
A Time Predictable Instruction Cache
for a Java Processor

Martin Schoeberl

JOP.design, Vienna, Austria
martin@jopdesign.com

Abstract. Cache memories are mandatory to bridge the growing gap between
CPU speed and main memory access time. Standard cache organizationsimprove
the average execution time but are difficult to predict for worst case execution
time (WCET) analysis. This paper proposes a different cache architecture, in-
tended to ease WCET analysis. The cache stores complete methods and cache
misses occur only on method invocation and return. Cache block replacement
depends on the call tree, instead of instruction addresses.

1 Introduction

Worst case execution time (WCET) analysis [1] of real–time programs is essential for
any schedulability analysis. To provide a low WCET value, a good processor model
is necessary. However, the architectural advancement in modern processor designs is
dominated by the rule: ’Make the common case fast‘. This is the opposite of ’Reduce
the worst case‘ and complicates WCET analysis.

Cache memory for the instructions and data is a classic example of this paradigm.
Avoiding or ignoring this feature in real–time systems, dueto its unpredictable behavior,
results in a very pessimistic WCET value. Plenty of effort hasgone into research into
integrating the instruction cache in the timing analysis oftasks [2, 3] and the cache’s
influence on task preemption [4, 5]. The influence of different cache architectures on
WCET analysis is described in [6].

We will tackle this problem from the architectural side — an instruction cache or-
ganization in which simpler and more accurate WCET analysis is more important than
average case performance. In this paper, we will propose a method cache with a novel
replacement policy. The instruction set of the Java virtualmachine contains only rel-
ative branches, and a method is therefore only left when a return instruction has been
executed. It has been observed that methods are typically short [7] in Java applications.
These properties are utilized by a cache architecture that stores complete methods. A
complete method is loaded into the cache on both invocation and return. This cache fill
strategy lumps all cache misses together and is very simple to analyze.

2 Cache Performance

In real–time systems we prefer time predictable architectures over those with a high
average performance. However, performance is still important. In this section we will



give a short overview of the formulas from [8] that are used tocalculate the cache’s
influence on execution time. We will extend the single measurementmiss rateto a two
value set, memory read and transaction rate, that is architecture independent and better
reflect the two properties (bandwidth and latency) of the main memory. To evaluate
cache performance,MEMclk memory stall cycles are added to the CPU execution time
(texe) equation:

texe= (CPUclk +MEMclk)× tclk

MEMclk = Misses×MPclk

The miss penaltyMPclk is the cost per miss, measured in clock cycles. When the in-
struction countIC is given as the number of instructions executed,CPI the average
clock cycles per instruction and the number of misses per instruction, we obtain the
following result:

CPUclk = IC×CPIexe

MEMclk = IC×

Misses
Instruction

×MPclk

texe= IC× (CPIexe+
Misses

Instruction
×MPclk)× tclk

As this paper is only concerned with the instruction cache, we will split the memory stall
cycles into misses caused by the instruction fetch and misses caused by data access.

CPI = CPIexe+CPIIM +CPIDM

CPIexe is the average number of clock cycles per instruction, givenan ideal memory
system without any stalls.CPIIM are the additional clock cycles caused by instruction
cache misses andCPIDM the data miss portion of the CPI. This split between instruction
and data portions of the CPI better reflects the split of the cache between instruction and
data cache found in actual processors.

The misses per instruction are often reported as misses per 1000 instructions. How-
ever, there are several drawbacks to using a single number:

Architecture dependent: The average number of memory accesses per instruction dif-
fers greatly between a RISC processor and the Java Virtual Machine (JVM). A typ-
ical RISC processor needs one memory word (4 bytes) per instruction word, and
about 40% of the instructions [8] areload or storeinstructions. Using the example
of a 32-bit RISC processor, this results in 5.6 bytes memory access per instruction.
The average length of a JVM bytecode instruction is 1.7 bytesand about 18% of
the instructions access the memory for data load and store.

Block size dependent:Misses per instruction depends subtly on the block size. On a
single cache miss, a whole block of the cache is filled. Therefore, the probability
that a future instruction request is a hit is higher with a larger block size. However,
a larger block size results in a higher miss penalty as more memory is transferred.

