
On the Equivalence of Forward and Reverse

Query Caching in Peer-to-Peer Overlay

Networks

Ali Raza Butt1, Nipoon Malhotra1, Sunil Patro2, and Y. Charlie Hu1

1 Purdue University, West Lafayette IN 47907, USA,
{butta,nmalhot,ychu}@purdue.edu

2 Microsoft Corporation, One Microsoft Way, Redmond WA 98052, USA,
patro@microsoft.com

Abstract. Peer-to-peer systems such as Gnutella and Kazaa are used
by millions of people for sharing music and many other files over the
Internet, and they account for a significant portion of the Internet traf-
fic. The traffic in a peer-to-peer overlay network is different from that in
WWW in that each peer is both a client and a server. This suggests that
one can deploy a forward cache at the Internet gateway of a network to
reduce the amount of queries going outside, or a revere cache at the gate-
way to reduce the amount of queries going inside, which in turn reduces
the queries that are forwarded outside. In this paper, we study the effec-
tiveness of forward and reverse caching at the gateway via analysis and
experimental measurement. Our study shows that forward caching and
reverse caching at the gateway are equally effective at reducing query
and query reply traffic across the gateway.

1 Introduction

In the first six years of the Internet explosion, one type of dominating traffic
over the Internet had been HTTP traffic generated from widespread accessing
of the World Wide Web. Around the year 2000, a new paradigm for Internet
applications emerged and has quickly prevailed. Today, the so-called peer-to-
peer (p2p) systems and applications such as Gnutella and Kazaa are routinely
used by millions of people for sharing music and other files over the Internet, and
they account for a significant portion of the Internet traffic. For example, the
continuous network traffic measurement at the University of Wisconsin (http:
//wwwstats.net.wisc.edu) shows that peer-to-peer traffic (Kazaa, Gnutella, and
eDonkey) accounts for 25–30% of the total campus traffic (in and out) in August
2002, while at the same time, web-related traffic accounts for about 23% of the
total incoming and 10% of the total outgoing traffic.

The traffic generated by a p2p network such as Gnutella falls under two
categories: the protocol messages for maintaining the overlay network and for
searching data files, and the actual data messages for downloading files. Since
the actual data download is performed through direct connections between the

In Proceedings of the 9th International Workshop on Web Content Caching and
Distribution (WCW’04), Beijing, China, October 18-20, 2004.

2

source and destination servents via HTTP, such traffic can be cached using
off-the-shelf web caching proxies. Thus the more interesting question is how
to reduce the protocol messages which are typically propagated in the overlay
network via controlled flooding.

Similar to accesses of web content, researchers have found that search mes-
sages (queries) in p2p networks such as Gnutella exhibit temporal locality. This
suggests that caching can prove to be an effective technique in reducing network
bandwidth consumed by these queries and the latency in retrieving query replies.
While the locality in web accesses is determined solely by the URLs being ac-
cessed, the locality in the queries in p2p networks also takes into account the
TTLs and the next hop nodes in the overlay, as these two factors also affect the
set of the query replies that will be received.

Several query caching schemes have been developed and have confirmed the
effectiveness of query caching [1–3]. In particular, a transparent caching scheme
has been proposed in [3] where p2p caching proxies are attached to the gateway
routers of organizations or ISPs, i.e., similar to how web caching proxies are
typically deployed, with the goal of reducing p2p traffic in and out of the gate-
ways. The gateway router is configured to redirect TCP traffic going outside and
to well known p2p ports, e.g., 6346 for Gnutella, to the attached p2p caching
proxies. We call this forward caching as the the cache acts on outgoing queries.

A fundamental difference between the traffic in p2p overlay networks and
web traffic is that a peer in a p2p network is both a client and a server. This
observation suggests that one can also deploy a reverse caching proxy at the
gateway of an organization to exploit the locality in queries coming into that
organization. Intuitively, compared to a forward proxy, a reverse proxy will see
fewer distinct queries since there are fewer peers within an organization than
their neighbors outside, and query locality distinguishes queries sent to different
forwarders. Consequently, reverse caching is expected to achieve a higher cache
hit ratio than forward caching due to fewer capacity misses, and thus is seemingly
more effective than forward caching in reducing query traffic across the gateway.

