Using Ontologies to Address Key Issues in Ubiquitous
Computing Systems

Eleni Christopoulou and Achilles Kameas

Research Academic Computer Technology Institute, Research Unit 3, Design of Ambient
Intelligent Systems Group, 61 Riga Feraiou str. 26221, Patras, Greece
{hristope, kameas}@cti.gr

Abstract. One proposed way to realize the Aml vision is to turn everyday
objects into artifacts (by adding sensing, computation and communication
abilities) and then use them as components of Ubiquitous Computing
(UbiComp) applications within an Ami environment. The (re)configuration of
associations among these artifacts will enable people to set up their living
spaces in a way that will serve them best minimizing at the same time the
required human intervention. During the development and deployment of
UbiComp applications, a number of key issues arise such as semantic
interoperability and service discovery. The target of this paper is to show how
ontologies can be used into UbiComp systems so that to address such issues.
We support our approach by presenting the ontology that we developed and
integrated into a framework that supports the composition of UbiComp
applications.

1 Introduction

One proposed way to realize the Aml vision is to turn everyday objects into artifacts
(by adding sensing, computation and communication abilities) and then use them as
components of UbiComp applications within Aml environments. The (re)confi-
guration of associations among these artifacts will enable people to set up their living
spaces in a way that will serve them best minimizing at the same time the required
human intervention. A limitation of the current technology is that it requires human
intervention, in order to enable the communication and collaboration among the
artifacts.

Within the context of an architectural framework that supports the composition of
UbiComp systems the heterogeneity of the devices that constitute the artifact
“ecologies” is an important parameter. So the feasibility of semantic interoperability
among heterogeneous devices is a key issue that arises. Also, the dynamic nature of
UbiComp applications that may lead to unanticipated situations requires the existence
of a service discovery mechanism. Various types of middleware (based on CORBA,
Java RMI, SOAP, etc.) have been developed so that to enable the communication
between different UbiComp devices. However, these middleware have no facilities to
handle issues like the semantic interoperability among heterogeneous artifacts.

P. Markopoulos et al. (Eds.): EUSAI 2004, LNCS 3295, pp. 13-24, 2004.
© Springer-Verlag Berlin Heidelberg 2004



E. Christopoulou and A. Kameas

In order to handle such issues the primary requirement is to provide to the
heterogeneous devices a common language that supports the communication and
collaboration among them. This common language must be based on the description
and definition of the basic concepts of the artifact “ecologies” and must be both
flexible and extensible so that new concepts can be added and represented. The target
of this paper is to present the developed ontology that represents this common
language and show how this ontology can handle the key issues that arise during the
development and deployment of UbiComp applications.

The rest of the paper is organised as follows. Section 2 describes the basic concepts
of the framework that supports the composition of UbiComp applications, the key
issues that arise during this procedure and how an ontology can accommodate them.
Section 3 presents the ontology that was designed and developed and section 4
introduces the mechanism that was developed for the management of this ontology.
Section 5 describes the use of this ontology into UbiComp applications through
examples based on a specific scenario. In section 6 related approaches for ontologies
in ubiquitous computing environments are presented. The paper closes with the
lessons learned from our experience, an evaluation of our approach and an outlook on
future work in section 7.

2 Key Issues in Ubiquitous Computing Systems

The Gadgetware Architectural Style (GAS) [5] is an architectural framework that
supports the composition of UbiComp applications from everyday physical objects
enhanced with sensing, acting, processing and communication abilities. UbiComp
applications are dynamic, distinguishable, functional configurations of associated
artifacts, which communicate and/or collaborate in order to realize a collective
behavior. Each artifact makes visible its properties, capabilities and services through
specific interfaces (we’ll sometimes use the term “Plugs”); an association between
two compatible interfaces is called a “Synapse”.