Main memory is usually composed of DRAMs. Access time to thismemory is mea-
sured in terms of latency (the time taken to access the first word of a larger block) and



bandwidth (the number of bytes read or written in a single request per time unit). These
two values, along with the block size of a cache, are used to calculate the miss penalty:

MPclk = Latency+
Block size
Bandwidth

To better evaluate different cache organizations and different instruction sets (RISC
versus JVM), we will introduce two performance measurements — memory bytes read
per instruction byte and memory transactions per instruction byte:

MBIB =
Memory bytes read
Instruction bytes

MTIB =
Memory transactions

Instruction bytes

These two measures are closely related to memory bandwidth and latency. With these
two values and the properties of the main memory, we can calculate the average memory
cycles per instruction byteMCIB andCPIIM , i.e. the values we are concerned in this
paper.

MCIB = (
MBIB

Bandwith
+MTIB×Latency)

CPIIM = MCIB× Instruction length

The misses per instruction can be converted to MBIB and MTIB when the following
parameters are known: the average instruction length of thearchitecture, the block size
of the cache and the miss penalty in latency and bandwidth. Wewill examine this further
in the following example:

We will use as our example a RISC architecture with a 4 bytes instruction length, an
8 KB instruction cache with 64-byte blocks and a miss rate of 8.16 per 1000 instructions
[8]. The miss penalty is 100 clock cycles. The memory system is assumed to deliver one
word (4 bytes) per cycle. Firstly, we need to calculate the latency of the memory system.

Latency= MPclk−
Blocksize

Bandwidth
= 100−

64
4

= 84 clock cycles

With Miss rate= Cache miss
Cache access, we obtain MBIB.

MBIB =
Memory bytes read
Instruction bytes

=
Cache miss×Block size

Cache access× Instruction length

= Miss rate×
Block size

Instruction length
= 8.16×10−3

×

65
4

= 0.131

MTIB is calculated in a similar way:

MTIB =
Memory transactions

Instruction bytes
=

Cache miss
Cache access× Instruction length

=
Miss rate

Instruction length
=

8.16×10−3

4
= 2.04×10−3



For a quick check, we can calculateCPIIM :

MCIB =
MBIB

Bandwith
+MTIB×Latency=

0.131
4

+2.04×10−3
×84= 0.204

CPIIM = MCIB× Instruction length= 0.204×4 = 0.816

This is the same value as that which we get from using the miss rate with the miss
penalty. However, MBIB and MTIB are architecture independent and better reflect the
latency and bandwidth of the main memory.

CPIIM = Miss rate×Miss penalty= 8.16×10−3
×100= 0.816

3 Proposed Cache Solution

In this section, we will develop a solution with a predictable cache. Typical Java pro-
grams consist of short methods. There are no branches out of the method and all
branches inside are relative. In the proposed architecture, the full code of a method
is loaded into the cache before execution. The cache is filledon calls and returns. This
means that all cache fills are lumped together with a known execution time. The full
loaded method and relative addressing inside a method also result in a simpler cache.
Tag memory and address translation are not necessary.

3.1 Single Method Cache

A single method cache, although less efficient, can be incorporated very easily into
the WCET analysis. The time needed for the memory transfer need to be added to the
invoke and return instruction. The main disadvantage of this single method cache is
the high overhead when a complete method is loaded into the cache and only a small
fraction of the code is executed. This issue is similar to that encountered with unused
data in a cache line. However, in extreme cases, this overhead can be very high. The
second problem can be seen in following example:

foo() {
a();
b();

}

The main drawback of the single method cache is the multiple cache fill of foo() on
return from methods a() and b(). In a conventional cache design, if these three methods
can be fitted in the cache memory at the same time and there is noplacement conflict,
each method is only loaded once. This issue can be overcome bycaching more than one
method. The simplest solution is a two block cache.

3.2 Two Block Cache

The two block cache can hold up to two methods in the cache. This results in having to
decide which block is replaced on a cache miss. With only two blocks, Least-Recently



Used (LRU) is trivial to implement. The code sequence now results in the cache loads
and hits as shown in Table 1. With the two block cache, we have to double the cache
memory or use both blocks for a single large method. The WCET analysis is slightly
more complex than with a single block. A short history of the invocation sequence has
to be used to find the cache fills and hits. A memory (similar to the tag memory) with
one word per block is used to store a reference to the cached method. However, this
memory can be slower than the tag memory as it is only accessedon invocation or
return, rather than on every cache access.

