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Abstract. In this paper, we report a decentralized algorithm, termed
ImmuneSearch, for searching p2p networks. ImmuneSearch avoids query
message flooding; instead it uses an immune-systems-inspired concept of
proliferation and mutation for message movement. In addition, a proto-
col is formulated to change the neighborhoods of the peers based upon
their proximity with the queried item. This results in topology evolution
of the network whereby similar contents cluster together. The topology
evolution help the p2p network to develop ‘memory’, as a result of which
the search efficiency of the network improves as more and more individ-
ual peers perform searches. Moreover, the algorithm is extremely robust
and its performance is stable even when peers are transient.

1 Introduction

Due to their flexibility, reliability and adaptivity, p2p solutions like Gnutella [2],
Napster [1], and Freenet [4] are becoming hugely popular. However, especially
due to the unreliability of the peers, the development of an efficient search algo-
rithm poses a fundamental challenge to researchers. The algorithm for search in
p2p networks proposed by us in this paper is termed ImmuneSearch. It has been
inspired by the simple and well known concept of the humoral immune system
where B cells undergo mutation and proliferation to generate antibodies which
track the antigens (foreign objects). ImmuneSearch uses proliferation and muta-
tion to spread query message packets across the network. In addition, it evolves
the topology of the p2p network in terms of adjusting the neighborhood of the
participating peers. This gives rise to a loosely structured network where the
overlay topology [3] roughly corresponds to the content in the network. Conse-
quently, the algorithm ensures better quality of service (in terms of the number
of search items found within a specified number of steps), and greater efficiency
(in terms of the network congestion arising from the query packets) compared
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to the conventional schemes of random walk and message flooding [5]. The algo-
rithm ensures robustness, that is, stability of performance in face of the transient
nature of the network. It also guarantees autonomy to the users, who are not
required to store any replicated files on their own machine.

The next section describes the ImmuneSearch(IS) algorithm in detail. Section
3 details the different simulations performed based upon the algorithm Immune-
Search. The simulation results reflect the potential of ImmuneSearch to perform
fast and accurate search as well as point to its adaptability to continuously
changing situations of p2p networks. The concluding section summarizes impor-
tant insights from our simulation studies, and presents an outline for further
work.

2 Simulation Model

In this section, we describe the framework chosen to model the p2p environment
and the ImmuneSearch algorithm.

2.1 Abstraction

The factors which are important for simulating p2p environments are the overlay
topology, the profile management of each individual peer, the nature of distri-
bution of these profiles and the affinity measure based upon which the search
algorithm is developed. Each of these factors is discussed one by one.
Topology : The overlay topology responsible for maintaining the neighborhood
connections between the peers in the p2p network is considered to be a (100
× 100) toroidal grid where each node in the grid is conceived to be hosting a
member (peer) of the p2p network. Each node has a fixed set of eight neighbors.
A peer2 residing in a particular node has correspondingly eight neighbors. Each
peer carries two profiles - the informational profile and the search profile.
Profile : The informational profile (PI) of the peer may be thought of as a
description of the information stored by the user. The search profile (PS) of a
peer is built from the informational interest of the user. In general, the search
profile may differ from the information stored on the peer. For simplicity we
assume that there are 1024 coarse-grained profiles, and let each of these profiles
be represented by a unique (d = ) 10-bit binary token. The query message packet
(M) is also a 10-bit binary token. From now on we interchangeably use the term
profile and token. Similarity between a profile P and a query message packet
(M) that is, sim(P, M) = d − HD(P, M), where HD is the Hamming distance
between P and M . The frequency of the profiles follows Zipf’s distribution [6].

2 Although, in standard literature, ‘peer’ and ‘node’ are synonymous terms, the terms
have been differentiated in the paper for ease of understanding. Node here means a
position in the grid and essentially indicates a neighborhood configuration. A peer
entering the network is assigned a node by the overlay management protocol. During
topology evolution (discussed next) peers occupy new nodes and acquire new sets of
neighbors.
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The ranking of tokens in terms of frequency is the same for both information
and search profiles—for instance, the most popular information profile is also
the most popular search profile.

On the basis of the above discussed model, we now present the search algo-
rithm ImmuneSearch.