In this paper, we study the relative effectiveness between transparent forward
and reverse caching at the gateway focusing on Gnutella networks. We present
a detailed analysis that shows reverse caching and forward caching are equally
effective assuming the caches store the same number of query hits, disregarding
how many queries they are for. We further confirm our analysis with experimen-
tal results collected from a testbed running eight Gnutella servents behind the
caching proxies.

2 Preliminaries

2.1 The Gnutella Protocol

To set up the context for the analysis of forward and reverse caching, we briefly
discuss Gnutella’s node joining process, its implications on the topology of the
part of Gnutella network inside an organization, and the query request and reply
protocols. The details of the Gnutella protocol can be found in [4, 5].

3

Topology of Gnutella networks inside an organization The joining process of a
typical Gnutella servent is as follows. When a servent wants to connect, it first
looks up its host cache file to find addresses of Gnutella servents to connect to.
The servent addresses are removed from the host cache after they are read. If
the host cache is empty, it tries to connect to a well known Gnutella host cache

server (also called PONG server) to receive PONG messages in response to
its PING message. After receiving the PONG messages, the servent tries to
establish connections with the servents whose addresses are obtained from the
PONG messages.

A typical Gnutella servent S, after establishing a pre-specified number of
Gnutella connections, periodically sends PING messages to monitor these con-
nections. In response S receives a number of PONG messages3, which are ap-
pended at the end of S’s host cache file. In addition, when an existing connection
with some servent S1 is broken down, S1’s address information is saved and even-
tually will be added to S’s host cache when it leaves the Gnutella network.

In summary, during the joining process of a typical Gnutella servent, the
neighbors are chosen from the host cache whose content is fairly random. This
suggests that it is unlikely servents from the same organization will become
neighbors of each other, and consequently query messages will travel across the
gateway of the organization.

Query and query replies In order to locate a file, a servent sends a query request
to all its direct neighbors, which in turn forward the query to their neighbors, and
the process repeats. Each Gnutella query is identified by a unique tuple of (muid,
query string, forwarder, neighbor, ttl, minimum speed) values, where
the query is forwarded from the forwarder servent to the neighbor servent,
and the minimum speed value specifies the minimum speed that a servent should
be able to connect at if replying to the query. When a servent receives a query
request, it searches its local files for matches to the query and returns a query
reply containing all the matches it finds. Query replies follow the reverse path
of query requests to reach the servents that initiated the queries. The servents
along the path do not cache the query replies.

To avoid flooding the network, each query contains a TTL field, which is
usually initialized to a default value of 7. When a servent receives a query with
a positive TTL, it decrements the TTL before forwarding the query to its neigh-
bors. Queries received with TTL equal to 1 are not forwarded.

2.2 Transparent Query Caching

The natural way of performing transparent query caching in p2p overlay net-
works is similar to transparent web caching. A caching proxy is attached to the
gateway router, the router is configured to redirect outgoing TCP traffic to cer-
tain designated ports (e.g., 6346 for Gnutella) to the attached proxy, and the
proxy hijacks such connections going out of the gateway. The proxy can then

3 In Gnutella version 0.6, a servent uses its PONG cache to generate PONG messages.

4

cache query replies from outside the gateway and use them in the future to reply
to queries from inside. Since the cached query replies are used to reply to queries
going outside the gateway, we call this forward query caching.

However, queries can also come inside the gateway along the hijacked outgo-
ing connections at the proxy. This is due to a fundamental difference between
caching in p2p and web caching, that is, a peer node inside an organization acts
both as a client and a server, while nodes involved in web traffic inside an or-
ganization are only clients (i.e., browsers). Therefore, in principle, the caching
proxy can also inspect the queries that come from outside the gateway on the
hijacked connections and cache query replies received from the nodes inside. The
proxy can then use the cached query replies to serve future queries coming from
outside along the hijacked connections. We call this reverse query caching.

Hijacking incoming connections The above transparent caching scheme only
hijacks outgoing connections from servents inside the router, i.e., Gnutella con-
nections that are initiated by inside servents to port 6346 of outside servents.
The incoming connections from servents outside the router to servents inside can
also be hijacked by configuring the external interface of the router to redirect
incoming traffic to an attached proxy, similar to how outgoing connections are
hijacked.

We note that the difference between our definitions of forward and reverse
caching are orthogonal to whether the hijacked connections are outgoing or in-
coming connections in the overlay, since the query traffic going through them is
indifferent to who initiated the connections.

