

City, University of London Institutional Repository

Citation: Goker, A. S., Myrhaug, H., Whitehead, N., Faegri, T. E. & Lech, T. C. (2004).

AmbieSense: a system and reference architecture for personalised and context-sensitive
information services for mobile users. Lecture Notes in Computer Science, 3295, pp. 327-
338. doi: 10.1007/978-3-540-30473-9_31

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/608/

Link to published version: https://doi.org/10.1007/978-3-540-30473-9_31

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

AmbieSense – A System and Reference Architecture for

Personalised Context-Sensitive Information Services for

Mobile Users

Hans Myrhaug
1
, Nik Whitehead

2
, Ayse Goker

2
, Tor Erlend Faegri

3
 and

Till Christopher Lech
3

1 SINTEF Information and Communication Technology, N-7465 Trondheim, Norway

toref, hansim@sintef.no
2 School of Computing, The Robert Gordon University, Aberdeen AB25 1HG, Scotland

njw, asg@comp.rgu.ac.uk
3CognIT AS, Metzers gt. 4, Oslo, Norway

till@cognit.no

 http://www.ambiesense.net/

Abstract. The purpose of AmbieSense is to provide personalised, context-

sensitive information to the mobile user. It is about augmenting digital

information to physical objects, rooms, and areas. The aim is to provide

relevant information to the right user and situation. Digital content is distributed

from the surroundings and onto your mobile phone. An ambient information

environment is provided by a combination of context tag technology, a software

platform to manage and deliver the information, and personal computing

devices to which the information is served. This paper describes how the

AmbieSense reference architecture has been defined and used in order to

deliver information to the mobile citizen at the right time, place and situation.

Information is provided via specialist content providers. The application area

addresses the information needs of travellers and tourists.

1 Introduction to AmbieSense

AmbieSense addresses ambient, personalised, and context-sensitive information

systems for mobile users. The overall goal of such systems is to help achieve the

digital, ambient environments that make user’s information-related tasks easier by

adapting to user’s context and personal requirements. Our approach to solve this is

illustrated in Figure 1 below. The figure illustrates the AmbieSense reference

architecture at an overall level. It can be used to build various digital information

channels for mobile users. The objective is to provide the correct information to the

right situation of the mobile user. The figure depicts three central cornerstones of the

system: Content Service Providers (CSP), context tags and mobile/travelling users.

Information or content is provided by Content Service Providers, offering net-

based, digital information services to their customers. This is currently achieved by

direct communication between the information consumers (i.e. the mobile users) and

the CSP. A key objective of CSPs is to increase the value of their services by

http://www.ambiesense.com/

Myrhaug et al

increasing the reach, relevance, and accuracy of information provided to the

consumer.

Figure 1: The AmbieSense overall reference architecture

AmbieSense has designed and implemented context tags (see Figure 2) as part of

the project. Context tags are miniaturized, wireless computers placed at strategic

points in the user's environment that can relay content from the CSP, prioritised with

context information, to the mobile device. The context tags have computing

capabilities which enable different software applications to run on them. Context tags

differ from other disappearing computers because one can exploit contextual

information about both the tag

environment and the user in

range to provide relevant

content. We have designed a

product family of context tags

to fulfil different application

needs within ambient

computing. The tags can differ

with respect to storage

capacity, network

communication (i.e. Bluetooth,

WLAN, and Ethernet),

computing speed, and

programming possibilities.

They are based on Linux

operating system, and can have

none or several of the

AmbieSense software

Figure 2: The AmbieSense context tags.

They communicate via Bluetooth to handheld

devices nearby, and are 12 cm in diameter.

(Hardware and design by SINTEF ICT)

AmbieSense – A system and Reference Architecture for Personalised Context-

sensitive Information Services for Mobile Users

components running on them –depending on the application needs (see Figure 3 and

4).

Mobile users are the consumers of information services provided by the system.

We assume that they use some kind of mobile computer, e.g. a PDA or a smart phone

to interact with these services. A central idea is to associate information with objects

in the surroundings. This can be through seamless access to content when people are

near tags or by creating an environment that stimulates the user’s curiosity and

encourages him to look for information in the surroundings. AmbieSense applications

can identify content for an individual by exploiting contextual knowledge about the

user.

