A Time Predictable Instruction Cache
for a Java Processor

Martin Schoeberl

JOP.design, Vienna, Austria
marti n@ opdesi gn. com

Abstract. Cache memories are mandatory to bridge the growing gap between
CPU speed and main memory access time. Standard cache organirafionge

the average execution time but are difficult to predict for worst caseution

time (WCET) analysis. This paper proposes a different cache artthrigedn-
tended to ease WCET analysis. The cache stores complete methodschad ca
misses occur only on method invocation and return. Cache block repéte
depends on the call tree, instead of instruction addresses.

1 Introduction

Worst case execution time (WCET) analysis [1] of real-timagpams is essential for
any schedulability analysis. To provide a low WCET value, adyprocessor model
is necessary. However, the architectural advancement demaorocessor designs is
dominated by the ruleMake the common case fasthis is the opposite ofReduce
the worst caseand complicates WCET analysis.

Cache memory for the instructions and data is a classic eanfiphis paradigm.
Avoiding or ignoring this feature in real—time systems, thuiégs unpredictable behavior,
results in a very pessimistic WCET value. Plenty of effort aee into research into
integrating the instruction cache in the timing analysisasks [2, 3] and the cache’s
influence on task preemption [4,5]. The influence of différesche architectures on
WCET analysis is described in [6].

We will tackle this problem from the architectural side — astruction cache or-
ganization in which simpler and more accurate WCET analgsisdre important than
average case performance. In this paper, we will proposetlaomeache with a novel
replacement policy. The instruction set of the Java virtnathine contains only rel-
ative branches, and a method is therefore only left whenwarrénstruction has been
executed. It has been observed that methods are typicaliy[3hin Java applications.
These properties are utilized by a cache architecture tbegsscomplete methods. A
complete method is loaded into the cache on both invocatidrreturn. This cache fill
strategy lumps all cache misses together and is very siro@adlyze.

2 Cache Performance

In real-time systems we prefer time predictable architestover those with a high
average performance. However, performance is still ingmrtin this section we will

give a short overview of the formulas from [8] that are useddtrulate the cache’s
influence on execution time. We will extend the single measiantmiss rateto a two
value set, memory read and transaction rate, that is acthiteindependent and better
reflect the two properties (bandwidth and latency) of themmméemory. To evaluate
cache performanc®)EMgx memory stall cycles are added to the CPU execution time
(texe) €quation:

texe= (CPUgik + MEMgik) X teik
MEMC”(= Missesx MPC|k

The miss penaltP is the cost per miss, measured in clock cycles. When the in-
struction countC is given as the number of instructions executeé®| the average
clock cycles per instruction and the number of misses péruatson, we obtain the
following result:

CPLJdk = IC X Cplexe
Misses

MEMgk=I1C X ——— — P
clk " Instruction " ck
Misses
texe=IC x (CPI ——— x MP, t
exe X (exet Instructlonx clk) X lelk

As this paper is only concerned with the instruction cachewill split the memory stall
cycles into misses caused by the instruction fetch and sissgsed by data access.

CPIl = CPlexe+ CPl +CPlpm

CPlexe is the average number of clock cycles per instruction, gaendeal memory
system without any stall€Pl are the additional clock cycles caused by instruction
cache misses ar@PIpy the data miss portion of the CPI. This split between instomct
and data portions of the CPI better reflects the split of titbedetween instruction and
data cache found in actual processors.

The misses per instruction are often reported as missepéridstructions. How-
ever, there are several drawbacks to using a single number:

Architecture dependent: The average number of memory accesses per instruction dif-
fers greatly between a RISC processor and the Java Virtuehiva (JVM). A typ-
ical RISC processor needs one memory word (4 bytes) peuatisin word, and
about 40% of the instructions [8] alead or storeinstructions. Using the example
of a 32-bit RISC processor, this results in 5.6 bytes memocgss per instruction.
The average length of a JVM bytecode instruction is 1.7 bgtesabout 18% of
the instructions access the memory for data load and store.

Block size dependent:Misses per instruction depends subtly on the block size. On a
single cache miss, a whole block of the cache is filled. Tloeeefthe probability
that a future instruction request is a hit is higher with géarblock size. However,

a larger block size results in a higher miss penalty as moraaneis transferred.