2.3 The Caching Algorithm

We summarize the caching algorithm used by the proxy previously described
in [3]. First, all the PING/PONG messages initiated or forwarded by the ser-
vents, inside or outside, going across the gateway will be forwarded by the caching
proxy. The caching proxy will not change the TTL, and thus the reachability
of PING/PONG messages remains the same as before. Similarly, HTTP data
download messages will be tunneled through unaffected.

Our caching algorithm caches query hits according to the tuple of (query
string, neighbor, ttl) values of the query they correspond to. It uses two
main data structures. First, any time the proxy tunnels a query to outside ser-
vents, it records the muid, the query string, and the TTL information in a
Cache Miss Table (CMT). When a query hit is received from outside, its muid is
checked against CMT to find the corresponding query string and TTL, which is
used to index into the cache table. The cache table (CT) is the data structure for
storing cached query hits. For each CT entry CT(i), the algorithm adds a vector
field to remember the muid and forwarder of up to 10 most recent queries for
which query hits are replied using that cache entry.

Every time a new query results in a cache hit with CT(i), i.e., with a match-
ing tuple (query string, neighbor, ttl), the muid of the new message is
compared with those stored in CT(i). If the muid matches that of any of the

5

A1

A2

A3

A

Boundary
Organization

Fig. 1. Servent node A and its three neighbors outside the gateway.

10 stored previous queries replied to by the proxy using CT(i), it suggests that
the same query reached the proxy a short while ago, and the query is dropped.
Otherwise, the proxy is seeing this query message with this muid for the first
time, and hence the proxy replies from the cache. The muid of this new query
is then stored in the vector field of the corresponding CT entry.

Speed rewriting Upon a cache miss, the proxy rewrites the minimum speed field
of the query to zero before forwarding it to outside the gateway. As a result, it
collects query hits with all possible speeds. For a subsequent query that matches
all other parameters with the cached query hits, but specifies a non-zero min-
imum speed requirement, the proxy can always extract a subset of the cached
query hits that satisfy the minimum speed requirement, without forwarding the
query out of the gateway again.

3 Analysis

In this section, we analytically compare the effectiveness of forward and reverse
query caching at the gateway. Without loss of generality, we focus on a single
Gnutella servent inside the gateway, which has C neighbors in the p2p overlay, all
of which are outside the gateway (Section 2.1). The following comparison anal-
ysis between forward and reverse caching also holds true for multiple Gnutella
servents inside the gateway if the multiple servents do not share any neighboring
nodes outside the gateway. The disjoint neighborhood among multiple servents
behind the gateway is expected because of the node join process as discussed in
Section 2.1, and is also confirmed to be true in our experiments. Figure 1 shows
servent A and its 3 neighbors in the p2p network outside the gateway.

We assume all servents in the p2p network initiate queries at about the same
frequency. Since queries have a typical TTL of 7, each query is expected to
reach a large number of servents in the p2p network. Conversely, compared to
the queries generated by each servent, a much larger number of queries will reach
and be forwarded by that servent. Thus we can ignore the queries generated by
servent A in analyzing the query traffic related to it, e.g., in the scenario in
Figure 1.

6

A2

A1

A3

forward
cache

Organization
Boundary

A

Q
Q

Q*f

Q*f

Q*f *f_miss_fwd

Q*f *f_miss_fwd

ttl>0

ttl>0

ttl>0

ttl>0

(a) Forward caching

A2

A1

A3

reverse
cache

Organization
Boundary

A

Q

Q*f_miss_rvs*f

Q*f_miss_rvs*f
Q*f_miss_rvs*f

ttl>0

ttl>0

Q*f_miss_rvs*fttl>0

ttl>0

ttl>0ttl=0Q*f + Q*f_miss_rvs*f

(b) Reverse caching

Fig. 2. The query and query hit traffic on each hijacked neighbor connection of servent
A triggered by Q queries initiated from servent A1, under forward and reverse caching
at the gateway, respectively. Starting from A1, solid arrows show queries (1) received
from outside, (2) sent to inside, (3) received from inside, and (4) sent to outside.
Starting from A2 or A3, dashed arrows show query hits (5) received from outside, (6)
sent to inside, (7) received from inside, and (8) sent to outside. f ttl > 0 denotes the
fractions of queries with ttl > 0 after decrementing at A. f miss fwd and f miss rvs

denote the cache miss ratio in forward and reverse caching, respectively.