In summary, AmbieSense seeks to address the requirements of ambient content

services provision and mobile users by improving the reach, accuracy and timeliness

of content delivered to the mobile user. Each application can have different system

architectures instantiated from the AmbieSense reference architecture. The next

sections explain how this is achieved.

1.1 Infrastructure and Framework

The AmbieSense framework can run on different infrastructures that enable mobile

users to access digital content.

Infrastructure. AmbieSense can run on a range of infrastructure technologies,

including wireless communications, hand-held computers, PDAs, smart phones,

information and application servers. Each technology has been targeted because they

can provide important, value-adding functionality to the framework in terms of

integration with both new and existing systems.

AmbieSense Framework. One of the main technical outcomes of the project, are

the context tags (hardware) together with the technical platform (software). The tags

and the technical platform are both meant to be key mechanisms for ambient content

services and applications, with the purpose to build different applications. The main

architectural components of the AmbieSense Framework are depicted in Figure 3 and

4. For instance, the underlying Content Integration Platform (CIP) provides the

ambient content management functionality to an application. It enables ambient

access to content from mobile devices with limited storage. One important part of the

CIP is a search engine that can run on mobile phones, context tags, and on content

servers. Another component is the context middleware, which supports the context-

aware applications. It enables applications to store, update, and retrieve contexts and

their structural templates (in the project, we have had our own context structures, but

the middleware supports the development and use of others too).

2 The AmbieSense Reference Architecture

The AmbieSense reference architecture is documented using principles from the

RM-ODP (Reference Model - Open Distributed Processing) method [1]. This method

Myrhaug et al

was selected mainly because it is an established standard. It comes with five

predefined viewpoints: enterprise, information, computational, engineering, and

technological viewpoints. Each viewpoint helps to visualise the range of different

aspects that need to be addressed when constructing architectures.

In this paper, we describe the following three viewpoints1:

1. Enterprise viewpoint – focusing on the overall functionality of the system

towards its users and stakeholders, described in terms of user roles and

actors.

2. Computational viewpoint – focusing on the high-level component

descriptions and interactions between these components. The computational

viewpoint is documented using diagrams showing the functional

decomposition into components and their interfaces.

3. Engineering viewpoint – focusing on how the concrete configurations of the

reference architecture can be deployed to real systems. The engineering

viewpoint is documented using deployment diagrams showing

communication and distribution aspects of system components. It also

addresses performance and capacity issues by suggesting how these quality

requirements can be satisfied by the different configurations.

2.1 Enterprise Viewpoint

Content: Content is the information that flows in the AmbieSense system. From

the user's point of view, content is any data that the user can receive, either manually

by requesting for it, or automatically in respect of some settings. Usually, content is

temporarily stored in the form of audio, movie, image, text, or mark-up files before it

is presented for the user.

Context: Context can be defined as a description of the aspects of a situation [2].

The period of a context can range from being a very short moment to many years. The

current context can depend on several criteria, e.g. the location, mental state, etc. The

user’s current context can have a direct influence on the functionality of the user

application (e.g. the application can present relevant information to the user or choose

not to present some information based on the current context). One may speak of

several types of contexts, depending on your application and your needs for info – and

of your view of what info/data is important to capture/describe a situation.

In AmbieSense, context technology is a mechanism that can capture contexts

structures, and links between contexts and content. However, we argue that there

should be some common structure for user contexts, which is easy to reuse across

domains (such as different applications). What makes domains differ is mainly that

the relevance and importance of attributes within the context structure differ.

Redundant attributes may exist in the context as their relevance can change over time.

1 Note that the technological viewpoint is not addressed by the AmbieSense reference

architecture, because it is platform and implementation neutral. Technological aspects should

be addressed at the time of derivation of a specific system, when detailed technological

requirements become available. Also note that the information viewpoint exists in technical

project reports and is too large to be covered within the scope of this paper.

AmbieSense – A system and Reference Architecture for Personalised Context-

sensitive Information Services for Mobile Users

Users: The users are the consumers of content that a CSP provides. They may also

indirectly be consumers of contexts. A user will be able to receive information

according to the current context.

Context Tags: AmbieSense has developed new, miniaturized, wireless computers

called context tags. A context tag is an entity that enables the binding of a location to

a context (or a set of contexts), and content. The context tag is realised as an

embedded computer with a Bluetooth interface for communication. The

communication facility is used for the exchange of software, content and context.