Main memory is usually composed of DRAMSs. Access time to themory is mea-
sured in terms of latency (the time taken to access the fired wba larger block) and

bandwidth (the number of bytes read or written in a singlelest|per time unit). These
two values, along with the block size of a cache, are useditolede the miss penalty:

Block size
Bandwidth
To better evaluate different cache organizations and réiffieinstruction sets (RISC

versus JVM), we will introduce two performance measuresieatmemory bytes read
per instruction byte and memory transactions per insioandbiyte:

MP;x = Latency+

Memory bytes read
Instruction bytes
Memory transactions
Instruction bytes

MBIB =

MTIB =

These two measures are closely related to memory bandwidtfasency. With these
two values and the properties of the main memory, we can leddctihe average memory
cycles per instruction byt CIB andCPlyy, i.e. the values we are concerned in this
paper.

MBIB
Bandwith
CPl = MCIB x Instruction length

MCIB = (+MTIB x Latency

The misses per instruction can be converted to MBIB and MTH&mwthe following
parameters are known: the average instruction length drittatecture, the block size
of the cache and the miss penalty in latency and bandwidthviMexamine this further
in the following example:

We will use as our example a RISC architecture with a 4 bytgtstintion length, an
8 KB instruction cache with 64-byte blocks and a miss rate b8 @er 1000 instructions
[8]. The miss penalty is 100 clock cycles. The memory systeassumed to deliver one
word (4 bytes) per cycle. Firstly, we need to calculate therley of the memory system.

Blocksize _ 100— b4 = 84 clock cycles

Latency= MPyy — — oo ol2® _
atency=Mrek ~ Bandwidth 4

With Miss rate= S2he miss \ye obtain MBIB.

MBIB — Memory bytes read Cache misx Block size
~Instruction bytes Cache access Instruction length
Block size

. 65
= Miss ratex : =816x103%x — =0.131
Instruction length 4

MTIB is calculated in a similar way:

Memory transactions Cache miss

Instruction bytes ~ Cache access Instruction length
B Missrate ~ 816x 1073
~ Instruction length 4

MTIB =

=204x103

For a quick check, we can calcul&@@®I|y:

MBIB 0.131 4
MCIB= o o tr+MTIBx Latency= — = +2.04x 10 ° x 84=0.204

CPlj = MCIB x Instruction length= 0.204x 4 = 0.816

This is the same value as that which we get from using the raigswith the miss
penalty. However, MBIB and MTIB are architecture indepeartdend better reflect the
latency and bandwidth of the main memory.

CPlj = Miss ratex Miss penalty= 8.16 x 103 x 100= 0.816

3 Proposed Cache Solution

In this section, we will develop a solution with a predicglhche. Typical Java pro-
grams consist of short methods. There are no branches otteomethod and all
branches inside are relative. In the proposed architectiieefull code of a method
is loaded into the cache before execution. The cache is fitkechlls and returns. This
means that all cache fills are lumped together with a knowegi@ time. The full
loaded method and relative addressing inside a method edsdt in a simpler cache.
Tag memory and address translation are not necessary.

3.1 Single Method Cache

A single method cache, although less efficient, can be imwatpd very easily into
the WCET analysis. The time needed for the memory transfet ttebe added to the
invoke and return instruction. The main disadvantage of #imgle method cache is
the high overhead when a complete method is loaded into #tteecand only a small
fraction of the code is executed. This issue is similar ta &mecountered with unused
data in a cache line. However, in extreme cases, this overtea be very high. The
second problem can be seen in following example:

foo() {
a();
b();
}

The main drawback of the single method cache is the multipthe fill of foo() on
return from methods a() and b(). In a conventional cachegdeffithese three methods
can be fitted in the cache memory at the same time and thereploement conflict,
each method is only loaded once. This issue can be overcocechjng more than one
method. The simplest solution is a two block cache.

3.2 Two Block Cache

The two block cache can hold up to two methods in the cache.rEsults in having to
decide which block is replaced on a cache miss. With only tlwoks, Least-Recently

Used (LRU) is trivial to implement. The code sequence nowltesn the cache loads
and hits as shown in Table 1. With the two block cache, we hawiouble the cache
memory or use both blocks for a single large method. The WCHilyais is slightly
more complex than with a single block. A short history of theoication sequence has
to be used to find the cache fills and hits. A memory (similahtotag memory) with
one word per block is used to store a reference to the cach#dtbtheHowever, this
memory can be slower than the tag memory as it is only accemseavocation or
return, rather than on every cache access.