We assume all connections between A and its neighbors are hijacked by the
proxy. We analyze the amount of query and query traffic on each hijacked con-
nection triggered by a set of Q queries initiated from or forwarded by a single
neighbor – servent A1 – in the forward and reverse caching scenarios. The amount
of queries sent on each connection are shown in Figure 2(a) and Figure 2(b) for
forward and reverse caching, respectively.

The numbers of queries on each connection in forward caching shown in
Figure 2(a) are explained as follows. First, the proxy receives all Q queries from
servent A1. It then passes all of them through to servent A. Out of these queries,
Q · fttl>0 (after decrementing the TTL at A) will be forwarded to each of A’s
remaining (C − 1) neighbors in the p2p network, where fttl>0 is the fraction
of queries with ttl > 0. These are the queries on which the proxy acts, i.e., by
performing cache lookups. Finally, Q · fttl>0 · fmiss fwd · (C − 1) of them will be
cache misses and forwarded to the (C − 1) neighbors outside the gateway, where
fmiss fwd is the query miss ratio in forward caching.

7

The numbers of queries on each connection in reverse caching shown in Fig-
ure 2(b) are explained as follows. Once again, the proxy receives all Q queries
from servent A1. First, it forwards the ones with ttl = 0 (after decrementing the
TTL) directly to A. The reason the proxy does not perform caching on queries
with ttl = 0 is that such queries will not be forwarded further once reaching the
servent inside the gateway, thus caching such queries will not reduce the outgo-
ing query traffic. Furthermore, the proxy can avoid significant consumption of its
cache capacity by such queries; around 60-70% queries received by any servent
and thus going through the proxy have ttl = 0 (after decrementing the TTL).
Second, the proxy acts on the incoming queries with ttl > 0 by directly replying
to them if the corresponding query hits are already cached. It then passes the
remaining Q · fttl>0 · fmiss rvs queries to servent A, where fmiss rvs is the query
miss ratio in reverse caching. Servent A then forwards these queries to each of
its remaining (C − 1) neighbors in the p2p network.

Table 1 summarizes the number of queries and query hits sent along each
of the four directions. Query hits travel in opposite directions to their query
counterparts. In forward caching (Figure 2(a)), Q·fttl>0 ·fmiss fwd ·(C−1) queries
sent to outside the gateway result in Q · fmiss fwd · (C − 1) ·

∑
6

k=1
fttl=k · CQH(k)

query hits, where CQH (k) is the average number of query hits for a query with
ttl = k. Combined with the query hits from cache hits in the forward cache,
the total number of query hits sent by the proxy to servent A is Q · (C − 1) ·∑

6

k=1
fttl=k · CQH(k) . Finally, Q · LQH query hits are generated from servent

A’s local object store, and sent back to servent A1, along with the query hits
received by A from the proxy.

The query hits in reverse caching (Figure 2(b)) are also shown in Table 1.
Out of the Q queries received from A1, Q ·fttl=0+Q ·fttl>0 ·fmiss rvs are sent to A
by the proxy, as it does not cache query hits for queries with ttl = 0. A in turn
forwards the Q · fttl>0 · fmiss rvs · (C − 1) duplicated queries to outside servents,
and receives back Q · fmiss rvs · (C − 1) ·

∑
6

k=1
fttl=k · CQH(k) query hits. Servent

A then sends these query hits along with (Q · fttl=0 + Q · fttl>0 · fmiss rvs) · LQH

query hits generated locally to the proxy. Finally, the proxy sends all the query hits
forwarded from A along with Q · fhit rvs ·

∑
6

k=1
fttl=k ·CQH(k + 1) query hits from its

cache to A1.
The following conclusions can be drawn from Table 1.

– The volumes of the queries sent to outside in forward caching and in reverse caching
((4) in Table 1) would be the same if fmiss fwd and fmiss rvs are equal.

– The volumes of the query hits received from outside in forward caching and in
reverse caching ((5) in Table 1) would be the same if fmiss fwd and fmiss rvs are
equal.

– The total number of query hits sent back to outside (e.g., to servent A1) in forward
caching and in reverse caching ((8) in Table 1) are the same. This makes sense as
caching is expected to preserve the end user experience in searching data files.

Thus the effectiveness comparison of forward and reverse caching boils down to
the relative values of the query cache miss ratios in forward and reverse caching, i.e.,
fmiss fwd and fmiss rvs.