In its simplest form, a context tag only gives a reference to a location to be used by

a mobile user. More advanced context tags enable other services. For instance, a

context tag can have a web server, a search engine, and other software installed,

available for mobile devices nearby to use.

2.5 Computational Viewpoint

The computational viewpoint is concerned

with the functional decomposition of the

system into components and the interaction

patterns between the components (services) of

the system, described through their interfaces.

Overview. The AmbieSense Reference

Architecture consists of a set of main

components, described below following a top-

down sequence. Figure 3 illustrates the layers

and the organisation of the architecture pattern.

The light grey components are part of the

AmbieSense Framework; the darker grey

components are part of each

application/solution developed on top of the

framework.

By layering, we assume that components

form a stack that prescribes how components

interact with each other. For example, in Fig.2

the user interface is illustrated on top of

applications and agents. This implies that the user interface uses the services offered

by applications and agents. Likewise, applications and agents use the services from

the push and pull components. In some system architectures, one or more of the

indicated layers may not be present, thus the reference architecture allows interaction

between non-adjacent layers. However, if the layer is present, then the layering

principle should be adhered to.

 User Interface. The user interface enables the user’s interaction with the

system. The design of the user interface is based upon the requirements for

the particular application. The user interface uses the services offered by the

developed application and/or agents

Push Pull

Context

Middleware Context

CIP

User interface

Applications Agents

Content
P

ro
x
im

it
y
 D

e
te

c
ti
o

n

N
e

tw
o

rk
 S

e
rv

ic
e

s

 Figure 3: Functional

decomposition of AmbieSense

architecture

Myrhaug et al

 Applications and Agents. Applications and agents2 are developed according

to the needs of each specific solution. Developers may choose whether to

exploit agents to provide a solution. Applications (and agents) use the

services of the layers below, primarily the push and pull services, but also

services from the context middleware and CIP when appropriate.

 The Push and Pull components implement functionality for content

distribution, supporting the two different principles push and pull. The Push

and Pull components use the context management functionality of the

context middleware together with the content provisioning capabilities of the

CIP to enable context-aware content distribution.

 Context Middleware. The context middleware is responsible for context

management (context-storage, -retrieval, and -matching functions). The

context middleware supports additional functionality such as linking content

to contexts.

 CIP. The CIP (Content Integration Platform) is a composite service

component that deals with content management in terms of capturing,

inclusion, integration, and distribution of content to users. It adds

functionality for personalisation and customisation – all within an integrated

platform. The CIP provides a single interface to heterogeneous content bases

underneath while adding useful functionality for caching, and application

protocols in an integrated environment. CIP Light is a minimized version of

the CIP designed for mobile devices. A mobile device does not need the

same functionality as does a CSP server, and the distinction between CIP and

CIP Light reflects this.

 Network Services. Because AmbieSense is inherently distributed, networking

capabilities are used between the platforms (i.e. mobile computer, context

tag, and CSP platform). Networking capabilities are provided by industry

standard technologies, such as Bluetooth, WLAN, and GPRS.

 Proximity Detection. In addition, a subcomponent called proximity detection

will enable detection of mobile computers in the vicinity of the context tag.

2.6 Engineering Viewpoint

The engineering viewpoint is concerned with the design of distribution-oriented

aspects, i.e. how components are physically deployed to the different machines and

infrastructure required to support distribution. The engineering viewpoint specifies a

networked computing infrastructure that supports the system structure defined in the

computational specification and provides the distribution transparencies that it

defines.

It is important to note that although we discuss the context tag in all configurations,

it is possible to implement the AmbieSense Reference Architecture without them.

They might be omitted or other style computers with similar capabilities can be used

2 In multi-agent systems, agents are programs that act in a self-interested manner in their

dealings with numerous other agents inside a computer. This arrangement can mimic almost

any interactive system: a stock market; a habitat; even a business supply-chain.

AmbieSense – A system and Reference Architecture for Personalised Context-

sensitive Information Services for Mobile Users

instead. For example, wireless access points and other embedded computers can be

used instead of the tags. However, they should be re-programmable for the

application developer. Hence, a context tag is an open hardware platform.