Table 1.Cache load and hit example with the two block cache

Instruction Block 1 Block 2 Cache

foo() foo – load
a() foo a load
return foo a hit
b() foo b load
return foo b hit

We can improve the hit rate by adding more blocks to the cache.If only one block
per method is used, the cache size increases with the number of blocks. With more than
two blocks, LRU replacement policy means that another word is needed for every block
containing a use counter that is updated on every invoke and return. During replacement,
this list is searched for the LRU block. Hit detection involves a search through the list
of the method references of the blocks. If this search is donein microcode, it imposes a
limit on the maximum number of blocks.

3.3 Variable Block Cache

Several cache blocks, all of the size as the largest method, are a waste of cache memory.
Using smaller block sizes and allowing a method to spawn overseveral blocks, the
blocks become very similar to cache lines. The main difference from a conventional
cache is that the blocks for a method are all loaded at once andneed to be consecutive.

Choosing the block size is now a major design tradeoff. Smaller block sizes allow
better memory usage, but the search time for a hit also increases.

With varying block numbers per method, an LRU replacement becomes impractical.
When the method found to be LRU is smaller than the loaded method, this new method
invalidates two cached methods. For the replacement, we will use a pointernext that
indicates the start of the blocks to be replaced on a cache miss. Two practical replace
policies are:

Next block: At the very first beginning,nextpoints to the first block. When a method
of lengthl is loaded in the blockn, next is updated to(n+ l) % block count.

Stack oriented: next is updated in the same way as before on a method load. It is also
updated on a method return — independent of a resulting hit ormiss — to point to
the first block of the leaving method.



We will show these different replacement policies in an example with three methods:
a(), b() and c() of block sizes 2, 2 and 1. The cache consists of4 blocks and is therefore
too small to hold all the methods during the execution of the following code fragment:

a() {
for (;;) {

b();
c();

}
}

Tables 2 and 3 show the cache content during program execution for both replacement
policies. The content of the cache blocks is shown after the execution of the instruction.
An uppercase letter indicates that this block is newly loaded. A right arrow depicts the
block to be replaced on a cache miss (thenextpointer). The last row shows the number
of blocks that are filled during the execution of the program.

Table 2.Next block replacement policy

Instructiona() b() ret c() ret b() ret c() ret b() ret c() ret

Block 1 A →a →a C A a a a a B b →- →-
Block 2 A a a →- A a a a a →- A a a
Block 3 →- B b b →b →b →b C c c A a a
Block 4 - B b b b b b →- →- B →b C c

Fill count 2 4 5 7 8 10 12 13

Table 3.Stack oriented replacement policy

Instructiona() b() ret c() ret b() ret c() ret b() ret c() ret

Block 1 A →a a a a →a a a a →a a a a
Block 2 A a a a a a a a a a a a a
Block 3 →- B →b C →c B →b C →c B →b C →c
Block 4 - B b →- - B b →- - B b →- -

Fill count 2 4 5 7 8 10 11

In this example, the stack oriented approach needs slightlyfewer fills, as only meth-
ods b() and c() are exchanged and method a() stays in the cache. However, if, for exam-
ple, method b() is the size of one block, all methods can be held in the cache using the
the next blockpolicy, but b() and c() would be still exchanged using thestackpolicy.
Therefore, the first approach is used in the proposed cache.



4 WCET Analysis

The proposed instruction cache is designed to simplify WCET analysis. Due to the
fact that all cache misses are included in two instructions (invokeandreturn) only, the
instruction cache can be ignored on all other instructions.The time needed to load a
complete method is calculated using the memory properties (latency and bandwidth)
and the length of the method. On an invoke, the length of the invoked method is used,
and on a return, the method length of the caller.

With a single method cache this calculation can be further simplified. For every
invoke there is a corresponding return. That means that the time needed for the cache
load on return can be included in the time for the invoke instruction. This is simpler
because both methods, the caller and the callee, are known atthe occurrence of the
invoke instruction. The information about which method wasthe caller need not be
stored for the return instruction to be analyzed.

With more than one method in the cache, a cache hit detection has to be performed
as part of the WCET analysis. If there are only two blocks, thisis trivial, as (i) a hit
on invoke is only possible if the method is the same as the lastinvoked (e.g. a single
method in a loop) and (ii) a hit on return is only possible whenthe method is a leave in
the call tree. In the latter case, it is always a hit.