Assuming the forward and reverse caches have the same capacity, i.e., they can
store the same total number of query hits for however many queries, the cache hit

8

Table 1. Query and query hit traffic going in and out hijacked connections of servent
A, triggered by Q queries coming in from one neighbor servent outside the gateway. C

is the number of neighbors in the p2p overlay. All neighbors are outside the gateway.
LQH is the average query hits per query from servent A’s local object store. CQH(k) is
the average number of query hits for a query with ttl = k. fttl=k denotes the fractions
of all Q queries with ttl = k after decrementing at A. The derivation in (8) for reverse
caching uses CQH(k + 1) = (C − 1) · CQH(k) + LQH .

Category Forward Caching

Queries:
(1) rcvd from outside Q

(2) sent to inside Q

(3) rcvd from inside Q · fttl>0 · (C − 1)
(4) sent to outside Q · fttl>0 · fmiss fwd · (C − 1)

Query Hits:

(5) rcvd from outside Q · fmiss fwd · (C − 1) ·
∑

6

k=1
fttl=k · CQH(k)

(6) sent to inside Q · (C − 1) ·
∑

6

k=1
fttl=k · CQH(k)

(7) recv from inside Q · (C − 1) ·
∑

6

k=1
fttl=k · CQH(k) + Q · LQH

(8) sent to outside Q · (C − 1) ·
∑

6

k=1
fttl=k · CQH(k) + Q · LQH

Category Reverse Caching

Queries:
(1) rcvd from outside Q

(2) sent to inside Q · fttl=0 + Q · fttl>0 · fmiss rvs

(3) rcvd from inside Q · fttl>0 · fmiss rvs · (C − 1)
(4) sent to outside Q · fttl>0 · fmiss rvs · (C − 1)

Query Hits:

(5) rcvd from outside Q · fmiss rvs · (C − 1) ·
∑

6

k=1
fttl=k · CQH(k)

(6) sent to inside Q · fmiss rvs · (C − 1) ·
∑

6

k=1
fttl=k · CQH(k)

(7) recv from inside Q · fmiss rvs · (C − 1) ·
∑

6

k=1
fttl=k · CQH(k)

+(Q · fttl=0 + Q · fttl>0 · fmiss rvs) · LQH

(8) sent to outside Q · fmiss rvs · (C − 1) ·
∑

6

k=1
fttl=k · CQH(k)

+(Q · fttl=0 + Q · fttl>0 · fmiss rvs) · LQH

+Q · fhit rvs ·
∑

6

k=1
fttl=k · CQH(k + 1)

= Q · (C − 1) ·
∑

6

k=1
fttl=k · CQH(k) + Q · LQH

9

ratios in forward and reverse caching should be similar for the following reasons. First
of all, the localities in the queries filtered by the forward cache and the reverse cache
are the same. This is because the Q · fttl>0 · (C − 1) queries acted on by the forward
cache is from duplicating (C − 1) times the Q · fttl>0 queries that would be seen by
the reverse cache, one for each of A’s (C − 1) neighbors outside the gateway, and the
caching algorithm distinguishes the same query forwarded to different next hop nodes.

Moreover, since the number of query hits to be received by the proxy from sending
Q · fttl>0 queries to servent A in reverse caching is similar to the number of query hits
to be received by the proxy from sending the duplicated Q · fttl>0 · (C − 1) queries
to A2 and A3 (after decrementing the TTL), assuming the difference – the query hits
generated by A locally – is insignificant, the total number of query hits received by the
proxy is expected to be similar in forward and reverse caching. Thus if the proxy cache
has the same capacity in terms of the number of query hits, and the queries have the
same locality, the hit ratios are expected to be comparable.

Finally, consider the case where query hits expire before the cache capacity is
reached. Since the cache hits stored in the reverse proxy and in the forward proxy
effectively correspond to the same set of queries, i.e., those whose query hits have not
expired, the hit ratios in the two caches are again expected to be comparable.

4 Experiments

We implemented both forward and reverse query caching proxies. In the following,
we experimentally compare the two proxies in a testbed consisting of eight machines
running eight Gnutella servents.

4.1 Experimental Setup

Our testbed consists of a cluster of eight PCs running FreeBSD 4.6, each of which runs
a Gnutella servent, configured to allow zero incoming and three outgoing connections.
Each servent is passive; it only forwards queries and query hits, but does not initiate
any queries. Furthermore, it does not store any files for sharing.