Content Service Provision

User interface

(CSP admin)

Push Pull

Context

Middleware Context

CIP

Applications Agents

Content

Context Tag

Push Pull

Context

Middleware Context

CIP Light

User interface

(context tag admin)

Applications Agents

Content

Proximity

Detection

Network

Services

Mobile Computer

Push Pull

Context

Middleware Context

CIP Light

User interface

Applications Agents

Content

Figure 4: Reference Architecture Platform

Figure 4 illustrates how the various functional components are organised logically

in the reference architecture. It does not show a concrete implementation of it. Rather,

it shows how each of the three platforms (mobile computer, context tag and content

service provision platform) is able to function as nearly independent execution

environments. Now this is not, however, a very likely scenario in practice. It is merely

a demonstration of the flexibility of the reference architecture to support widely

different implementations dictated by the application and user requirements. To

illustrate this, three examples of concrete system architectures based upon the

reference architecture are found below (see Figure 5 for deployment diagrams of the

functional components).

Example 1: Thin client, rich Context Tag configuration. Certain solutions

require low complexity mobile computer configurations. For example, if a solution

was going to support the use of smart phones with very limited storage and processing

capacities, most of the processing should be allocated to the Context Tag or the

Content Service Provision platforms (see Example 1 in Figure 5).

Example 2: Medium-weight Mobile Computer, rich Context Tag

configuration. In scenarios where more generic and sophisticated context processing

such as context matching is required, the Context Middleware can be deployed also to

the Mobile Computer. Naturally, this assumes more processing power and storage

available on the mobile device. Example 2 in Figure 5 illustrates the deployment

scenario. In this example the application can pull content from the context tag. The

pull can be based upon the current context on the mobile computer, and the content

related to it or other similar contexts, may be delivered from the tag and to the user.

Example 3: Rich Mobile Computer, medium weight Context Tag, medium

weight Content Service Provision platform. The previous configurations have not

Myrhaug et al

included the Content Service Provision platform. For many technical solutions, the

integration of content from existing content management systems is critical. This may

be a good reason to consider configurations that include a content server that can

provide the link to existing legacy systems. The CIP component addresses the task of

integration and a vast number of other sophisticated processes.

The project has implemented several system architectures from the reference

architecture. One example application is the agent-based system that was developed

and tested for Oslo International Airport. The system architecture is exactly the same

as depicted in Example 3 in Figure 5, with Oslo airport's own content management

system, WebCentral 2000, incorporated on the CSP-side. Some screenshots of the

Network

Services

Mobile Computer

User

interface

Applications

Context Tag

Push

Context

Middle-

ware
Context

CIP Light

User interface

(Context Tag admin)

Content

Proximity

Detection

Network

Services

Mobile Computer

Pull

Context

Middle-

ware
Context

User

interface

Applications

Context Tag

CIP Light

User interface

(Context Tag admin)

Content

Proximity

Detection

Context

Middle-

ware
Context

Network

Services

Mobile Computer

Push Pull

Context

Middle-

ware
Context

CIP Light

User

interface

Applications Agents

Content

Context Tag

Push Pull

Context

Middle-

ware
Context

CIP Light

User interface

(Context Tag admin)

Applications Agents

Content

Proximity

Detection

Content Service Provision

Push Pull

Context

Middle-

ware
Context

CIP

User interface

(CSP admin)

Applications Agents

Content

Network

Services

Mobile Computer

Context

Middle-

ware
Context

User

interface

Applications Agents

Context Tag

Context

Middle-

ware
Context

User interface

(Context Tag admin)

Agents

Proximity

Detection

Content Service Provision

Pull

CIP

User interface

(CSP admin)

Content

Example 1: Thin client, rich Context Tag
configuration

Example 2: Medium-weight Mobile
Computer, rich Context Tag configuration

Example 3: Rich Mobile Computer,
medium weight Context Tag, medium
weight Content Service Provision platform

Legend:

Application specific component

AmbieSense framework

Figure 5: Example system architectures instantiated from reference architecture

AmbieSense – A system and Reference Architecture for Personalised Context-

sensitive Information Services for Mobile Users

Oslo airport application is found in Figure 6.

