Skip to main content

Fast and Efficient Submesh Determination in Faulty Tori

  • Conference paper
  • 638 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3296))

Abstract

In a faulty torus/mesh, finding the maximal fault-free submesh is the main problem of reconfiguration. Chen and Hu [1] proposed a distributed method to determine the maximal fault-free submesh in a faulty torus. In this paper, we show that it is sufficient to apply the distributed algorithm proposed by Chen and Hu [1] to only few nodes of a torus. The time for determination of the maximal fault free submesh/submeshes (MFSS) is considerably reduced, by reduction in the number of messages needed for determination of MFSS. In addition, it also reduces the congestion in the network. We present an algorithm to determine the smallest submesh containing all faulty nodes in a torus. The proposed algorithm has a time complexity of O(n(m + k)) for a k-ary n-cube with m faults. Intensive simulation study reveals that number of messages is significantly reduced compared to Chen and Hu’s [1] method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, H.L., Hu, S.H.: Submesh Determination in Faulty Tori and Meshes. IEEE Trans. Parallel and Distributed Systems 12(3), 272–282 (2001)

    Article  Google Scholar 

  2. Kessler, R.E., Schwarzmeier, J.L.: CRAY T3D: A New Dimension for Cray Research. In: Proc. 1993 Compcon Spring, pp. 176–182 (1993)

    Google Scholar 

  3. Intel Corporation, Paragon XP/S Product Overview (1991)

    Google Scholar 

  4. NCUBE Corp., NCUBE/ten: An overview. Beaverton, Ore (November 1985)

    Google Scholar 

  5. Seitz, C.L.: The Cosmic Cube. Comm., ACM 28(1), 22–23 (1985)

    Article  Google Scholar 

  6. A Touchstone DELTA System Description, Intel Corp. (1991)

    Google Scholar 

  7. The BlueGene/L Team, IBM and Lawrence Livermore National Laboratory: An overview of the BlueGene/L Supercomputer. In: Proc. SuperComputing, Baltimore, November 16-22 (2002)

    Google Scholar 

  8. Bruck, J., Cypher, R., Ho, C.-T.: Efficient Fault-Tolerant Mesh and Hypercube Architectures. In: Proc. 22nd Int’l. Symp. Fault-Tolerant Computing, July 1992, pp. 162–169 (1992)

    Google Scholar 

  9. Varvarigou, T.A., Roychowdhury, V.P., Kailath, T.: Reconfiguring Processor Arrays Using Multiple-Track Models: The 3-Track-1-Spare-Approach. IEEE Trans. Computers 42(11), 1281–1293 (1993)

    Article  Google Scholar 

  10. Kim, J.H., Rhee, P.K.: The Rule-Based Approach to Reconfiguration of 2-D Processor Arrays. IEEE Trans. Computers 42(11), 1403–1408 (1993)

    Article  Google Scholar 

  11. Chandra, A., Melhem, R.: Reconfiguration in 3D Meshes. In: Proc. 1994 Int’l. Workshop Defect and Fault Tolerance in VLSI Systems, pp. 194–202 (1994)

    Google Scholar 

  12. Ozguner, F., Aykanat, C.: A Reconfiguration Algorithm for Fault Tolerance in a Hypercube Multiprocessor. Information Processing Letters 29, 247–254 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sridar, M.A., Raghavendra, C.S.: On Finding Maximal Subcubes in Residual Hypercubes. In: Proc. Second IEEE Symp. Parallel and Distributed Processing, December 1990, pp. 870–873 (1990)

    Google Scholar 

  14. Latifi, S.: Distributed Subcube Identification Algorithms for Reliable Hypercubes. Information Processing Letters 38, 315–321 (1991)

    Article  MATH  Google Scholar 

  15. Chen, H.-L., Tzeng, N.-F.: Subcube Determination in Faulty Hypercubes. IEEE Trans. Computers 46(8), 871–879 (1997)

    Article  MathSciNet  Google Scholar 

  16. Chen, H.-L., Tzeng, N.-F.: A Boolean Expression-Based Approach for Maximum Incomplete Subcube Identification in Faulty Hypercubes. IEEE Trans. Parallel and Distributed Systems 8(11), 1171–1183 (1997)

    Article  Google Scholar 

  17. Yoo, S.-M., Youn, H.Y.: Finding Maximal Submeshes in Faulty 2D Mesh in the Presence of Failed Nodes. In: Proc. Second Aizu International Symp. Parallel Algorithms/ Architecture Synthesis, March 17-21, pp. 97–103 (1997)

    Google Scholar 

  18. Armstrong, J.R., Gray, F.G.: Fault Diagnosis in a Boolean n Cube Array of Microprocessors. IEEE Trans. Computers 30(8), 587–590 (1981)

    Article  MATH  Google Scholar 

  19. Chessa, S., Maestrini, P.: Correct and Almost Complete Diagnosis of Processor Grids. IEEE Trans. Computers 50(10), 1095–1102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pranav, R., Jenkins, L. (2004). Fast and Efficient Submesh Determination in Faulty Tori. In: Bougé, L., Prasanna, V.K. (eds) High Performance Computing - HiPC 2004. HiPC 2004. Lecture Notes in Computer Science, vol 3296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30474-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30474-6_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24129-4

  • Online ISBN: 978-3-540-30474-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics