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Abstract. A central requirement for achieving the vision of run-time
discovery and dynamic composition of services is the provision of appro-
priate descriptions of the operation of a service, that is, how the service
interacts with its environment, be it agents or other services. In this pa-
per, we use experience gained through the development of real-life Grid
applications to produce a set of requirements for such descriptions and
then attempt to match those requirements against the offerings of exist-
ing work, such as OWL-S [1] and IRS-II [2]. Based on this analysis we
identify which requirements are not addressed by current research and
produce a model for describing the interaction protocol of a service in re-
sponse. The main contributions of this model are the ability to describe
the interactions of multiple parties with respect to a single service, distin-
guish between interactions initiated by the service itself and interactions
that are initiated by clients or other cooperating services, and capture
within the description service state changes relevant to interacting par-
ties that are either a result of internal service events or interactions. The
aim of the model is not to replace existing work, since it only focuses on
the description of the interaction protocol of a service, but to inform the
further development of such work.

1 INTRODUCTION

Recent years have seen a redoubling of effort, both within industry and academia,
to provide appropriate solutions to the problem of run-time discovery and com-
position of services [3,4]. Such a capability is judged as crucial to support the
needs of a wide range of application domains and its importance is underlined
by a significant amount of industrial backing in terms of willingness to agree
on underlying standards and to provide tools to support application develop-
ment. For example, within the context of e-business it is required to support
the dynamic provision of services selected at run-time from an ever-changing
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pool of competing service providers based on user preferences, or the creation of
coalitions of service providers working towards a common goal [5, 6]. Within the
context of e-science it can enable researchers to better take advantage of Grid
infrastructure to create complex solutions involving the use of computational
resources and highly specialised services across institutional boundaries [7].

The majority of such efforts focus on the use of Web Services (WS) [8] as the
enabling infrastructure, which provides the necessary standardization of mes-
sage transportation [9], low-level service description [10], service discovery (e.g.
UDDI [11]) and service composition (e.g. BPEL4AWS [12]). However, WS tech-
nologies, on their own, are judged as insufficient to provide effective solutions
to the problem of dynamic discovery and composition, due to the lack of appro-
priate semantic descriptions of the services involved and insufficient support for
flexible run-time dynamic binding of services [13, 3].

In response to these limitations, a number of solutions have been proposed,
which either attempt to provide an overarching model, which is then linked to the
underlying WS infastructure (top-down approach - e.g. OWL-S [1], IRS-II [2]), or
attempt to embed appropriate solutions within the WS infrastructure (bottom-
up approach - e.g. [13], [14]). The latter approach, although very pragmatic in
its nature, has the obvious limitation of being restricted in the type of solutions
it produces by the WS infrastructure it attempts to integrate with. Furthermore,
as the infrastructure itself is evolving the solutions will have to be readapted for
newer versions of standards. The former approach allows for the development of
more generalised solutions that can find application, both outside a WS context
and as the WS standards evolve. It supports a clear distinction between an
abstract model of service description, which can then be used to support service
discovery and composition, and the implementation of that model within the
context of a specific set of enabling technologies, such as WS. Nevertheless,
even these overarching models still have some way to go before they adequately
address the range of issues related to service description.

In this paper we identify some of the shortcomings of current approaches
as they relate to the description of the operational process of a service, or in
other words, its interaction protocol, based on a set of requirements derived
through an analysis of real-life Grid application scenarios implemented using
the GRIA infrastructure [15]. We then propose a model for describing the inter-
action protocol, which furthers the state of the art through the following specific
contributions.

— The ability to describe multi-party interactions with respect to a single ser-
vice, with the different parties distinguished by the roles they occupy within
the service operation. This is a result of the the need to be able to describe,
with respect to a single service, either strict requirements or simply the capa-
bility it has to cooperate with other services and what form that cooperation
can take during operation.

— The ability to describe both interactions initiated by the described service
as well as interactions that are initiated by other parties. This provides a
more flexible model than what is currently available and enables the support



of more sophisticated services, which can, for example, notify clients about
the state of progress or call upon other services to perform specific actions.

— The ability to describe the state changes a service goes through that are rele-
vant to the interacting parties, caused either by events internal to the service
or as a result of interactions with outside parties. This enables a client to
distinguish between the results of actions it initiates, and those that depend
on the service itself or other third parties. Furthermore, it enables other par-
ties, such as security devices integrated in the underlying infrastructure [16],
to monitor the progress of interaction with a service, so as to ensure that
the service is not misused.