Siudy eGadgetworld

Switch
Onio
e &
Open/Close '

Fig. 1. A study UbiComp application realized as a synapse between plugs

The basic concepts defined above are illustrated in Figure 1 through a simplified
scenario. Two artifacts (eBook and eLamp) are connected through a synapse which is
established between two plugs forming a “study” UbiComp application. When the


daisy
Rectangle


Using Ontologies to Address Key Issues in Ubiquitous Computing Systems

user opens the eBook, the eLamp switches on, adjusting the light conditions to a
specified luminosity level in order to satisfy the user’s profile. Each artifact operates
independently of the other. Two plugs are being used in this scenario: “open/close”
reflecting the state of the book and “switch on/off” reflecting the state of the lamp.
Although not obvious, these plugs are compatible. Thus, an end-user can compose a
simple UbiComp application by establishing a synapse between these two plugs.
Different users may have access to this “application” each one having defined his own
study profile. Even during the composition of such a simple UbiComp application a
number of key issues that must be addressed arise. Following we present a set of such
issues and explain our decision to use ontologies in order to address them.

2.1 Semantic Interoperability Among Artifacts

The composition of UbiComp applications is based on the interaction among devices.
Since the heterogeneity of these devices is an aspect that cannot be neglected, the
challenge that we have to handle is the feasibility of semantic interoperability among
autonomous and heterogeneous devices. In our approach and in order to present the
autonomous nature and function of each artifact, we chose to base this interaction on
well-defined and commonly understood concepts, so that the artifacts can
communicate with each other in a consistent and unambiguous way. So the artifacts
have to use the same language and a common vocabulary. Note that this common
language must be flexible and extensible so that new concepts can be added and
represented. For the representation of this common language we decided to use an
ontology that describes the semantics of the basic terms of UbiComp applications and
defines their inter-relations.

2.2 Dynamic Nature of UbiComp Applications

One of the most important features of UbiComp applications is that they are created
in a dynamic way. Users are permitted to create and delete synapses between artifacts
whenever they want without restrictions. As synapses are associations between two
compatible plugs, the creation of a synapse requires some form of plugs compatibility
check. The compatibility of two plugs is determined by several factors e.g. the type of
input that they accept and the type of output that they produce, that must be
represented into a formal form.

The dynamic nature of UbiComp applications depends also on artifacts mobility
that can cause the dynamic disestablishment of a synapse. For example the
disestablishment of a synapse may happen when two artifacts move outside of each
other’s range or when an artifact suddenly “disappears” due to low battery or other
failure. Since our vision refers to “smart” UbiComp applications and artifacts that
exploit the knowledge that they have acquired by experience, the desirable solution to
the “disappearance” of an artifact is to automatically replace it and not to just ignore
it. In order to ensure artifacts replacement feasibility a mechanism for finding
“similar” artifacts should be described. We selected to replace an artifact with another
one that offers the same services.


daisy
Rectangle


E. Christopoulou and A. Kameas

2.3 Semantic Service Discovery

The plugs are software classes that make visible the artifacts’ capabilities to people
and to other artifacts. The term that we use for these capabilities is Services. For
example the artifact “eLamp”, Figure 1, through the Plug “switch on/off” provides the
Service “light”. The concept of services in UbiComp applications is a fundamental
one, since services can play a major role when determining artifacts’ replaceability
and plugs’ compatibility; for example we assume that an artifact A participating in
Synapse S with Plug P can be replaced by another artifact B that provides a service P’
similar to P. Furthermore, a user forms synapses seeking to achieve certain service
configurations; thus a service discovery mechanism is necessary. In UbiComp
environments this mechanism must be enhanced to provide a semantic service
discovery; with this term we refer to the possibility to discover all the semantically
similar services. This mechanism is assisted by a service classification represented
into the ontology that we developed.