When the cache contains more blocks (i.e. more than two methods can be cached),
a part of the call tree has to be taken into account for hit detection. The variable block
cache further complicates the analysis, as the method length also determines the cache
content. However, this analysis is still simpler than a cache modeling of a direct mapped
instruction cache, as cache block replacement depends on the call tree instead of instruc-
tion addresses.

In traditional caches, data access and instruction cache fill requests can compete
for the main memory bus. For example, a load or store at the endof the processor
pipeline competes with an instruction fetch that results ina cache miss. One of the two
instructions is stalled for additional cycles by the other instructions. With a data cache,
this situation can be even worse. The worst case scenario forthe memory stall time for
an instruction fetch or a data load is two miss penalties whenboth cache reads are a
miss. This unpredictable behavior leads to very pessimistic WCET bounds.

A method cache, with cache fills only on invoke and return, does not interfere with
data access to the main memory. Data in the main memory is accessed withgetfieldand
putfield, instructions that never overlap withinvokeandreturn. This property removes
another uncertainty found in traditional cache designs.

5 Caches Compared

In this section, we will compare the different cache architectures in a quantitative way.
Although our primary concern is predictability, performance remains important. We
will therefore first present the results from a conventionaldirect–mapped instruction
cache. These measurements will then provide a baseline for the evaluation of the pro-
posed architecture.

Cache performance varies with different application domains. As the proposed sys-
tem is intended for real-time applications, the benchmark for these tests should reflect



this fact. However, there are no standard benchmarks available for embedded real–time
systems. A real–time application was therefore adapted to create this benchmark. The
application is from one node of a distributed motor control system [9]. A simulation of
the environment (sensors and actors) and the communicationsystem (commands from
the master station) forms part of the benchmark for simulating the real–world workload.

The data for all measurements was captured using a simulation of a Java processor
[10] and running the application for 500,000 clock cycles. During this time, the major
loop of the application was executed several hundred times,effectively rendering any
misses during the initialization code irrelevant to the measurements.

5.1 Direct–Mapped Cache

Table 4 gives the memory bytes and memory transactions per instruction byte for a
standard direct–mapped cache. As we can see from the values for a cache size of 4 KB,
the kernel of the application is small enough to fit completely into the 4 KB cache. The
cache performs better (i.e. fewer bytes are transferred) with smaller block sizes. With
smaller block sizes, the chance of unused data being read is reduced and the larger num-
ber of blocks reduces conflict misses. However, reducing theblock size also increases
memory transactions (MTIB), which directly relates to memory latency.

Table 4.Direct–mapped cache

Cache size Block size MBIB MTIB

1 KB 8 0.28 0.035
1 KB 16 0.38 0.024
1 KB 32 0.58 0.018
2 KB 8 0.17 0.022
2 KB 16 0.25 0.015
2 KB 32 0.41 0.013
4 KB 8 0.00 0.001
4 KB 16 0.01 0.000
4 KB 32 0.01 0.000

Which configuration performs best depends on the relationship between memory
bandwidth and memory latency. Examples of average memory access times in cycles
per instruction byte for different memory technologies areprovided in Table 5. The
third column shows the cache performance for a Static RAM (SRAM), which is very
common in embedded systems. A latency of 1 clock cycle and an access time of 2 clock
cycles per 32-bit word are assumed. For the synchronous DRAM(SDRAM) in the forth
column, a latency of 5 cycles (3 cycle for the row address and 2cycle CAS latency) is
assumed. The memory delivers one word (4 bytes) per cycle. The Double Data Rate
(DDR) SDRAM in the last column has an enhanced latency of 4.5 cycles and transfers
data on both the rising and falling edge of the clock signal.

The data in bold give the best block size for different memorytechnologies. As ex-
pected, memories with a higher latency and bandwidth perform better with larger block



Table 5.Direct–mapped cache, average memory access time

Cache size Block size SRAM SDRAM DDR

1 KB 8 0.18 0.25 0.19
1 KB 16 0.22 0.22 0.16
1 KB 32 0.31 0.24 0.15
2 KB 8 0.11 0.15 0.12
2 KB 16 0.14 0.14 0.10
2 KB 32 0.22 0.17 0.11

sizes. For small block sizes, the latency clearly dominatesthe access time. Although the
SRAM has half the bandwidth of the SDRAM and a quarter of the DDR, with a block
size of 8 bytes it is faster than the DRAM memories. In most cases a block size of 16
bytes is the fastest solution and we will therefore use this configuration for comparison
with the following cache solutions.