Even with such a rich client on the PDA, the client application responds with

immediate recommendations to the user once the user context (of which preferences

are one part) was changed. The agents provide personal recommendations to the user

based upon the user contexts (i.e. preferences, flight, and location within airport). The

content offered is the same as all travellers get at the airport, including special offers,

shopping, flights, and transportation. The user is notified by changes in

recommendations by a blinking tip button. This happens either when the user changes

the personal preferences (i.e. user context), or when the user is nearby a context tag

(i.e. user context is enriched by the context tag)

3 Applications and Agents

Applications in the AmbieSense Reference Architecture are developed to

implement the business logic required to serve the needs of a technical solution. This

application logic acts as a mediator between communication equipment, storages,

middleware components and the user interface components.

Applications and agents in AmbieSense can be compared with the Controller in the

Model-View-Controller paradigm. Hence, they embed the application logic of the

system. They can reside on the context tags, the mobile computers, or as mediators

towards the CIP located in the network. Agents can be said to accomplish a range of

tasks for the user. They can be defined as self-contained, autonomous pieces of

software. An AmbieSense application can be implemented using agents.

Figure 6: The Oslo airport application based on agents. A) My flight info via

WLAN, B) User preferences/ context, C) Agent recommendations based on the

current user context.

Myrhaug et al

3.1 The AmbieSense Multi-Agent System and Agent Types

Within AmbieSense, part of the motivation for using agent systems is based upon

non-functional requirements and lies in the fact that the complexity of the interaction

of the system's users with their environment, including the sheer diversity of usage

domains and contexts, requires a modular, component-based approach. The

requirement for posing context sensitive requests to a distributed system implied the

use of a multi-agent system architecture. Additionally, the non-functional

requirements specified for the AmbieSense system, including the requirement to

scalability and extendibility into new domains with new users and new contexts, made

obvious the need for a MAS-like solution.

The AmbieSense Multi-Agent System (A-MAS) uses JADE/LEAP3, an existing

multi-agent framework, for the protocol and communication. The agents implemented

within the JADE/LEAP framework provide the generic core functionality for

handling user contexts and triggering content queries. The JADE/LEAP platform was

chosen as a result of a survey of state-of-the-art systems and an evaluation process of

agent programming. On top of the JADE/LEAP framework, the A-MAS integrate

with intelligent components for context-based content retrieval. A method that uses

Case-based reasoning for context recognition, as well as a semantic web approach to

content classification enables the retrieval of relevant content to the situation.

The AmbieSense Multi-Agent System combines agent, context and content

technology together. There are four agent categories, which are derived from the

JADE/LEAP framework and thus benefit from that infrastructure4:

 Content Agents provide low-level content dependent functionality by

interfacing directly with CIP and the underlying content providers.

 Context Agents are the principal agents of the A-MAS. They interact with the

context middleware and administer the access to the user’s context space

while ensuring privacy and security. The context agent updates and

maintains the user context and triggers the queries for content conducted by

the content agents. The context agent will forward this context to content

agents and integration agents that will convert the context to a proprietary

query fit for the respective IR and content modules. The context agent keeps

track of the available search types/modules and will always forward the

context to each of these modules.

 Recommender Agents use contextual information and employ reasoning

techniques for an analysis of the users’ situation in order to provide

appropriate content.

 Integration Agents are a kind of wrapper that provides interaction

capabilities between the A-MAS and external (non-AmbieSense)

components.

The four A-MAS agent categories in turn use services from other components,

such as the push / pull, CIP, and context middleware. Additionally, agent-internal

knowledge representation such as ontologies and contexts may be used by the

3 [Bellifemine 2000], http://jade.cselt.it
4 JADE/LEAP is compliant to FIPA, Foundation for Intelligent Physical Agents

(http://www.fipa.org)

AmbieSense – A system and Reference Architecture for Personalised Context-

sensitive Information Services for Mobile Users

recommender agent to enhance the relevance of retrieved content. The engineering

viewpoint illustrates how these components may be deployed to the different

platforms. The A-MAS agents, however, reside only on the mobile computer or on

the context tag in order to ensure quick and secure processing of the user’s context.

4. Related work

Related work can be found in many areas, but we will only focus on work related

to the area of ambient and context-aware computing, because this is the main

motivation for our work.

Recently there has been much discussion about the meaning and definition of

context and context-awareness. These are exemplified strongly in three recent

workshops: DARPA [3], UM2001 [4], and SIGIR [5]. Context information may in

general be exploited by any information service in order to improve it. Three

important aspects of context can for instance be where you are, whom you are with,

and what resources are nearby you. This information will often change for the mobile

user.