2.4 Conceptualisation of Ubicomp Applications

The GAS constitutes a generic framework shared by both artifact designers and users
for consistently describing, using and reasoning about a family of related UbiComp
applications. GAS defines the concepts and mechanisms that will allow people to
define, create UbiComp applications out of artifacts and use them in a consistent and
intuitive way. As the artifacts are enhanced everyday physical objects, users do not
have to deal with unfamiliar to them objects, but merely to view their world from a
different perspective and get familiar with its enhanced concepts. This new world
view is constituted of a set of basic terms, their definitions and their inter-relations.
The necessity of capturing and representing this knowledge is evident, as the
deployment of UbiComp applications is based on this knowledge. Since ontologies
can conceptualise a world view by capturing the general knowledge and defining the
basic concepts and their interrelations [15], we decided to use an ontology in order to
conceptualise the terms of UbiComp applications. The ontology that we developed is
the GAS Ontology and its first goal was the description of the semantics of the basic
terms of the UbiComp applications, such as eGadget (our term for artifact), Plug,
Synapse, Service, eGadgetWorld (our term for UbiComp application), and the
definition of their interrelations.

2.5 Context-Awareness

An important issue of UbiComp environments is the context-awareness, as these
environments must be able to obtain the current context and adapt their behavior to
different situations. In UbiComp applications, different kinds of context can be used
like physical information, e.g. location and time, environmental information, e.g.
weather and light, personal information, e.g. mood and activity. In our case, the term
context refers to the physical properties of artifacts including their sensors/actuators
and to their plugs that provide services; for example the eBook artifact through its


daisy
Rectangle


Using Ontologies to Address Key Issues in Ubiquitous Computing Systems

plug “open/close” provides to other artifacts a kind of context information relative to
its state. The user, by establishing synapses between plugs, defines the emerging
behavior of a UbiComp application; e.g. the user with the synapse at the “study”
UbiComp application, illustrated in Figure 1, defines the eLamp’s behavior in
proportion to the context provided by the eBook. Thus the UbiComp applications can
demonstrate different behaviors even with the same context information.

3 Designing the GAS Ontology

The ontology that we developed in order to address the aforementioned issues in
ubiquitous computing systems is the GAS Ontology [2] and is written in
DAML+OIL. The basic goal of the GAS Ontology is to provide the necessary
common language for the communication and/or collaboration among the artifacts.

3.1 Ontology Layers

The artifacts’ ontology contains the description of the basic concepts of UbiComp
applications and their inter-relations; for the feasible communication among artifacts
this knowledge must be common. Additionally an artifact’s ontology must both
contain artifact’s description; e.g. the description of its plugs and services, and
represent its acquired knowledge emerged from the synapses that its plugs participate
to. So the knowledge that each artifact’s ontology represent cannot be the same for all
artifacts, as it depends on the artifact’s description and on the UbiComp applications
that the artifacts has participated in the past.

Since artifact’s interoperability is based on their ontologies, the existence of
different ontologies could result to inefficient interoperability. An awkward solution
to this issue could be the merging of all existing artifacts’ ontologies into a global one
that would inevitably result into a very large knowledge base. This solution is
undesirable for two reasons; first it does not respect the limited memory capabilities
of the artifacts and second it would work properly if all artifacts ontologies were
synchronized. Another solution could be the use of a server into which all artifacts’
ontologies are stored and each artifact can have access to it. This solution conflicts
with the autonomous nature of artifacts.

The solution that we propose allows each artifact to have a different ontology with
the condition that all ontologies will be based on a common vocabulary. Specifically
the GAS Ontology is divided into two layers: the GAS Core Ontology (GAS-CO);
that contains the common vocabulary, and the GAS Higher Ontology (GAS-HO); that
represents artifact’s specific knowledge using concept represented into GAS-CO.

3.2 The GAS Core Ontology (GAS-CO)

The GAS-CO describes the common language that artifacts use to communicate. So it
must describe the semantics of the basic terms of UbiComp applications and define
their inter-relations. It must also contain the service classification in order to support
the service discovery mechanism. An important feature of the GAS-CO is that it


daisy
Rectangle


E. Christopoulou and A. Kameas

contains only the necessary information for the interoperability of artifacts in order to
be very small and even artifacts with limited memory capacity may store it. The GAS-
CO is static and it cannot be changed either from the manufacturer of an artifact or
from a user. The graphical representation of the GAS-CO is on Figure 2.