5.2 Fixed Block Cache

Cache performance for single method per block architectures is shown in Table 6. A
single block that has to be filled on every invoke and return requires considerable over-
heads. More than twice the amount of data is read from the mainmemory than is con-
sumed by the processor.

The solution with two blocks for two methods performs almosttwice as well as
the simple one method cache. This is due to the fact that, for all leaves in the call
tree, the caller method can be found on return. If the block count is doubled again, the
number of misses is reduced by a further 25%, but the cache size also doubles. For this
measurement, an LRU replacement policy applies for the two and four block caches.

Table 6.Fixed block cache

Type Cache size MBIB MTIB

Single method 1 KB 2.32 0.021
Two blocks 2 KB 1.21 0.013
Four blocks 4 KB 0.90 0.010

The same memory parameters as in the previous section are also used in Table 7.
As MBIB and MTBI show the same trend as a function of the numberof blocks, this is
reflected in the access time in all three memory examples.

5.3 Variable Block Cache

Table 8 shows the cache performance of the proposed solution, i.e. of a method cache
with several blocks per method, for different cache sizes and number of blocks. For this
measurement, anext blockreplacement policy applies.



Table 7.Fixed block cache, average memory access time

Type Cache size SRAM SDRAM DDR

Single Method 1 KB 1.18 0.69 0.39
Two blocks 2 KB 0.62 0.37 0.21
Four blocks 4 KB 0.46 0.27 0.16

Table 8.Variable block cache

Cache size Block count MBIB MTIB

1 KB 8 0.80 0.009
1 KB 16 0.71 0.008
1 KB 32 0.70 0.008
1 KB 64 0.70 0.008
2 KB 8 0.73 0.008
2 KB 16 0.37 0.004
2 KB 32 0.24 0.003
2 KB 64 0.12 0.001
4 KB 8 0.73 0.008
4 KB 16 0.25 0.003
4 KB 32 0.01 0.000
4 KB 64 0.00 0.000

In this scenario, as the MBIB is very high at a cache size of 1 KBand almost
independent of the block count, the cache capacity is seen tobe clearly dominant. The
most interesting cache size with this benchmark is 2 KB. Here, we can see the influence
of the number of blocks on both performance parameters. Bothvalues benefit from
more blocks. However, a higher block count requires more time or more hardware for
hit detection. With a cache size of 4 KB and enough blocks, thekernel of the application
completely fits into the variable block cache, as we have seenwith a 4 KB traditional
cache. From the gap between 16 and 32 blocks (within the 4 KB cache), we can say that
the application consists of fewer than 32 different methods.

It can be seen that even the smallest configuration with a cache size of 1 KB and
only 8 blocks outperforms fixed block caches with 2 or 4 KB in both parameters (MBIB
and MTIB). In most configurations, MBIB is higher than for thedirect–mapped cache.
It is very interesting to note that, in all configurations (even the small 1 KB cache),
MTIB is lower than in all 1 KB and 2 KB configurations of the direct–mapped cache.
This is a result of the complete method transfers when a miss occurs and is clearly an
advantage for main memory systems with high latency. As in the previous examples,
Table 9 shows the average memory access time per instructionbyte for three different
main memories.

The variable block cache directly benefits from the low MTBI with the DRAM
memories. When comparing the values between SDRAM and DDR, wecan see that
the bandwidth affects the memory access time in a way that is approximately linear.
The high latency of these memories is completely hidden. Theconfiguration with 16



Table 9.Variable block cache, average memory access time

Cache size Block count SRAM SDRAM DDR

1 KB 8 0.41 0.24 0.14
1 KB 16 0.36 0.22 0.12
1 KB 32 0.36 0.21 0.12
1 KB 64 0.36 0.21 0.12
2 KB 8 0.37 0.22 0.13
2 KB 16 0.19 0.11 0.06
2 KB 32 0.12 0.08 0.04
2 KB 64 0.06 0.04 0.02

or more blocks and dynamic RAMs outperforms the direct–mapped cache of the same
size. As expected, a memory with low latency (the SRAM in thisexample) depends on
the MBIB values. The variable block cache is slower than the direct–mapped cache in
the 1 KB configuration because of the higher MBIB (0.7 compared to 0.3-0.6), and per-
forms very similarly at a cache size of 2 KB. In Table 10, the different cache solutions
with a size of 2 KB are summarized. All full method caches withtwo or more blocks
have a lower MTIB than a conventional cache solution. This becomes more important
with increasing latency in main memories. The MBIB value is only quite high for one
or two methods in the cache. However, the most surprising result is that the variable
block cache with 32 blocks outperforms a direct–mapped cache of the same size at both
values.