2.2 ImmuneSearch Algorithm

The ImmuneSearch algorithm defines the movement of the query message packets
through the network and the topology evolution initiated as a result of search.
Packet Movement : The search in our p2p network is initiated from the user
peer. The user (U in Fig. 1) emanates message packets (M) to its neighbors - the
packets are thereby forwarded to the surroundings. The message packets (M)
are formed from the search profile PS of U . The message packets spread in the
network by undergoing random walk on the grid, but when they come across a
matching profile (information profile of any arbitrary peer), that is, the similarity
between a message packet and informational profile is above a threshold, the
message packet undergoes proliferation (as around peer A of Fig. 1), so as to
find more peers with similar information profile around the neighborhood. Some
of the proliferated packets are also mutated. (Cf. the differently colored message
packets around A in Fig. 1). Mutation has two-fold consequences. First of all,
due to mutation the chance of message packets meeting similar items increases,
which in turn helps in packet proliferation. Secondly, the concept of mutation
can be used in the future to help the user peer to find a wider variety of search
items. The mutation results in finding new items which may not have been
exactly queried. But these suggestive new results can be helpful for the user3.
(This aspect of mutation is not dealt with in this paper).

Proliferation and mutation will initiate an intensified search around the
neighbors of the peers which are already found to be similar to the queried
profile. This implicitly points to the importance of topology evolution of the
network, which should ensure that peers which have similar profiles come close
to each other. Due to clustering, packets after proliferation will immediately be-
gin to find peers with similar information profiles, thus enhancing the efficiency
of search.
Topology Evolution : In the topology evolution scheme, the individual peers
change their neighborhood configuration during search so as to place them
‘closer’ to U . Fig. 1 illustrates the exact mechanism of this movement. In the
figure, peer A moves (changes its neighborhood configuration) from node 7 to
node 13 to place itself ‘closer’ to U . Correspondingly, other peers adjust their
positions. We now explain the factors based upon which a peer decides to change
position as well as the rules guiding the degree of change.

A peer (say A) decides to change its neighborhood configuration and places
itself ‘closer’ to the user, when similarity between the profile of peer (P ) and the

3 An example of this is the Amazon.com criterion of statistical correlation: “Users who
sought [query Q] have also often been interested in [. . .].”
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To facilitate A’s movement from node 7 to 13; peers in node 6, 5, 13, respectively, move
to node 7, 6, 5. For example, peer C which initially was residing in node 6 having peers
at node numbers {1, 2, 3, 5, 7 (= A), 9, 10, 11} as neighbors, after topology evolution
resides in node number 7 and has peers at node numbers {2, 3, 4, 6, 8, 10, 11, 12} as
neighbors. In effect, peer C changes three neighbors [Neighbors previously residing in
(1,9,7=(A)) for (4,8,12). (The peer which was earlier residing in 5 now resides in 6,
hence there is no change in this case.)]

Fig. 1. The Search Mechanism (packets passing and topology evolution).

message (M) sent by user peer (say U) is above a threshold level. The similarity
can be of two types: (i) Similarity between information profile (PI) of the peer
(A) and the message packet (M), and (ii) similarity between search profile (PS)
of the peer (A) and the message packet (M).

The amount of movement of A towards the user peer (U) is proportional to
(a) the similarity between them (P and M) either in terms of (i) PI or (ii) PS ;
and (b) the distance between node U and node A. (Each message packet carries
the node number of the user peer U which initiated the query, so that each peer
can estimate the distance between it and U). (c) The movement of the peer is also
controlled by another important process which is inspired by natural immune
systems - aging. The movement of a peer gets restricted as it ages. The age of
a peer is determined in terms of the number of times it undergoes movement
as a result of encountering similar message packets. That is, the longer it stays
in the environment (p2p network), the more it is assumed that the peer has
found its correct node position, and hence the less it responds to any call for
change in neighbors towards any user peer U . If the search profile (PS) of peer
A matches M , but the peer (A) has performed the search operation more times
than U , then there is no movement of the peer A towards user peer U . The aging
concept lends stability to the system; thus a peer entering the p2p network, after
undergoing some initial changes in neighborhood, finds its correct position.
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3 Simulation Results

The experimental results, besides illustrating the efficiency of the ImmuneSearch
algorithm, also show the self-organizing capacity of the algorithm in face of
heavy unreliability of the peers participating in a p2p network. We also sim-
ulate experiments with a random walk, two schemes of proliferation/mutation
termed proliferation1 and proliferation2 , as well as a simple flooding technique.
In proliferation1 and proliferation2 , peers basically execute the ImmuneSearch
algorithm without the Topology Evolution step. The threshold conditions applied
to the two schemes differ; this point will be discussed later.