==

Iz Formed Sy”apael
=]
elzadget Contains

Fig. 2. A graphical representation of GAS-CO

The core term of GAS is the eGadget (eGt). In GAS-CO the eGt is represented as a
class, which has a number of properties, like name etc. The notion of plug is
represented in the GAS-CO as another class, which is divided into two disjoint
subclasses; the TPlug and the SPlug. The TPlug describes the physical properties of
the object that is used as an artifact like its shape; note that there is a cardinality
restriction that an artifact must have exactly one TPlug. On the other hand an SPlug
represents the artifact capabilities and services; artifacts have an arbitrary number of
SPlugs. Another GAS-CO class is the synapse that represents a synapse among two
plugs; a synapse may only appear among two SPlugs. Using the class of eGW the
GAS-CO can describe the UbiComp applications that are created by the users; an
eGW is represented by the artifacts that contains and the synapses that compose it.
The class of eGW has two cardinality constraints; an eGW must contain at least two
artifacts and a synapse must exist between their SPlugs.

As an eGt through an SPlug provides a number of services, the GAS-CO contains a
class for the notion of service. An artifact’s services are close related to what the
artifact’s actuators/sensors can transmit/perceive. So the class of service is divided
into subclasses so that to describe a service classification, which is based on the type
of the signals that an actuator/sensor transmits/perceives. Some elementary forms of
signals that are described are the following: electric, electromagnetic, gravity, kinetic,
optic, thermal and sonic. Note that a service can be further refined into higher level
services: e.g. the optic service can be refined into light, image, etc. Additionally a
service may have a set of properties; e.g. light can have as properties the color, the
luminosity, etc.


daisy
Rectangle


Using Ontologies to Address Key Issues in Ubiquitous Computing Systems

3.3 The GAS Higher Ontology (GAS-HO)

The GAS-HO represents both the description of an artifact and its acquired
knowledge. These descriptions follow the definitions contained in the GAS-CO. So,
specifically the knowledge stored into the GAS-HO is represented as instances of the
classes defined into the GAS-CO. For example the GAS-CO contains the definition of
the concept SPlug, while the GAS-HO contains the description of a specific SPlug
represented as an instance of the concept SPlug. Note that the GAS-HO is not a stand-
alone ontology, as it does not contain the definition of its concepts and their relations.

Since the GAS-HO represents the private knowledge of each artifact, it is different
for each artifact. Therefore we can envision GAS-HO as artifact’s private ontology.
Contrary to GAS-CO, which size is required to be small enough, the size of GAS-HO
can depend only on artifact’s memory capacity. Obviously GAS-HO is not static and
it can be changed over time without causing problems to artifacts communication. As
the GAS-HO contains both static information about the artifact and dynamic
information emerged from its knowledge and use, we decided to divide it into the
GAS-HO-static and the GAS-HO-volatile.

The GAS-HO-static represents the description of an artifact containing information
about artifact’s plugs, the services that are provided through these plugs, its sensors
and actuators, as well as its physical characteristics. For example, the GAS-HO-static
of the “eLamp” artifact contains the knowledge about the physical properties of
“eLamp”, such as its luminosity, the description of its SPlug “switch on/off” based on
the definition provided by GAS-CO, as well as the declaration that the SPlug “switch
on/off” provides the service “light”.

On the other hand the GAS-HO-volatile contains information derived from the
artifact’s acquired knowledge and its use. Specifically it describes the synapses which
the artifact’s plugs are connected to, the UbiComp applications which it takes part to,
as well as information about the capabilities of other artifacts that has acquainted
through communication. An artifact’s GAS-HO-volatile is updated during the
artifact’s various activities, like the establishment of a new synapse.

4 The GAS Ontology Manager

An artifact in order to participate in our UbiComp applications has to be GAS-
compatible. An artifact is GAS-compatible if it uses the GAS-Operating System
(GAS-0OS), which is responsible for the communication among artifacts through a
communication module and the management of synapses through the process
manager. The GAS Ontology manager is a module of the GAS-OS and provides the
mechanism for the interaction of an artifact with its stored ontology and the
management of this ontology.