Our aim while developing this work has not been to provide yet another
alternative for service description, but rather to address specific needs that arose
as a result of the demands of real life grid application that were not addressed by
existing work. As such, we view our work as mostly complimentary to existing
approaches and focused on the description of the interaction protocol of the
service, rather than the grounding of such descriptions to WS technologies or
generalised service descriptions, since existing methods can easily be used in
coordination with our work.

The rest of the paper is structured as follows. Section 2 provides a motivat-
ing example that illustrates our requirements for service description. Section 3
discusses existing technologies and their limitations with respect to those re-
quirements. Section 4 presents our service interaction protocol model, using an
ontological approach, and illustrates its use with the help of the example pre-
sented in Section 3. Section 5 offers two examples of the use of the model. The
first discusses how the service description can be used by a semantic web security
device to regulate access to services, while the second discusses how the service
description can be used to infer what dependencies a service has with respect to
other services. Finally, Section 6 indicates the future directions of this work.

2 MOTIVATING EXAMPLE
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Fig.1. An Example Grid Workflow



Our motivating example is based on a straightforward usage scenario for
Grid applications that is supported by the GRIA (Grid Resources for Industrial
Applications) infrastructure [15]. It involves a client that submits a computation
job to a job service, where the computation job specifies a particular application
to execute, such as a renderer. Furthermore, due to the typically significant
amount of data over which the computation will be run the use of a data staging
service is also required. The data staging service manages the provision of input
data to the job service and provides the results to the client once the computation
is completed. Below, we discuss in more detail the specifics of the implementation
of this scenario within the GRIA infrastructure.

2.1 Grid Application Support through GRIA

The GRIA framework is a Grid infrastructure developed using just the basic
web service specifications, as part of the EC IST GRIA project [17].* Tt provides
the necessary infrastructure for exposing computationally intensive applications
across the Grid, with ancillary facilities for data staging and quality of service
negotiation. A Grid service within GRIA can be considered as a conteztualised
web service, which exposes its functionality through a well defined interface.
It is contextualised since the interactions with the web service are based on a
well-defined process, which demands that a context is maintained throughout
the lifetime of the interactions. It is this interaction protocol that we aim to
make explicit by providing an appropriate ontological model that will allow us
to describe it.

In GRIA, a scenario as the one described above actually makes use of a
number of other services and systems, both external and internal. Internal sys-
tems and services include resource schedulers, accounting systems and databases,
while external services include data staging services, certificate authorities, and
so forth. GRIA also provides features such as negotiation over the quality of ser-
vice, long-term accounts with service providers. We do not discuss this issues in
detail here, but the interested reader is referred to [15], in which a more complete
description of the GRIA system is available.

Here we focus on just the interactions between the client, the job service
and the data staging service, which are illustrated in Figure 1. The scenario is
described below.

1. The Grid client saves its data to the data staging service supplying the
dataHandle it obtained, along with a jobHandle, from a previous resource
allocation stage.

4 A comparable system to GRIA is the Globus Toolkit 3 reference implementation of
OGSI [18]. However, the OGSI model extends web service standards and explicitly
introduces Grid-related concepts through those extensions. This is something that
GRIA has avoided by adopting only web service standards. WSRF (Web Services
Resource Framework - http://wuw.oasis-open.org/committees/tc_home.php?wg_
abbrev=wsrf) is closer in nature to GRIA, but has only been released very recently
and has no implementations available.



2. The Grid client submits a job request to the job service including the jobHandle,
the dataHandle for the source data and any additional application parame-
ters.

3. During the lifetime of the computation the Grid client can obtain status
information as to the progress of the computation.

4. At the end of the computation the job service saves the output data to a
data staging service, obtaining a handle to data in response.

5. The job service notifies the client that the computation is complete.?

6. The Grid client retrieves a handle to the output data from the job service.

7. The Grid client reads the output data from the data staging service using
the output data handle.

2.2 Job Service Description Requirements

Given this relatively straightforward example of service usage within a Grid
environment we now turn our attention to identifying what are the necessary
requirements for adequately describing the job service in a manner that will
make clear the allowed sequence of interactions, the different parties involved
and who is the initiator of which interactions. The specific requirements are
discussed below.