3.1 Experimental Setup

To understand the effect of proliferation and mutation rates, experiments with
different rates and different threshold values have been performed. From these,
we report two cases which represent two main trends observed by us. In both
cases, the proliferation and mutation rate is the same; however, the value of
Threshold(Pro/Mut) differs. For the first case, Threshold(Pro/Mut) is (d - 1);
while in the second case, it is (d - 2) (d is the length ( = 10) of the token).
ImmuneSearch and proliferation1 represents the first case, while proliferation2

represents the second case. The number of packets proliferated (NR) in the
neighborhood is given by the following equation - NR = 8 · S, where S =
sim(PI ,M)

d
; while the probability of each packet undergoing one bit mutation

(MP ) is 0.05. The threshold value required for topology evolution is set to d.
Each search is initiated by a peer residing at a randomly chosen node and the

number of search items (ns) found within 50 time steps from the commencement
of the search is calculated. The search output (ns) is averaged over 100 different

searches (a generation), whereby we obtain Ns, where Ns =
P

100

i=1
ns

100 .
In the graphs (Fig. 2 & 5 ) we plot this average value Ns against generation

number to illustrate the efficiency of different models. We perform two types of
experiments within the above mentioned experimental setup. In the first experi-
ment, no peers leave the system, while the second experiment represents a more
transient situation where peers leave/join the network at random.

3.2 Expt. I : Search in Stable Conditions

This experiment is carried out with the assumption that no peer leaves the
system. We have initiated experiments with random walk, two types of prolif-
eration/mutation schemes (proliferation1 and proliferation2), limited flooding,
and ImmuneSearch. The graph of Fig. 2 displays the performance of the five
different models. The x-axis of the graph shows the generation number while
the y-axis represents the average number of search items (Ns) found in the last
100 searches. The performance comparison of the above mentioned five methods
obeys fairness criteria which are discussed next.
Fairness in power : To provide fairness in ‘power’, two different approaches are
taken. The first approach defines fairness among ImmuneSearch, proliferation2,
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random walk, and limited flooding, while the second approach defines fairness
between ImmuneSearch and proliferation1 . The initial conditions (number of
message packets) for ImmuneSearch, proliferation2, and random walk, are chosen
in a way such that the total number of packets used over 50 time steps of
each individual search is roughly the same. In the case of flooding, we have
allowed the process to run for x number of steps where x (< 50) steps uses
the same number of packets as the aforesaid three cases used in 50 time steps.
Proliferation1 and ImmuneSearch have the same threshold level for proliferation,
and the same proliferation/mutation rate. But due to topology evolution, the
message packets during ImmuneSearch pass through thickly populated areas
with similar information profile and are able to produce more message packets.

Search Efficiency : In Fig. 2, it
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Fig. 2. Efficiency of different techniques of

search namely ImmuneSearch, proliferation1,

proliferation2, random walk and limited flood-

ing. (Search results are averaged over 20 simu-

lation runs).

is seen that the number of search
items (Ns) found is progressively
higher in limited flooding, random
walk, proliferation2 , proliferation1 ,
and ImmuneSearch, respectively. The
proliferation1, proliferation2 , ran-
dom walk, and limited flooding main-
tain a steady search output of around
50, 40, 30, and 15 hits respectively.

In the ImmuneSearch algorithm,
it is observed that after it starts
at an initial output of around 55
items per search, it steadily increases
to 80 within the 25th generation,
and then maintains a steady out-
put of about 80 per search. There-
fore, the first 25 generations can
be termed as ‘learning’ phase. Dur-
ing this time, similar to natural
immune systems, the p2p network
develops memory by repositioning the peers. The repositioning results in clus-
tering of peers with similar profiles which is discussed next.

