object-behavior model and an
object-interaction model to go along with our object-relationship model [EKW92]. Basically, an
object in an object set may be either active or passive. Active objects behave according to their
state transition diagrams. Groups of objects interact to work together. A group of interacting
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Figure 12: C-XML Workflow Diagram for Order Process.

objects, including objects outside the implemented software system, constitutes a workflow. Work-
flows and form specifications meld well together because we can use form specifications at interface
points and input/output points along a workflow and use a workflow specification for routing and
control. Similar to high-level abstractions in C-XML, we have also defined high-level, first-class ab-
stractions for states, transitions, and interactions so that workflow developers can work at various
levels of abstraction (see Chapters 4 and 5 of [EKW92]). Figure 12 shows an example. We represent
interactions with arrows marked by a circled lightning bolt, states with rectangles having rounded
corners, and transitions as divided rectangles where the upper region describes the trigger, and the
lower region gives the action of the transition. In Figure 12, an OrderForm object passes itself
to an OrderTaker, triggering a high-level activity to check inventory status for the ordered items
(high-level states, transitions, and interactions are shaded, indicating a view that hides lower-level
details). When an InventoryController receives a list of items, it indicates the current stock status
(details hidden here). If all items are in stock, the order taker processes the order normally, but if
some item is out of stock, the order taker processes the exception (indicated by a bar across the
arrow) by fulfilling a partial order and backordering the out-of-stock items. Again, we claim, and
intend to show in future work, that we can convert the program specification in Figure 12 into code
(we have already implemented a similar model execution engine [LEW00]).

There is much more to say, and what we have said only hints at the possibilities, but it should
be clear that high-level conceptual modeling in something like C-XML and workflow-augmented
C-XML opens the door to the possibility of (1) enabling very high level declarative programming,
(2) expressing updates through workflow specifications, and (3) providing the kind of API layers
we need to appropriately abstract away the myriad of detail in which we often become entangled
when working with large enterprise systems. Thus, we can take one step closer to removing the
imposition of arcane notation on decision makers and requiring programmers to grovel in low-level
details.
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6 Concluding Remarks

We have offered Conceptual-XML (C-XML) as an answer to the challenge of modern enterprise
modeling. C-XML is equivalent in expressive power to XML Schema (Theorems 1 and 2). In con-
trast to XML Schema, however, C-XML provides for high level conceptualization of an enterprise.
C-XML allows users to view schemas at any level of abstraction and at various levels of abstraction
in the same specification (Theorem 3), which goes a long way toward mitigating the complexity of
large data sets and complex interrelationships. Along with C-XML, we have provided C-XQuery,
a conceptualization of XQuery that relieves programmers from concerns about the often arbitrary
choice of nesting and arbitrary choice of whether to represent values with attributes or with ele-
ments. Using C-XQuery, we have shown how to define views and automatically translate them to
XQuery (Theorem 4). We have also shown how to accommodate heterogeneity by defining mapping
views over federated data repositories and automatically translate them to XQuery (Theorem 5).

Implementing C-XML is a huge undertaking. Even implementing a proof-of-concept prototype
is a daunting task for small, university research group. However, we have a long history of devel-
oping prototype-class tools supporting our models, and we have a foundation on which to build.
Implemented tools relevant to C-XML include graphical diagram editors, model checkers, textual
model compilers, a model execution engine, and several data integration tools. Our current imple-
mentation uses the Java framework for portability. We are actively continuing development of an
Integrated Development Environment (IDE) for modeling-related activities. Our current strategy
is to plug new tools into this IDE rather than developing stand-alone programs. Our most recent
implementation work consists of tools for automatic generation of XML normal form schemes. We
are now working on the implementation of the algorithms to translate C-XML to XML Schema,
XML Schema to C-XML, and C-XQuery to XQuery.
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