Table 1.Cache load and hit example with the two block cache

Instruction Block 1 Block 2 Cache

foo() foo - load
a() foo a load
return foo a hit
b() foo b load
return foo b hit

We can improve the hit rate by adding more blocks to the cdtlo@ly one block
per method is used, the cache size increases with the nurlecks. With more than
two blocks, LRU replacement policy means that another worgteded for every block
containing a use counter that is updated on every invokeetnd. During replacement,
this list is searched for the LRU block. Hit detection invedva search through the list
of the method references of the blocks. If this search is @don@crocode, it imposes a
limit on the maximum number of blocks.

3.3 Variable Block Cache

Several cache blocks, all of the size as the largest methed,waste of cache memory.
Using smaller block sizes and allowing a method to spawn eegeral blocks, the
blocks become very similar to cache lines. The main diffeeefitom a conventional
cache is that the blocks for a method are all loaded at oncaeedto be consecutive.

Choosing the block size is now a major design tradeoff. Simallock sizes allow
better memory usage, but the search time for a hit also inesea

With varying block numbers per method, an LRU replacemeobbees impractical.
When the method found to be LRU is smaller than the loaded rdethis new method
invalidates two cached methods. For the replacement, weusél a pointenext that
indicates the start of the blocks to be replaced on a cache Mis practical replace
policies are:

Next block: At the very first beginningnextpoints to the first block. When a method
of lengthl is loaded in the block, nextis updated tqn+1) % block count

Stack oriented: nextis updated in the same way as before on a method load. It is also
updated on a method return — independent of a resulting Initiss — to point to
the first block of the leaving method.

We will show these different replacement policies in an eglemvith three methods:
a(), b() and c() of block sizes 2, 2 and 1. The cache consigtblificks and is therefore
too small to hold all the methods during the execution of tileWing code fragment:

Tables 2 and 3 show the cache content during program exadotid®oth replacement
policies. The content of the cache blocks is shown afterxbewdion of the instruction.
An uppercase letter indicates that this block is newly loaderight arrow depicts the
block to be replaced on a cache miss (tleatpointer). The last row shows the number
of blocks that are filled during the execution of the program.

Table 2. Next block replacement policy

Instructiona() b() ret c() ret b() ret c() ret b() ret c() ret
Block 1 A—a—a C A a a a a B b—- —-
Block 2 A a a—»- A a a a a— A a a
Block3 — B b b—-b—b—-b C ¢ ¢ A a a
Block 4 - B b b b b b= — B—=b C ¢
Fillcount 2 4 5 7 8 10 12 13

Table 3. Stack oriented replacement policy

Instructiona() b() ret c() ret b() ret c() ret b() ret c() ret

Block 1 A—a a a a—a a a a—a a a a
Block 2 A a a a a a a a a a a a a
Block3 —- B—b C—c¢c B—b C—c B—bh C-—c
Block 4 - B b—- - B b— - B b-—-
Fill count 2 4 5 7 8 10 11

In this example, the stack oriented approach needs slifgwigr fills, as only meth-
ods b() and c¢() are exchanged and method a() stays in the.ddoWwever, if, for exam-
ple, method b() is the size of one block, all methods can be inehe cache using the
the next blockpolicy, but b() and c() would be still exchanged using si@ckpolicy.
Therefore, the first approach is used in the proposed cache.

4 WCET Analysis

The proposed instruction cache is designed to simplify WCBAalysis. Due to the
fact that all cache misses are included in two instructiamsokeandreturn) only, the
instruction cache can be ignored on all other instructidine time needed to load a
complete method is calculated using the memory propetrid¢sncy and bandwidth)
and the length of the method. On an invoke, the length of thekied method is used,
and on a return, the method length of the caller.

With a single method cache this calculation can be furthmpbfied. For every
invoke there is a corresponding return. That means thainteneeded for the cache
load on return can be included in the time for the invoke imgton. This is simpler
because both methods, the caller and the callee, are knottre atccurrence of the
invoke instruction. The information about which method wias caller need not be
stored for the return instruction to be analyzed.

With more than one method in the cache, a cache hit detectistobe performed
as part of the WCET analysis. If there are only two blocks, thisivial, as (i) a hit
on invoke is only possible if the method is the same as theinasked (e.g. a single
method in a loop) and (ii) a hit on return is only possible whegmmethod is a leave in
the call tree. In the latter case, it is always a hit.