Table 10.Caches compared

Cache type MBIB MTIB

Single method 2.32 0.021
Two blocks 1.21 0.013
Variable block (16) 0.37 0.004
Variable block (32) 0.24 0.003
Direct mapped 0.25 0.015

We can see that predictability is indirectly related to performance — a trend we
had expected. The most predictable solution with a single method cache performs very
poorly compared to a conventional direct–mapped cache. If we accept a slightly more
complex WCET analysis (taking a small part of the call tree into account), we can use
the two block cache that is about two times better. With the variable block cache, it
could be argued that the WCET analysis becomes too complex, but it is nevertheless
simpler than that with the direct–mapped cache. However, every hit in the two block
cache will also be a hit in a variable block cache (of the same size). A tradeoff might
be to analyze the program by assuming a two block cache but using a version of the
variable block cache.



6 Conclusion

In this paper, we have extended the single cache performancemeasurementmiss rateto
a two value set, memory read and transaction rate, in order toperform a more detailed
evaluation of different cache architectures. From the properties of the Java language —
usually small methods and relative branches — we derived thenovel idea of amethod
cache, i.e. a cache organization in which whole methods are loadedinto the cache on
method invocation and the return from a method. This cache organization is time pre-
dictable, as all cache misses are lumped together in these two instructions. Using only
one block for a single method introduces considerable overheads in comparison with a
conventional cache, but is very simple to analyze. We extended this cache to hold more
methods, with one block per method and several smaller blocks per method.

Comparing these organizations quantitatively with a benchmark derived from a
real–time application, we have seen that the variable blockcache performs similarly
to (and in one configuration even better than) a direct–mapped cache, in respect of the
bytes that have to be filled on a cache miss. In all configurations and sizes of the variable
block cache, the number of memory transactions, which relates to memory latency, is
lower than in a traditional cache.

Filling the cache only on method invocation and return simplifies WCET analysis
and removes another source of uncertainty, as there is no competition for main memory
between instruction cache and data cache.

References

1. Puschner, P., Koza, C.: Calculating the maximum execution time of real-time programs.
Real-Time Syst.1 (1989) 159–176

2. Arnold, R., Mueller, F., Whalley, D., Harmon, M.: Bounding worst-case instruction cache
performance. In: IEEE Real-Time Systems Symposium. (1994) 172–181

3. Healy, C., Whalley, D., Harmon, M.: Integrating the timing analysis of pipelining and in-
struction caching. In: IEEE Real-Time Systems Symposium. (1995) 288–297

4. Lee, C.G., Hahn, J., Seo, Y.M., Min, S.L., Ha, R., Hong, S., Park, C.Y., Lee, M., Kim, C.S.:
Analysis of cache-related preemption delay in fixed-priority preemptivescheduling. IEEE
Trans. Comput.47 (1998) 700–713

5. Busquets-Mataix, J.V., Wellings, A., Serrano, J.J., Ors, R., Gil,P.: Adding instruction cache
effect to schedulability analysis of preemptive real-time systems. In: IEEE Real-Time Tech-
nology and Applications Symposium (RTAS ’96), Washington - Brussels -Tokyo, IEEE
Computer Society Press (1996) 204–213

6. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of processor archi-
tecture on the design and results of WCET tools. Proceedings of the IEEE91 (2003)

7. Power, J., Waldron, J.: A method-level analysis of object-orientedtechniques in java. Tech-
nical report, Department of Computer Science, NUI Maynooth, Ireland (2002)

8. Hennessy, J., Patterson, D.: Computer Architecture: A QuantitativeApproach, 3rd ed. Mor-
gan Kaufmann Publishers Inc., Palo Alto, CA 94303 (2002)

9. Schoeberl, M.: Using a Java optimized processor in a real world application. In: Proceedings
of the First Workshop on Intelligent Solutions in Embedded Systems (WISES 2003), Austria,
Vienna (2003) 165–176

10. Schoeberl, M.: JOP: A Java optimized processor. In: Workshopon Java Technologies for
Real-Time and Embedded Systems. Volume LNCS 2889., Catania, Italy (2003) 346–359