To simplify the setup, instead of using a real router, we configured each servent
machine to use the caching proxy machine as the default router. IP forwarding rules
are specified on the caching proxy machine such that packets going to port 6346 of
any destination will be forwarded to port 6346 of localhost, and all other traffic are
forwarded. Thus only outgoing Gnutella connections will be hijacked by the proxy.

We started the experiments with all eight servents at 5:00am EST on May 8, 2004
(after a 30-minute warm-up period), and the experiment lasted for an hour. In all tests,
we find the neighboring servents of the eight servents behind the caching proxies to
be distinct. The proxy recorded all Gnutella packets going in and out on the hijacked
outgoing connections.

4.2 Results

We fixed the total number of query hits the cache can store to be 350000 and com-
pared the caching results under forward and reverse caching. The cache replacement
policy was LRU. In addition, a 30-minute expiration is imposed for cached query hits.
However, in our experiments, the cache capacity was reached first before any query

10

Table 2. Query and query hit traffic going in and out the cache. The cache stores up
to a total of 350000 query hits for different queries.

Category Forward Caching Reverse Caching

Time measured (EST) 6:30-7:30am 5:00-6:00am
May 8, 2004 May 8, 2004

Average # connections/servent 2.70 2.69
Cache Miss Ratio 58.03% 56.07%

Queries:
rcvd from outside 1503770 1531813

sent to inside 1503770 1220787
with ttl > 1 656804 654221

rcvd from inside 1102104 578992
sent to outside 604042 578992

queries dropped at cache 55656 42134

Query Hits:
rcvd from outside 44356 42814

sent to inside 75938 42814
recv from inside 75938 42814
sent to outside 75938 80175

Average query hit size/query (Bytes) 4693.16 4857.32

hit expired. The measured statistical results of the two caching proxies are shown in
Table 2. Note while the threshold for triggering cache replacement is the total number
of cached query hits, the granularity for replacement is a query entry, i.e., all of its
query hits.

For the forward cache, 1503770 queries crossed the cache and were forwarded to
the servents. Out of these, only 656804 have ttl > 1 (or ttl > 0 after decrementing) and
would be forwarded to the remote servents outside the gateway by the servents inside.
The average number of connections per servent was 2.70, averaged over the duration of
the experiment. Hence, the total number of queries received by the proxy from inside
would be about 656804 ∗ 1.70 = 1116567. The observed value of 1102104 was within
1.3% of this. Only 58.03% (miss ratio) of these would be sent to outside. The actual
number of queries sent outside was slightly lower than this number due to dropped
queries by the proxy because of repeated muid (Section 2.3).

The number of query hits received from outside was 44356, an additional 31582
were serviced from the cache, for a total of 75938. Notice that the percentage of traffic
served from cache, 41.6%, is the saving in bandwidth that the forward cache provides,
assuming a constant number of bytes per query hit.

For the reverse cache, 1531813 queries were received from outside of which 654221
have ttl > 1. The reverse proxy performed caching on them and the cache miss ratio
was 56.07%. The proxy then sent the 366822 misses along with the 877592 queries
with ttl = 1 to the servents inside, and thus the total number queries sent inside was
expected to be 1244414. Due to queries dropped by the cache (becasue of repeated
muid), the actual number of queries sent inside (1220787) was about 1.9% lower. The
average number of connections per servent was 2.69, averaged over the duration of the
experiment. Thus the expected number of queries received from the servents inside

11

would be 366822 ∗ 1.69 = 619929. Again, due to dropped queries by the cache when
sending inside, fewer than 366822 queries were sent inside, and the actual number
received from inside was 578992.

In terms of query hits, a total of 80175 replies to outside servents were sent out
of which 42814 were received from outside, and the rest were served out of the cache.
Thus the bandwidth saving for query hits in the reverse cache is 46.6%, assuming a
constant number of bytes per query hit.

Comparing forward caching and reverse caching, the cache miss ratios, the numbers
of queries sent to outside, and the numbers of query hits received from outside are
within 2.0%, 4.1%, 3.5%, respectively. The total numbers of query hits sent outside for
forward and reverse caching are within 0.63% of each other. This confirms the analysis
that if the cache capacity is in terms of the number of cached query hits, the traffic
reduction will be comparable in reverse and forward caching.

5 Related Work

There have been many studies that measured, modeled, or analyzed peer-to-peer file
sharing systems such as Gnutella (for example, [6, 7]) and Kazaa (for example, [8, 9]).
Many of these studies also discussed the potential of caching data object files (for
example, [8]) or retrieving files from other peers within the same organization [9] in
reducing the bandwidth consumption.