When the cache contains more blocks (i.e. more than two mettemibe cached),
a part of the call tree has to be taken into account for hitadiete. The variable block
cache further complicates the analysis, as the methodHetgp determines the cache
content. However, this analysis is still simpler than a eatiodeling of a direct mapped
instruction cache, as cache block replacement depends ealtfiree instead of instruc-
tion addresses.

In traditional caches, data access and instruction cadhedjliests can compete
for the main memory bus. For example, a load or store at theoénke processor
pipeline competes with an instruction fetch that resulta @ache miss. One of the two
instructions is stalled for additional cycles by the othestiuctions. With a data cache,
this situation can be even worse. The worst case scenaribdanemory stall time for
an instruction fetch or a data load is two miss penalties wiah cache reads are a
miss. This unpredictable behavior leads to very pessioNSCET bounds.

A method cachewith cache fills only on invoke and return, does not intexfaith
data access to the main memory. Data in the main memory issedavithgetfieldand
putfield instructions that never overlap withvokeandreturn. This property removes
another uncertainty found in traditional cache designs.

5 Caches Compared

In this section, we will compare the different cache ardttitees in a quantitative way.
Although our primary concern is predictability, perfornsanremains important. We
will therefore first present the results from a conventiotiaéct—mapped instruction
cache. These measurements will then provide a baselinbeda@valuation of the pro-
posed architecture.

Cache performance varies with different application darsals the proposed sys-
tem is intended for real-time applications, the benchmarkhese tests should reflect

this fact. However, there are no standard benchmarks alailer embedded real-time
systems. A real-time application was therefore adaptedeate this benchmark. The
application is from one node of a distributed motor contgaitem [9]. A simulation of
the environment (sensors and actors) and the communicatgiam (commands from
the master station) forms part of the benchmark for simmdgtie real-world workload.

The data for all measurements was captured using a simulatia Java processor
[10] and running the application for 500,000 clock cyclesribg this time, the major
loop of the application was executed several hundred tiefés;tively rendering any
misses during the initialization code irrelevant to the suraments.

5.1 Direct—-Mapped Cache

Table 4 gives the memory bytes and memory transactions pguation byte for a
standard direct—-mapped cache. As we can see from the valugséche size of 4 KB,
the kernel of the application is small enough to fit compieteto the 4 KB cache. The
cache performs better (i.e. fewer bytes are transferreit) swhaller block sizes. With
smaller block sizes, the chance of unused data being readused and the larger num-
ber of blocks reduces conflict misses. However, reducingpbbek size also increases
memory transactions (MTIB), which directly relates to meylatency.

Table 4. Direct-mapped cache

Cache size Block size MBIB MTIB

1 KB 8 0.28 0.035
1 KB 16 0.38 0.024
1 KB 32 0.58 0.018
2KB 8 0.17 0.022
2KB 16 0.25 0.015
2KB 32 0.41 0.013
4 KB 8 0.00 0.001
4 KB 16 0.01 0.000
4 KB 32 0.01 0.000

Which configuration performs best depends on the relatipnseiween memory
bandwidth and memory latency. Examples of average memamgsadimes in cycles
per instruction byte for different memory technologies previded in Table 5. The
third column shows the cache performance for a Static RAMAMR which is very
common in embedded systems. A latency of 1 clock cycle ande@esa time of 2 clock
cycles per 32-hit word are assumed. For the synchronous DEBINRAM) in the forth
column, a latency of 5 cycles (3 cycle for the row address aogcie CAS latency) is
assumed. The memory delivers one word (4 bytes) per cycle.Dduble Data Rate
(DDR) SDRAM in the last column has an enhanced latency of ictes and transfers
data on both the rising and falling edge of the clock signal.

The data in bold give the best block size for different menteghnologies. As ex-
pected, memories with a higher latency and bandwidth parfoatter with larger block

Table 5. Direct—-mapped cache, average memory access time

Cache size Block size SRAM SDRAM DDR

1KB 8 0.18 0.25 0.19
1KB 16 0.22 0.22 0.16
1KB 32 031 024 0.15
2KB 8 0.11 0.15 0.12
2KB 16 0.14 0.14 0.10
2KB 32 022 017 011

sizes. For small block sizes, the latency clearly domindtesccess time. Although the
SRAM has half the bandwidth of the SDRAM and a quarter of theRD@ith a block
size of 8 bytes it is faster than the DRAM memories. In mosesasblock size of 16
bytes is the fastest solution and we will therefore use thigiguration for comparison
with the following cache solutions.