Interaction Sequence. The most basic feature that a service description
should cater for is a description of the appropriate sequence of interactions be-
tween the client and the service provider and who is the initiator of those in-
teractions. For example, it should be clear that the client needs to request the
dataSinkHandle from the job service, once the client has been notified that the
computation is complete.

Multiple Parties and Roles. The description needs to clearly identify the
various parties involved in the interactions, and who is the initiator of the inter-
action. Note, that while the clients main goal is to make use of a job service this
leads to the need to also interact with a data staging service. The use of the job
service is dependent on the data staging service. Therefore, the description of the
job service must make clear this dependence and describe the exact interaction
the client and the job service will have with the data staging service. However,
since these descriptions cannot identify specific instances of a client or a data
staging service, as these are bound at runtime, it should identify the roles the
various parties occupy. A role can be considered as identifying a well defined
behaviour in terms of interaction with the service, such as client or data staging
service.

Service State Changes. It is also desirable to be able to describe state
changes that take place due to events that are not related to the interactions
between services, but may impact on what interactions are allowed following
that state change. For example, once the computation has completed the client
can no longer request the status of the service.

5 GRIA does not at present support notification because firewall policies at client sites
are likely to deny them.



3 EXISTING TECHNOLOGY AND CURRENT LIMITATIONS

Given the basic set of requirements identified above, we discuss in this next
section the extent to which they are met by existing models for service description
or related technologies.

3.1 OWL-S

The OWL-S [1] model attempts to provide a comprehensive approach to service
description. The model has found considerable uptake by the Semantic Web
Services community and as such has set a certain bar against which any other
proposals are typically compared. It is used within the context of prototype
applications (e.g. [19,20]). Furthermore, extensions to the model relating to
security have been suggested (e.g. [21]) as well as extensions in order to provide
a more principled, theoretically grounded, view of the model [22].

The underlying tenets of the OWL-S model are a separation of concerns
along the lines of a service profile that describes what the service does, a service
process model that describes how the services operates, and a service grounding
that links the service model to the enabling Web Service infrastructure.

We focus on the descriptive capabilities of the OWL-S process model, since
that is our central concern. The process model allows the specification of the
operation of a service based on the combination of processes using control con-
structs such as sequence, split, split+join, and so forth. Necessary input, outputs,
preconditions and effects can be described for each process, as well as conditional
outputs and effects. The process model, although well suited to deal with a large
range of situations, does not adequately fulfill the requirements that we identi-
fied in Section 2. The main reason is that there are not constructs to indicate the
direction of the interaction, i.e. whether the client or the service initiate it, or
the fact that other parties may be involved in the interaction. As we discussed,
these parties may be necessary as was the case in our example or may simply
represent parties that could be involved to provide additional support (e.g. the
use of a provenance service within the context of a grid application). Finally,
there is also no representation of the state of a service.

The lack of such constructs may simply be a result of the fact that the
underlying bias of the OWL-S model is to accommodate interaction with stateless
web services with no individual thread of control, and as such any control of
dataflow between processes should be handled entirely by the client.

3.2 IRS-1I

The Internet Reasoning Service-II(IRS-II) [2] takes a broader view of the entire
task of service discovery and composition, based on the UPML framework [23].
The framework distinguishes between domain models (describing the domain of
application), task models (generic descriptions of the task, including inputs, out-
puts and preconditions), problem solving methods (abstract descriptions of the
reasoning process), and bridges (mappings between different model components
of an application). Individual services are described based on their inputs and
outputs and the preconditions to their invocation. Services can be coupled to-



gether by defining problem solving methods that describe their combinations.
However, there is no support for complex interactions between services nor a flex-
ible way to describe the operation of single services along the lines of the OWL-S
process model. As such, although IRS-IT makes a significant contribution towards
providing a comprehensive approach to service discovery and composition based
on an explicit theoretical model, it does not allow for a great deal of flexibility
in describing complex individual services.

3.3 Web Services Choreography

Web Services Choreography [24] represents a relatively recent effort within the
W3C, with the goal of providing a language that describes interactions be-
tween services. The underlying motivation is to provide a language that bet-
ter reflects long-term, complex interactions between stateful services. The WS-
Choreography model supports the definitions of roles, the definitions of mes-
sage exchange based on either a request or a request+response protocol and
the exchange of state information. The language makes use of pi-calculus as a
grounding to formal, conceptual model [25].