According to the definition given within [6] “A system is context-aware if it uses

context to provide relevant information and/or services to the user, where relevancy

depends on the user’s task”. The concept of context is not yet well understood or

defined, and there exists no commonly accepted system that supports the acquisition,

manipulation and exploitation of context information.

The importance of context has also more recently been discussed for information

retrieval systems. Contextual information provides an important basis for identifying

and understanding users' information needs. Cool and Spink in a special issue on

Context in Information Retrieval [7] provide an overview of the different levels in

which context for information retrieval interest exists. Within the information

retrieval field, related previous work [8] argued that a user's information needs all

happen within a particular context and that context information can in general be used

to improve information systems for users.

Related work can also be found in the fields of ubiquitous and context-aware

computing [9]. Dey et al, [10] in a special issue on Situated Interaction and Context-

aware computing provide an overview. The focus from this perspective, however, has

tended to be on location-based approaches and device contexts. Examples of these can

also be found in few applications for tourists.

Currently, no standard method for developing context-aware systems exists. The

approach taken in AmbieSense is to unify research and work on user modelling with

that of context-aware applications. We believe this approach is fruitful in order to

create context-sensitive information systems for a large set of diverse user groups in

the future. Most other approaches have used context either as means to adapt

software, devices, and network communication, or to analyse linguistic aspects of

human input to the information system.

Myrhaug et al

5. Conclusions

The use of user context in ambient computing is needed for several reasons: users

are increasingly mobile and require ambient computing with context-aware

applications; and they need personalised information services to help them in their

tasks and needs.

The challenge which ambient computing applications will face is complex. It

cannot be solved easily with the current isolated approaches to wireless technology,

miniaturised devices, context-aware applications, information retrieval, or user

modelling. Instead, an integrated approach is needed where user focus is combined

with effective information management in order to achieve ambient intelligence.

The AmbieSense project has specified a reference architecture for ambient,

context-aware information environments. It has been implemented in several system

architectures – one of these was briefly presented in this paper. Through these

applications, we have tried out variations of the architecture. The clients on the

mobile devices have varied from thin clients to rich clients. The context tags have

been used with Bluetooth, WLAN, and GPRS. The software and content deployed on

the tags has also varied from system to system. This is also the case for the CSP.

User tests have been conducted in both indoor and outdoor environments. The

most recent test involved 75 test users at Oslo Airport during summer 2004. In

general, context-aware information delivery is well accepted by the test users. Further

work and analysis is being carried out on the test results.

References

1 Draft Recommendation ITU-T X.901 / ISO 10746-1: Basic Reference Model of Open

Distributed Processing - Part-1: Overview.

2 Myrhaug, H. I., & Goker, A. AmbieSense - interactive information channels in the

surroundings of the mobile user. Paper presented at the 10th International Conference on

Human-Computer Interaction (HCI International 2003), Crete, Greece.
3 DARPA Workshop on Meaning of Context, 2001.

4 User Modeling Conference, Sonthofen, Germany. Workshop on User Modelling for

Context-Aware Applications, 2001. http://orgwis.gmd.de/gross/um2001ws/papers.

5 ACM SIGIR 2004 Conference, Sheffield, UK. Workshop on Information retrieval in

context, 2004. http://ir.dcs.gla.ac.uk/context/

6 Anind Dey, Gregory Abowd: Towards a Better Understanding of Context and Context-

Awareness. In: Proceedings of the Computer-Human Interaction 2000 (CHI 2000),

Workshop on The What, Who, Where, When, and How of Context-Awareness, The Hague,

Netherlands, April 2000.

7 Cool, C., and Spink:, A. Special issue on context in information retrieval. Information

Processing and Management 5, 38 (2002).

8 A. Goker. Context Learning in Okapi. Journal of Documentation, 53(1):80-83, 1997.

9 Korkea-aho, M. Context-Aware Applications Survey,

Internetworking Seminar (Tik-110.551), Spring 2000, Helsinki University of Technology.

10 Dey, A., Kortuem, G., Morse, D., and Schmidt, A., Special Issue on Situated Interaction and

Context-Aware Computing, Journal of Personal and Ubiquitous Computing, 5, 1, (2001).

http://orgwis.gmd.de/gross/um2001ws/papers
http://ir.dcs.gla.ac.uk/context/