Clustering Impact : The series of snapshots in Fig. 3 demonstrates the
clustering effect in the p2p network as a result of ImmuneSearch. Each figure
represents the configuration on the 100 × 100 overlay grid taken to host the
10,000 peers. In Fig. 3a. & b., each peer displays its two profiles PI and PS .
(The big dots represent the search profile of a peer (PS) while the small dots
are the informational profile (PI)). In Fig. 3c, we show only the informational
profile represented as dots.

The second snapshot (Fig. 3b) exhibits the clustering of the most frequently
occurring profile at generation number 24 (the generation around which ‘learn-
ing’ is more or less complete) from the initial scattered setting (Fig. 3a). The
snapshot of generation 24 shows that peers with search profile PS intermingle
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a b

Clustering of information (small dots) and search (big
dots) profile of peers possessing most frequent tokens at
generation no. 0, 24 respectively.

c

Information profile of peers
hosting 11th most frequent
tokens at generation 100.

Fig. 3. Snapshots showing clustering of similar peers in the p2p network.

with the peers with information profile PI . That is, execution of the algorithm
results in the peers with search profile (PS) positioning themselves in ‘favor-
able’ positions whereby, when these peers initiate search, the message packets
emanated by them immediately begin to find peers with similar profiles. The
clustering of the peers, as seen in Fig. 3b, is roughly divided into three major
clusters; and it is notable that the clusters are porous. The porous and sepa-
rated clusters are a result of ongoing competition among the differently frequent
tokens and as a result of it also less frequent tokens obtain space to form clus-
ters. Subsequently, their search output is also enhanced. (As an example, Fig.
3c shows clusters of peers hosting the 11th most frequent token).

The next important aspect of the experimental results which needs to be
discussed is the cost incurred during search.

Cost and Self-Regulation : Cost is defined as the number of message packets
spent per successful item searched. Since, already, in order to be ‘fair’, we have
assigned each process the same ‘power’, intuitively, we can say that cost will vary
inversely to performance. However, while experimentally demonstrating this fact
in the following paragraphs, we also illustrate another important self- organizing
property displayed by the ImmuneSearch algorithm. In order to illustrate the
self-organizing property, we next present the result of a single experiment.

The graph of Fig. 4(a) displays the performance analysis of the five different
models based upon a single experiment. Similar to Fig. 2, the x-axis of the graph
shows the generation number while the y-axis represents the average number of
search items (Ns) found in the last 100 searches. However, unlike Fig. 2, in this
figure we see that the search results of all the models are oscillating in proportion
to their average output. The oscillations occur due to the sampling differences
at each generation. However, these oscillations help us to understand the cost
regulation mechanism inbuilt within proliferation/mutation schemes, explained
next.

7



0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

Generation Number

P
ro

fi
le

 M
a

tc
h

e
d

 P
e

r 
G

e
n

e
ra

ti
o

n

ImmuneSearch
Proliferation1
Proliferation2
Random Walk
LimitedFlooding

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Generation Number

C
o

s
t 

P
e

r 
S

e
a

rc
h

It
e

m ImmuneSearch
Proliferation1
Proliferation2
Random Walk
LimitedFlooding

(a)Efficiency (b)Cost

Fig. 4. Efficiency and cost of different techniques of search namely ImmuneSearch,
proliferation1, proliferation2, random walk and limited flooding. (Search results are
based on one experiment).

Fig. 4(b) displays the cost each scheme incurs (y - axis) to generate the
performance of Fig. 4(a). The packets are assumed to be present in the network
throughout the 50 time steps executed during a search instance. It is seen that
for limited flooding, it is around 16 packets per item searched, while it is just
around 2 in case of ImmuneSearch and proliferation1 .

Two interesting observations are worth mentioning here. First of all, the
cost is almost the same in proliferation1 and ImmuneSearch. It is seen that
keeping the same constraints for proliferation/mutation implies almost the same
cost in the network. Only the number of search items differs according to the
topology of the network. The interesting feature is further demonstrated through
the second observation. We see that the cost of all the three schemes using
proliferation and mutation for packet movement (proliferation1 , proliferation2 ,
ImmuneSearch) almost remains constant throughout the total period, although
the number of items found through search (Fig. 4 (a)) varies considerably during
this period. The above two observations point to the fact that proliferation and
mutation have a self-regulatory quality inherent within them. As a result of this,
in the ImmuneSearch algorithm, the packets are not generated blindly, as with
flooding, but are instead regulated by the availability of the searched item.