In essence, a choreography document describes the interactions between a
number of participants, with each participant occupying specific roles. The chore-
ography is divided into work units, with work units containing activities. A
number of process flow constructors enable the combination of activities. Fi-
nally, choreographies provide for progressively more specific definitions starting
from an abstract definition that does not include an WSDL or SOAP constructs
to portable and finally concrete implementations.

WS-Choreography addresses several of the issues that we aim to address,
such as describing more complex interactions between stateful services through
an abstract model that can then be grounded to specific WS technologies such
as BPEL4WS. However, WS-Choreography does not address the need for de-
scribing individual services so as to then support the automatic composition of
more complex interaction protocols, a goal that we aim to support. Furthermore,
although the need for integration with Semantic Web technologies is stressed by
the WS-Choreography working group it is currently not addressed. As such, our
work can be seen as complimentary to this effort, since we focus on descriptions
of individual services and their needs in terms of interaction with a client or
other supporting services. Such description could then be used to facilitate the
composition of choreographies as envisaged by WS-Choreography.

3.4 BPEL4WS

Business Process Execution Language for Web Services (BPELAWS) [12] de-
fines a notation for specifying business processes composed of Web services. It
supports the description of both executable process models (i.e. the actual be-
haviour of the web service) and business protocols (i.e. just the mutually visible
message exchange). The language includes constructs for declaring process flow
including iteration and choice as well as provides facilities for failure handling
and compensation. A single process imports and exports functionality through



WSDL interfaces. In this way, the process acts as a Web service itself and can
invoke other Web services as part of the process. BPEL4AWS also supports the
declaration of partners and their roles, while state that should be public within
a business process can be exposed through message correlation constructs.

In general, BPEL4WS is a flexible language, with facilities for the addition
of new constructs and attributes to the existing BPEL4AWS standard without
rendering existing engines incapable of utilising a BPEL document. However,
BPEL4WS remains a low-level language that is heavily dependent on WSDL
constructs, since it is aimed to tightly integrate within the general framework of
Web Service standards. Furthermore, although semantic annotations could be
added this would again be restricted to annotations of WSDL constructs, rather
than more generalised notions. Our aim, as discussed in Section 1 is to take a
top-down approach so that we are not restricted by low-level standards such as
BPEL4WS and to provide a model that describes the interactions with respect
to a single service.

Nevertheless, we realise that in order for our model to find practical imple-
mentation within a wider setting that includes service composition dependent
on description of individual services, it should be amenable to a grounding to a
BPEL4WS description.

4 SERVICE DESCRIPTION THROUGH INTERACTION PROTOCOLS

As pointed out in Section 2, the desirable features for describing interaction pro-
tocols of services include multi-party interaction, explicit representation of who
initiates the interaction, and representation of the relevant state changes of the
service. Parts of these requirements can be found in some existing approaches as
discussed in Section 3. For example, WS-Choreography defines roles and request
and response protocols. Nevertheless, there exists no approach that captures all
required features that resulted from our requirement analysis for real-world grid
services. Therefore, we propose a new model for service description, basing it
on an initial proposal for the definition of Interaction Protocols in DAML [26]
and extending it with additional concepts such as events to reflect internal state
changes of services, roles, and different types of messages to express direction of
message flow (incoming vs outgoing).

The approach we take is describing the interactions with a service as an
interaction protocol, using a service-centric point of view. The protocol defines
what are the appropriate messages that can be exchanged at any given moment
from any of the parties involved in the interaction, and it is service-centric in the
sense that we focus on just those interactions that include the service we wish to
describe. For example, the service description of the job service need not include
the first and the last interaction in Figure 1 between the client and the data
staging service. That interaction should be described by the service description
of the data staging service, which the client should have access to as well (this
point is discussed further in Section 5). The reason for such a service-centric view
is simply because a service can only define what interaction it can participate in



and should avoid making assumptions about the nature of interactions that it is
not party to.

4.1 Interaction Protocol Model

3 "Regq" 3
; "RegAndResp"!
' "Internal”

InteractionProtocol
hasState
State followedBy
hasOpti M LOut’
asOption . essage f— [
; Vessage

Fig. 2. Overview: (Partial) Interaction Protocol Ontology

olabel

The proposed interaction protocol model is described in this section. The
model is defined as an OWL ontology (see www.csl.sri.com/users/denker/
sfw/wf/ip.owl) and Figure 2 illustrates the main elements. In the figure, squares
depict classes, arrows depict object properties, and the dashed boxes depict
enumeration classes of individuals.