One of the most important features of the GAS Ontology manager is that it adds a
level of abstraction between GAS-OS and the GAS Ontology. This means that only
the GAS Ontology manager can understand and manipulate the GAS Ontology; the
GAS-OS can simply query this module for information stored into the GAS Ontology
without having any knowledge about the ontology language or its structure. Therefore


daisy
Rectangle


E. Christopoulou and A. Kameas

any changes to the GAS Ontology affect only the GAS Ontology Manager and the
rest of the GAS-OS is isolated from them.

The GAS-CO must be common for all the artifacts and it cannot be changed during
the deployment of UbiComp applications. So the GAS Ontology manager provides
methods that can only query the GAS-CO for knowledge such as the definitions of
specific concepts like eGadget and Plug and knowledge relevant to the service
classification. Likewise it can only query the GAS-HO-static of an artifact. On the
other hand since it is responsible for keeping up to date the GAS-HO-volatile of an
artifact, it can both read and write to it. As the GAS-HO contains only instances of the
concepts defined in the GAS-CO, the basic methods of the GAS Ontology manager
relevant to the GAS-HO can query for an instance and add new ones based on the
concepts defined in the GAS-CO. So an important feature of the GAS Ontology
manager is that it enforces the integrity of the instances stored in the GAS-HO with
respect to the concepts described in GAS-CO.

The communication among artifacts is initially established using the artifacts’
GAS-HO; if their differences obscure the communication, the GAS Ontology
manager is responsible for the interpretation of GAS-HO based on the common GAS-
CO. Therefore the communication among artifacts is ensured. Apart from assisting
the communication among artifacts, the GAS Ontology manager enables knowledge
exchange among them by sending parts of an artifact’s GAS-HO to another’s.

One of the GAS Ontology goals is to describe the services that the artifacts provide
and assist the service discovery mechanism. In order to support this functionality, the
GAS Ontology manager provides methods that query both the GAS-HO-static and the
GAS-HO-volatile for the services that an SPlug provides as well as for the SPlug that
provide a specific service. Thus the GAS Ontology manager provides to the GAS-OS
the necessary knowledge stored in an artifact’s ontology relevant to the artifact’s
services, so that to support the service discovery mechanism. Similarly the GAS
Ontology manager can answer queries for plugs compatibility and artifacts
replaceability.

S Using the GAS Ontology in a Ubiquitous Computing System

In this section we present an example of how we can use the GAS Ontology into a
ubiquitous computing environment and the role of the GAS Ontology manager, using
the scenario for the study UbiComp application illustrated in Figure 1. According to
this scenario a user creates its own “study” UbiComp application using two artifacts,
an eBook and an eLamp.

In the UbiComp applications the interaction among artifacts is feasible because it is
based on common concepts and terms. These terms are defined into the GAS-CO. So
as the GAS-CO provides the artifacts with the necessary common language, both the
eBook and the eLamp artifacts have stored the same GAS-CO.

On the other hand the artifacts’ GAS-HO ontologies are different. For example the
eLamp’s GAS-HO-static contains information about eLamp’s SPlug “switch on/off”
and the eBook’s GAS-HO-static contains the description of SPlug “open/close”.
These two artifacts are connected through a synapse which is established between the


daisy
Rectangle


Using Ontologies to Address Key Issues in Ubiquitous Computing Systems

aforementioned plugs forming the study UbiComp application. So when the user
opens the eBook, the eLamp switches on, adjusting the light conditions to a specified
luminosity level in order to satisfy the user’s profile. The knowledge emerged from
this synapse is stored in the GAS-HO-volatile of both the artifacts that participate to
it. So the eBook “knows” that it’s SPlug “open/close” participates to a synapse with
an SPlug that provides the service “light” with a specific luminosity. Note that the
GAS Ontology manager is responsible for storing knowledge into an artifact’s GAS-
HO-volatile by using the definitions of the concepts represented in the GAS-CO.