5.2 Fixed Block Cache

Cache performance for single method per block architestisrshown in Table 6. A
single block that has to be filled on every invoke and retuquires considerable over-
heads. More than twice the amount of data is read from the mamory than is con-
sumed by the processor.

The solution with two blocks for two methods performs almivgte as well as
the simple one method cache. This is due to the fact that,|fdeaves in the call
tree, the caller method can be found on return. If the bloakntés doubled again, the
number of misses is reduced by a further 25%, but the cachekim doubles. For this
measurement, an LRU replacement policy applies for the tvddfaur block caches.

Table 6. Fixed block cache

Type Cache size MBIB MTIB

Single method 1 KB 2.32 0.021
Two blocks 2 KB 1.21 0.013
Four blocks 4 KB 0.90 0.010

The same memory parameters as in the previous section aressgd in Table 7.
As MBIB and MTBI show the same trend as a function of the nunabélocks, this is
reflected in the access time in all three memory examples.

5.3 Variable Block Cache

Table 8 shows the cache performance of the proposed sqgliigoif a method cache
with several blocks per method, for different cache sizesrammber of blocks. For this
measurement, @ext blockreplacement policy applies.

Table 7.Fixed block cache, average memory access time

Type Cache size SRAM SDRAM DDR

Single Method 1KB 1.18 0.69 0.39
Two blocks 2 KB 0.62 0.37 0.21
Four blocks 4 KB 0.46 0.27 0.16

Table 8. Variable block cache

Cache size Block count MBIB MTIB

1KB 8 0.80 0.009
1KB 16 0.71 0.008
1KB 32 0.70 0.008
1KB 64 0.70 0.008
2KB 8 0.73 0.008
2KB 16 0.37 0.004
2KB 32 0.24 0.003
2KB 64 0.12 0.001
4 KB 8 0.73 0.008
4 KB 16 0.25 0.003
4 KB 32 0.01 0.000
4 KB 64 0.00 0.000

In this scenario, as the MBIB is very high at a cache size of 1d®@ almost
independent of the block count, the cache capacity is sebe tbearly dominant. The
most interesting cache size with this benchmark is 2 KB. Heeecan see the influence
of the number of blocks on both performance parameters. Balies benefit from
more blocks. However, a higher block count requires more timmore hardware for
hit detection. With a cache size of 4 KB and enough blockskéneel of the application
completely fits into the variable block cache, as we have sg#ma 4 KB traditional
cache. From the gap between 16 and 32 blocks (within the 4 KBeawe can say that
the application consists of fewer than 32 different methods

It can be seen that even the smallest configuration with aecsize of 1 KB and
only 8 blocks outperforms fixed block caches with 2 or 4 KB ittyparameters (MBIB
and MTIB). In most configurations, MBIB is higher than for ttieect-mapped cache.
It is very interesting to note that, in all configurationsdevhe small 1 KB cache),
MTIB is lower than in all 1 KB and 2 KB configurations of the ditemapped cache.
This is a result of the complete method transfers when a neissre and is clearly an
advantage for main memory systems with high latency. As énpitevious examples,
Table 9 shows the average memory access time per instruntterfor three different
main memories.

The variable block cache directly benefits from the low MTBthwthe DRAM
memories. When comparing the values between SDRAM and DDR;anesee that
the bandwidth affects the memory access time in a way thatpsoaimately linear.
The high latency of these memories is completely hidden. cdmdiguration with 16

Table 9. Variable block cache, average memory access time

Cache size Block count SRAM SDRAM DDR

1KB 8 041 024 0.14
1KB 16 036 022 0.12
1KB 32 036 021 0.12
1KB 64 036 021 0.12
2KB 8 037 022 0.13
2KB 16 0.19 0.11 0.06
2KB 32 0.12 0.08 0.04
2KB 64 0.06 0.04 0.02

or more blocks and dynamic RAMs outperforms the direct—radprache of the same
size. As expected, a memory with low latency (the SRAM in éhxiample) depends on
the MBIB values. The variable block cache is slower than ihect-mapped cache in
the 1 KB configuration because of the higher MBIB (0.7 comgaoe0.3-0.6), and per-
forms very similarly at a cache size of 2 KB. In Table 10, thigedént cache solutions
with a size of 2 KB are summarized. All full method caches witlo or more blocks
have a lower MTIB than a conventional cache solution. Thisob@es more important
with increasing latency in main memories. The MBIB value mgyaquite high for one
or two methods in the cache. However, the most surprisingjtresthat the variable
block cache with 32 blocks outperforms a direct-mappedeatthe same size at both
values.