The appropriate interactions with a service are described through an inter-
action protocol. This protocol corresponds to a set of states, where each state
has a set of options. Options describe either the messages each party taking part
in the interaction can perform while the interaction protocol is at that state or
what events can take place at that state. Once one of the possible options in
a state is taken our model describes which state follows that option, which in
turn describes the next set of available options and so forth. Each option has
a label to describe that option as either an event or a message.% In addition to
labels attached to options, we further refine the model to include three types of
options: request, request+response, and internal. A request option corresponds
to the exchange of one message, whereas a request+response option includes two
sequential message exchanges, the first one being the request message and the
second one being the response message. Naturally, request and request+response
options have messages associated with them. An internal option corresponds to
an internal state change and always has an event associated with it.

Each message has a name, a type, a role, and content. The name of the mes-
sage serves to identify the message within the domain of discourse. For example,
if the service use an agent communication language, along the lines of the FIPA
ACL [27], the name would correspond to the performative in question. If the
service message exchanges correspond to lower-level WSDL messages, the name
of the message would correspond to the WSDL operation.” The message type

6 Restrictions like these are specified in the OWL ontology using appropriate opera-
tors.

" In this case some type of grounding between the interaction protocol and WSDL
messages is required, similarly to the OWL-S approach.



specifies whether the message is incoming (In) or outgoing (Out), so that we
can distinguish between messages that are initiated by the service or by other
parties. The role defines the role of the party sending or receiving the message.
Note that since the interaction protocol is service-centric we always know one
of the parties involved in the interaction, i.e. the service under description, so
the role serves to identify the other party involved. Finally, events are simply
identified by a name.

In the case of the request option, the message may be either ingoing or
outgoing. Similarly, in the request+response option, one message has to be of
type ingoing message and the other of type outgoing, though there is clearly
no restriction on whether the request or the response message are ingoing or
outgoing. This enables the description of two directions of request+response
interactions, one initiated by the service itself, the other initiated by an outside
service.

With request+response we are modeling two subsequent states, with restric-
tions imposed on those states. Each state has only one option and each option
has one message associated with it, to one state. In order to achieve this, in our
ontology we require that a request—+response option is followed by exactly one
state. The successor state is in any case a state that has only one option. Thus,
there are two possibilities (modeled using the union operator): (a) The message
associated with the request+response option is an ingoing message, and the suc-
cessor state is a state with one request option that has an outgoing message
associated to it, or (b) the message associated with the request+response option
is an outgoing message, and the successor state is a state with one request option
that has an ingoing message associated with it (see Figure 3 for the definition).

The definition in Figure 3 guarantees the kind of request+response option
that we aim for. In the future we aim to further refine the definition of the
content class, including specification of multiple, typed parameters.

4.2 Applying the model

The interaction protocol of the job service described in Section 2 is illustrated in
Figure 4 and can be described using our OWL ontology for interaction protocols
(see www.csl.sri.com/users/denker/sfw/wf/ip-ex.owl for OWL specifica-
tion). In the figure states are numbered S1, 52, .., 511, while options are repre-
sented by the arrows that lead from one state to the other. Attached to options
are descriptions of the events or messages concerned. Finally, request+repsponse
options are shown with the intermediate state, as described above, within a
dashed line boundary.

The information contained within the model allows us to identify the par-
ties/roles involved, the direction of the interaction, the allowed sequence of in-
teraction as well as relevant state changes of the service which affect the allowed
interactions. As a result, when a client attempts to use this service and obtains a
description of the service it will reveal that the job service requires a data staging
service, and how the interaction with the data staging service takes place. Fur-
thermore, the client can see that the service will attempt to notify it when the



<owl:Class rdf:about="#RegAndRespOption">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#followedBy"/>
<owl:cardinality rdf.datatype="&xsd;nonNegativelnteger">1</owl:cardinality>
</owl:Restriction>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#olabel"/>
<owl:allValuesFrom rdf:resource="#IngoingMessage"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#followedBy"/>
<owl:allValuesFrom rdf:resource="#StateWithOneReqOption\WOutgoingMessage"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
<owl:Class>
<owl:intersectionOf rdf:parse Type="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#olabel"/>
<owl:allValuesFrom rdf:resource="#OutgoingMessage"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#followedBy"/>
<owl:allValuesFrom rdf:resource="#StateWithOneReqOptionWIngoingMessage"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:unionOf>
</owl:Class>
</owl:intersectionOf>
</owl:Class>

Fig. 3. Request+Response Definition

computation has completed, implying that the client should be able to accept
such messages (we discuss this issue further in Section 5.1). Finally, the client
can also identify that there is an event generated by the service after which it
can no longer request the status. As an example of the use of the ontology, see
Figure 5 specification of the first state transition between states S1 and S2.