As the context information that is used in the UbiComp applications describes the
physical and digital properties of artifacts, it is represented into both the GAS-CO and
each artifact’s GAS-HO-static. Note that the developer of the ubiquitous computing
system has access to this information and can change it or add new elements. The
GAS-HO-volatile of artifacts contains mainly knowledge emerged from the synapses
that compose an UbiComp application. So this information represents the artifacts’
behavior when they get context information through their synapses; these behaviors
are defined by the user of an UbiComp application. As the GAS Ontology contains
both context information and the description of the behaviors in proportion to context,
makes the UbiComp applications context-aware environments.

If this synapse is broken, for example because of a failure at the eLamp, a new
artifact having an SPlug that provides the service “light” must be found. The eBook’s
GAS-OS needs to find another artifact with an SPlug that provides the service “light”.
The eBook’s GAS-OS is responsible to send a message for service discovery to the
other artifacts’ GAS-OS that participate to the same UbiComp application. This type
of message is predefined and contains the type of the requested service and the
service’s attributes. Note that an artifact may query just for type of service or for a
service with specific attributes. Above we showed that an artifact can be replaced by
another one providing similar services. As the GAS Ontology contains both physical
and digital information for an artifact it is easy to exploit such information in order to
replace an artifact.

When the GAS-OS of an artifact receives a service discovery message, it forwards
it to the artifact’s GAS Ontology manager. Assume that the artifact “eDeskLamp”
participates to the “study” UbiComp application and that this is the first artifact that
gets the message for service discovery. The eDeskLamp’s GAS Ontology Manager
first queries GAS-HO-static of eDeskLamp in order to find if this artifact has an
SPlug that provides the service “light”. If we assume that the eDeskLamp has the
SPlug “LampDimmer” that provides the service light, the GAS Ontology manager
will send to the eDeskLamp’s GAS-OS a message with the description of this SPlug.
If such an SPlug is not provided by the eDeskLamp, the GAS Ontology Manager
queries the eDeskLamp’s GAS-HO-volatile in order to find if another artifact, with
which the eDeskLamp has previously collaborated, provides such an SPlug. If the
GAS Ontology Manager finds into GAS-HO-volatile such an SPlug it sends to the
artifact’s GAS-OS the description of this SPlug. If the queried artifact, in our example
the eDeskLamp, has no information about an SPlug that provides the requested
service, the control is sent back to GAS-OS, which is responsible to send the query
message for the service discovery to another eGadget. Note that all artifacts have the
same service classification, which is stored into the GAS-CO; thus the messages for
service discovery are based on this classification.


daisy
Rectangle

daisy
Rectangle


E. Christopoulou and A. Kameas

6 Related Work

Since the artifacts can be perceived as agents that communicate and collaborate, our
work is closely related to the field of agent communities. It is widely acknowledged
that without some shared or common knowledge the members of a multi-agent system
have little hope of effective communication. The solution that we propose is based on
the idea that all artifacts have a common ontology, the GAS-CO, and each artifact
have also a different, “private” ontology, the GAS-HO that is based on the GAS-CO.
This idea is similar to the one presented in [14], where the communication among the
agents relies on partially shared ontologies.

Ontologies have been used in a number of ubiquitous computing infrastructures in
order to address issues emerged from the composition of ubiquitous computing
systems. A known use case is the UbiDev [5] a homogeneous middleware that allows
definition and coordination of services in interactive environment scenarios. In this
middleware, according to [12], resource classification relies on a set of abstract
concepts collected in an ontology and the meaning of these concepts is implicitly
given by classifiers. The main advantage of this approach in facing resource
management problem is that resources selection is based on their semantics that is
given by the context. Since every application may have its ontology the application
structure results separated from the implementation. This approach is different than
the one that we have followed, because whereas they use an ontology for each
application that includes several devices, our goal is to provide an ontology that
facilitates the use of devices in various ad hoc UbiComp applications.