Several previous work studied query caching in Gnutella networks. Sripanidkulchai [1]
observed that the popularity of query strings follows a Zipf-like distribution, and pro-
posed and evaluated a simple query caching scheme by modifying a Gnutella servent.
The caching scheme proposed was fairly simple; it caches query hits solely based on their
query strings and ignores TTL values. In [2], Markatos studied one hour of Gnutella
traffic traces collected at three servents located in Greece, Norway, and USA, and pro-
posed a query caching scheme by modifying servents to cache query hits according to
the query string, the forwarder from which the query is forwarded, and the TTL. In
our previous work [3], we proposed transparent forward query caching at the gateway
and experimentally showed its effectiveness. This paper builds on top of our previous
work and shows that reverse and forward query caching are equally effective in the
context of transparent query caching at the gateway.

Several recent work studied other p2p traffic. Leibowitz et al. [10] studied one month
of FastTrack-based [11] p2p traffic at a major ISP and found that the majority of p2p
files are audio files and the majority of the traffic are due to video and application
files. They also reported significant locality in the studied p2p data files. Saroiu et
al. [12] studied the breakdowns of Internet traffic going through the gateway of a large
organization into web, CDN, and p2p (Gnutella and Kazaa) traffic. They focused on
HTTP traffic. In contrast, this paper focuses on the p2p protocol traffic, and compares
different transparent caching schemes for query traffic.

6 Conclusions

In this paper, we studied the effectiveness of forward and reverse caching of p2p query
traffic at the gateway of an organization or ISP via analysis and experimental measure-
ment. Our study showed that forward caching and reverse caching at the gateway are
equally effective in reducing query and query reply traffic across the gateway. Since in

12

a peer-to-peer network the communication are symmetric – query and query hit traffic
travel on both incoming and outgoing connections (with respect to the peers inside
the gateway), transparent caching will be even more effective if traffic on both type of
connections are filtered.

Acknowledgment

This work was supported in part by Cisco Systems through the University Research
Program and by Purdue Research Foundation.

References

1. Sripanidkulchai, K.: The popularity of gnutella queries and its implication on scal-
ing. 〈 http://www-2.cs.cmu.edu/˜kunwadee/research/p2p/gnutella.html 〉 (2001)

2. Markatos, E.P.: Tracing a large-scale peer to peer system: an hour in the life
of gnutella. In: Proceedings of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid’02). (2002)

3. Patro, S., Hu, Y.C.: Transparent Query Caching in Peer-to-Peer Overlay Networks.
In: Proceedings of the 17th International Parallel and Distributed Processing Sym-
posium (IPDPS’03). (2003)

4. Clip2: The Gnutella protocol specification.
〈 http://dss.clip2.com/GnutellaProtocol04.pdf 〉 (2000)

5. Kirk, P.: The Gnutella 0.6 protocol draft. 〈 http://rfc-gnutella.sourceforge.net/ 〉
(2003)

6. Adar, E., Huberman, B.: Free riding on gnutella. First Monday 5 (2000)
7. Saroiu, S., Gummadi, P., Gribble, S.: A measurement study of peer-to-peer

file sharing systems. In: Proceedings of Multimedia Computing and Networking
(MMCN’02). (2002)

8. Saroiu, S., Gummadi, K.P., Dunn, R.J., Gribble, S.D., Levy, H.M.: An analysis of
internet content delivery systems. In: Proceedings of the Fifth USENIX Symposium
on Operating Systems Design and Implementation (OSDI’02). (2002)

9. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.:
Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In:
Proceedings of 19th ACM Symposium on Operating Systems Principles (SOSP’03).
(2003)

10. Leibowitz, N., Bergman, A., Ben-Shaul, R., Shavit, A.: Are file swapping networks
cacheable? Characterizing p2p traffic. In: Proceedings of the 7th International
Workshop on Web Content Caching and Distribution (WCW7). (2002)

11. Truelove, K., Chasin, A.: Morpheus out of the underworld. The O’Rielly Network,
〈 http://www.openp2p.com/pub/a/p2p/2001/07/02/morpheus.html 〉 (2001)

12. Saroiu, S., Gummadi, P.K., Dunn, R.J., Gribble, S.D., , Levy, H.M.: An analysis of
internet content delivery systems. In: Proceedings of the Fifth USENIX Symposium
on Operating Systems Design and Implementation (OSDI’02). (2002)