3.3 Expt II : Search in Transient Conditions

The robustness of the algorithm is demonstrated by the following experiment. In
this experiment, 0.5%, 1%, 5%, or 50% of the population, respectively, is replen-
ished after every generation. This mimics the transient nature of p2p networks
where peers regularly join and leave the system.
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Fig. 5. Performance efficiency and amount of change in neighborhood undergone by
peers when there are 0%, 0.5%, 1%, 5% and 50% replacement of peers after each
generation respectively. (Results are average of 20 simulation runs).

Fig. 5(a) showing the performance of the ImmuneSearch, under various de-
grees of replacement, illustrate two important results. (i) First of all, even in face
of dynamic change, the ImmuneSearch algorithm ‘learns’, in that, after some ini-
tial generations, the efficiency increases. The amount of increase in search effi-
ciency, are generally dependent on the percentage of replacement the p2p network
undergoes after each generation. We find that the performance of proliferation1

(which has been plotted as a reference point) is roughly the same when there
is 50% replacement. But replacement of 50% of all peers within 100 searches
is likely far higher than any realistic turnover rate. (ii) However, the more im-
portant point to be noted is that at 0.5% replacement, we observe that the
performance is in fact at par and sometimes slightly better than ImmuneSearch
without replacement! The result establishes one important positive point about
the algorithm - that is, a little transience is helpful, rather than detrimental, to
the performance of the algorithm. This happens because the problem of devel-
oping a search algorithm is in fact a multi-objective optimization problem, and
due to the enormous complexity, we are obtaining a ‘good’, however not optimal
solution. So a little change in peers is facilitating the system to move quickly
towards a better solution.

We next discuss the extent of neighborhood changes the peers have to un-
dergo.

Change in Neighborhood : Fig. 5(b) shows the amount of change in neigh-
borhood of the constituent peers (y-axis) . One unit of movement implies the
movement of a peer from one node to a neighboring node. We can also refer to
a unit of movement as a neighborhood change.

It is seen that in all the cases (0%, 0.5%, 1%, 5% & 50%), initially, there are
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around 300 neighborhood changes, per search. That is, when a search goes on for
50 time steps, at each time step there are around 6 peers changing their neigh-
borhood (or 1 peer changing neighborhood 6 times). However, the movement
of the peers in all the cases, except the first case, gradually reaches a steady
level. In the first case, plotting the movement over many generations produces
a monotonically decreasing curve, which implies that the system will eventually
reach a state in which there will be no further movement. In the other cases, the
amount of movement at steady state increases monotonically (but sublinearly)
with the percentage of peers leaving the network. For example, in cases of 0.5%
and 1% replacement, the change in neighborhood becomes quite insignificant
and are around 30 and 50 neighborhood changes per search respectively.

The monotonically decreasing graph for the case where no peers leave the
system is the result of the concept of aging, whereby, after some time, the system
stops rearranging the peers. The steady level of movement maintained by other
cases can be directly attributed to the dynamic nature of the system. As new
peers are joining the system, the system as a whole tries to adjust to the changing
conditions. This shows that the system on the whole tries to learn, while at the
same time does not unnecessarily undergo neighborhood changes.

4 Conclusion

This paper has presented a search algorithm which derives its inspiration from
natural immune systems and whose underlying guiding rules are generally also
very simple. We find that as a result of the algorithm, the p2p network ‘learns’
and subsequently develops memory, whereby the search efficiency improves dra-
matically after some initial learning/training phase. The system also gains capa-
bility to decide upon the number of message packets to be generated during the
search for a particular item, according to the availability of that item. Thus the
cost of search remains virtually constant irrespective of the item’s availability
and the nature of the topology. The system also can withstand the transient
nature of the peers. The basic strengths displayed by the ImmuneSearch algo-
rithm need to be further explored and developed, by applying it in more realistic
circumstances in the near future.
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