Ontologies are also integrated in the Smart Spaces framework GAIA [8] [11]. In
this work the ontologies have been used in order to overcome a number of problems
in the GAIA Ubiquitous computing framework, such as the interoperability between
different entities, the discovery and matching and the context-awareness. The
approach that the GAIA framework follows is fairly different to the one that we have
proposed for the eGadgets project. Specifically in the GAIA framework there is an
Ontology Server that maintains the ontologies and there are different kinds of
ontologies, such as ontologies that have meta-data about the environment’s entities
and ontologies that describe the environment’s contextual information. The ontologies
in GAIA are also used in order to support the deployment of context-aware ubiquitous
environments [10]. Another approach is the COBRA-ONT [1], an ontology for
context-aware pervasive computing environments.

The Task Computing Environment [7] was implemented in order to support the
task computing that fills the gap between what users really want to do and the
capabilities of devices and/or services that might be available in their environments.
This approach is fairly different to ours, since they use the OWL-S so that to describe
the Web services and the services offered by the devices.

Finally a very interesting work is the one made by the Semantic Web in UbiComp
Special Interest Group [13]. The basic goal of this group is to define an ontology to
support knowledge representation and communication interoperability in building
pervasive computing applications. This project’s goal is not aimed to construct a
comprehensive ontology library that would provide vocabularies for all possible
pervasive applications, but to construct a set of generic ontologies that allow
developers to define vocabularies for their individual applications.


daisy
Rectangle


Using Ontologies to Address Key Issues in Ubiquitous Computing Systems

7 Lessons Learned and Future Work

In this paper we outlined a set of key issues that arise during the composition of
UbiComp applications and presented how ontologies can be used so that to address
such issues. We supported our approach by describing the GAS Ontology that we
developed and integrated into the GAS, a framework that supports the deployment of
UbiComp applications using the artifacts as building blocks. Although in this paper
we showed through simple examples the use of the GAS Ontology in UbiComp
applications, this ontology has been used so that to compose and deploy a number of
UbiComp applications. Till now we have used this infrastructure in order to build
UbiComp applications with more that ten artifacts and approximately nine synapses
between their plugs.

Additionally we used the GAS Ontology in various demonstrations where non-
experienced users created their own UbiComp applications, so that to evaluate it in
demanding situations. For example, during demonstrations users tried to establish
synapses between incompatible plugs. Such situations were successfully handled from
the GAS Ontology manager by using the knowledge represented into the ontology so
that to check the plugs’ compatibility. As these demonstrations went on for many
hours the disestablishment of synapses due to artifacts’ failure and mobility was a
frequent event. The infrastructure’s reaction in these events was the discovery of
artifacts that provide semantically similar services. Although the service discovery
mechanism always proposed an appropriate artifact, the current version of the GAS
Ontology is restrictive since it demands all artifacts to have the same service
classification. This is a limitation that we intent to eliminate by adding to GAS
Ontology manager the capability to map a service description to another one, using
the knowledge that artifacts have acquired from their collaboration.

The design of the GAS Ontology and the approach to divide it into two layers
resulted to be very helpful for both its development and use. Specifically this
approach resulted to a small sized GAS-CO allowing the creation of large, extensible
and flexible GAS-HOs. So it satisfies the demands of long-running and real-time
UbiComp systems. During the construction of artifacts’ GAS-HO the difficulty that
we encountered was relevant to the definition of the services that plugs provide. For
example the eBook’s plug “open/close” reflects its state but it can also be regarded as
a plug that provides the service “switch”. In order to ease the creation of GAS-HOs,
one of our goals is to create a graphical interface through which users also can add
information emerged from their own perception and demands.

Regarding the issue of context-awareness our infrastructure is on an early stage.
We believe that the use of plug/synapse model as a context model is sufficient,
although we need a more elaborate context management and reasoning process. The
first step is the acquisition of the low-level context; raw data from sensors, and then
their interpretation to high-level context information. Then artifacts based on their
context will assess their state and select their appropriate behaviour using a set of
rules and axioms. The reasoning will be based on the definition of the ontology,
which may use simple description logic or first-order logic. Finally one of our goals is
to define a user model so that to handle the existence of various users’ profiles into
the same UbiComp application.


daisy
Rectangle


E. Christopoulou and A. Kameas

Acknowledgements. The research described in this paper has been carried out in
“extrovert-Gadgets” [4], a research project funded in the context of EU IST/FET
proactive initiative “Disappearing Computer” — IST-2000-25240. This work is
carrying on in the the EU IST/FET funded project PLANTS [9]. The authors wish to
thank fellow researchers from both projects’ partners.