Table 10.Caches compared

Cache type MBIB MTIB
Single method 2.32 0.021
Two blocks 1.21 0.013

Variable block (16) 0.37 0.004
Variable block (32) 0.24 0.003
Direct mapped 0.25 0.015

We can see that predictability is indirectly related to perfance — a trend we
had expected. The most predictable solution with a singldatkecache performs very
poorly compared to a conventional direct—-mapped cachee l&gcept a slightly more
complex WCET analysis (taking a small part of the call tree Bxtcount), we can use
the two block cache that is about two times better. With theéatde block cache, it
could be argued that the WCET analysis becomes too compléx, isunevertheless
simpler than that with the direct-mapped cache. Howeveryekit in the two block
cache will also be a hit in a variable block cache (of the saire).sA tradeoff might
be to analyze the program by assuming a two block cache buog asversion of the
variable block cache.

6 Conclusion

In this paper, we have extended the single cache perfornmaeasurememiss rateto
a two value set, memory read and transaction rate, in ordsgrform a more detailed
evaluation of different cache architectures. From the griigs of the Java language —
usually small methods and relative branches — we deriveddlrel idea of anethod
cache i.e. a cache organization in which whole methods are loautedthe cache on
method invocation and the return from a method. This cacharization is time pre-
dictable, as all cache misses are lumped together in thesmstructions. Using only
one block for a single method introduces considerable @zt in comparison with a
conventional cache, but is very simple to analyze. We exéitklis cache to hold more
methods, with one block per method and several smaller blpek method.

Comparing these organizations quantitatively with a beratk derived from a
real-time application, we have seen that the variable btaahe performs similarly
to (and in one configuration even better than) a direct—méppehe, in respect of the
bytes that have to be filled on a cache miss. In all configunatimd sizes of the variable
block cache, the number of memory transactions, whicheglt memory latency, is
lower than in a traditional cache.

Filling the cache only on method invocation and return sifigd WCET analysis
and removes another source of uncertainty, as there is npet@ion for main memory
between instruction cache and data cache.

References

1. Puschner, P., Koza, C.: Calculating the maximum execution time bfime&a programs.
Real-Time Systl (1989) 159-176

2. Arnold, R., Mueller, F., Whalley, D., Harmon, M.: Bounding wocstse instruction cache
performance. In: IEEE Real-Time Systems Symposium. (1994) 182—

3. Healy, C., Whalley, D., Harmon, M.: Integrating the timing analysisip&lning and in-
struction caching. In: IEEE Real-Time Systems Symposium. (1995)2%8

4. Lee, C.G., Hahn, J., Seo, Y.M., Min, S.L., Ha, R., Hong, 8rkPC.Y., Lee, M., Kim, C.S.:
Analysis of cache-related preemption delay in fixed-priority preemgireeduling. IEEE
Trans. Comput47(1998) 700-713

5. Busquets-Mataix, J.V., Wellings, A., Serrano, J.J., Ors, R. RGilAdding instruction cache
effect to schedulability analysis of preemptive real-time systems. EEIReal-Time Tech-
nology and Applications Symposium (RTAS '96), Washington - Brussélekyo, IEEE
Computer Society Press (1996) 204-213

6. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: Theénfte of processor archi-
tecture on the design and results of WCET tools. Proceedings of the9EEID03)

7. Power, J., Waldron, J.: A method-level analysis of object-orietgelthiques in java. Tech-
nical report, Department of Computer Science, NUI Maynooth, 1ct(@602)

8. Hennessy, J., Patterson, D.: Computer Architecture: A Quantityipeoach, 3rd ed. Mor-
gan Kaufmann Publishers Inc., Palo Alto, CA 94303 (2002)

9. Schoeberl, M.: Using a Java optimized processor in a real worléicappn. In: Proceedings
of the First Workshop on Intelligent Solutions in Embedded Systems (\&EB3), Austria,
Vienna (2003) 165-176

10. Schoeberl, M.: JOP: A Java optimized processor. In: Worksimogava Technologies for
Real-Time and Embedded Systems. Volume LNCS 2889., Catania, 1@08)346—359