References

ok

12.

13.
14.

Chen, H., Finin, T., Joshi, A., 2004. An ontology for context aware pervasive computing
environments, To appear, Knowledge Engineering Review - Special Issue on Ontologies
for Distributed Systems, Cambridge University Press.

Christopoulou, E., Kameas, A., 2004. GAS Ontology: an ontology for collaboration
among ubiquitous computing devices, to appear in Protégé special issue of the
International Journal of Human — Computer Studies.

Disappearing Computer initiative http://www.disappearing-computer.net/
extrovert-Gadgets project website http://www.extrovert-gadgets.net

Kameas, A., Bellis, S., Mavrommati, I., Delaney, K., Colley, M., Pounds-Cornish, A.,
2003. An Architecture that Treats Everyday Objects as Communicating Tangible
Components. In Proceedings of the 1* IEEE International conference on Pervasive
Computing and Communications (PerCom03). Forth Worth, USA

Maffioletti, S., Hirsbrunner, B., 2002. UbiDev: A Homogeneous Environment for
Ubiquitous Interactive Devices. Short paper in Pervasive 2002 - International Conference
on Pervasive Computing. pp. 28-40. Zurich, Switzerland.

Masuoka, R., Labrou, Y., Parsia, B., Sirin, E., Ontology-Enables Pervasive Computing
Applications, IEEE Intelligent Systems, Sept/Oct 2003, pp 68-72.

McGrath, R., Ranganathan, A., Campbell, R., Mickunas, D., 2003. Use of Ontologies in
Pervasive Computing Environments. Report number: UIUCDCS-R-2003-2332 UILU-
ENG-2003-1719 Department of Computer Science, University of Illinois

PLANTS project website http://plants.edenproject.com

Ranganathan, A., Campbell, R., 2003. A Middleware for Context-Aware Agents in
Ubiquitous Computing Environments. In ACM/IFIP/USENIX International Middleware
Conference, Rio de Janeiro, Brazil.

Ranganathan, A., McGrath, R., Campbell, R., Mickunas, D., 2003. Ontologies in a
Pervasive Computing Environment. Workshop on Ontologies in Distributed Systems at
IJCAL, Acapulco, Mexico.

Schubiger, S., Maffioletti, S., Tafat-Bouzid, A., Hirsbrunner, B., 2000. Providing Service
in a Changing Ubiquitous Computing Environment. Proceedings of the Workshop on
Infrastructure for Smart Devices - How to Make Ubiquity an Actuality, HUC.

Semantic Web in UbiComp Special Interest Group. http://pervasive.semanticweb.org
Stuckenschmidt, H., Timm, I. J., 2002. Adapting Communication Vocabularies using
Shared Ontologies. In the Proceedings of the Second International Workshop on
Ontologies in Agent Systems (OAS). Bologna, Italy.

Uschold, M., Gruninger, M., 1996. Ontologies: principles, methods and applications.
Knowledge Engineering Review, Vol. 11 No. 2, pp. 93-155.


daisy
Rectangle


	Introduction
	Key Issues in Ubiquitous Computing Systems
	Semantic Interoperability Among Artifacts
	Dynamic Nature of UbiComp Applications
	Semantic Service Discovery
	Conceptualisation of Ubicomp Applications
	Context-Awareness

	Designing the GAS Ontology
	Ontology Layers
	The GAS Core Ontology (GAS-CO)
	The GAS Higher Ontology (GAS-HO)

	The GAS Ontology Manager
	Using the GAS Ontology in a Ubiquitous Computing System
	Related Work
	Lessons Learned and Future Work
	References