5 USE OF MODELS

In this section we discuss how the service description model can be used to enable
reasoning in two crucial cases. Firstly, within the context of providing adaptive
security devices that make use of semantic descriptions, and, secondly, within
the context of service composition.

5.1 Securing services

In a previous paper we outlined the requirements for an adaptive security device
(a semantic firewall), which makes use of semantic descriptions of services to
dynamically control lower-level security devices, such as traditional firewalls, so
as to enable only appropriate interactions [28]. Appropriate interactions are de-
fined as those that are expected given the current context and satisfy any policy
requirements associated with the interactions. In that paper, we indicated that
OWL-S would be considered as a language for providing the required semantic
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Fig. 4. Job service interaction protocol

descriptions of services. However, as we discussed earlier some crucial features
are missing that would enable its use.

The service description model described here addresses these limitations and
enables a semantic firewall to establish at runtime which are the appropriate
interactions at each stage of the process. Domains offering services to clients can
ensure that their services are only used as the service developer defined through
the interaction protocol of the service and prevent inappropriate messages from
going through. Furthermore, client domains can establish exactly which interac-
tions are initiated by the service and directed towards the client. This will solve a
significant shortcoming of existing grid systems where clients are typically behind
firewalls that disable any externally initiated messages. Consequently, clients are
currently forced to poll the job service as to whether the computation has been
completed. By deploying semantic firewalls and making use of the interaction
protocol model described to identify when and which incoming messages should
be expected we can overcome this problem.

5.2 Infering service dependencies

Application development using the GRIA infrastructure, reveals that services are
often developed with other required services in mind. For example, in our moti-
vating scenario the required service was the data staging service. By describing
such dependencies through our interaction protocol clients, having identified a
required service, can determine exactly what dependencies the service has to any
other services and use that information to attempt to discover suitable services
to fulfill those requirements. The use of roles to define such required services can



<!I-- Roles for job and client services --> <ip:Role rdf:ID="J"/>
<ip:Role rdf:ID="Client"/>

<ip:Content rdf:ID="ContM1"/>

<ip:Message rdf:ID="M1">
<ip:mtype rdf:resource="&ip;#In"/>
<ip:mrole rdf:resource="#Client"/>
<ip:mname rdf.datatype="&xsd;nonNegativelnteger">startJob</ip:mname>
<ip:content rdf:resource="#ContM1"/>
</ip:Message>

<ip:Option rdf:ID="01">
<ip:followedBy rdf:resource="#S2"/>
<ip:otype rdf:resource="&ip;#Req"/>
<ip:olabel rdf:resource="#M1"/>
</ip:Option>

<ip:State rdf:ID="S1">
<ip:hasOption rdf:resource="#01"/>
</ip:State>

<ip:State rdf:ID="S2">
<ip:hasOption rdf:resource="#02"/>
</ip:State>

<ip:InteractionProtocol rdf:ID="JobServicelnteractionProtocol">
<ip:hasState rdf:resource="#S1"/>
<ip:hasState rdf:resource="#S2"/>

<ip:hasState rdf:resource="#S11"/>
</ip:InteractionProtocol>

Fig. 5. Ontology use example for job service description

aid the discovery process by indicating classes of services that can conform to
such behaviour.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have present a novel model for describing how a service can
interact with clients and other services. This model was developed in response
to the identification of a set of requirements based on real-life experience with
Grid application development. Existing approaches for service description, most
significantly OWL-S, do not adequately fulfill those requirements and as such
this work can be seen as informing and furthering the discussion on what is an
appropriate model for describing services. In particular, our model offers three
specific features that are crucial for enabling the types of Grid-based scenarios
we aim to support. Firstly, we are able to describe multi-party interactions,
with respect to a single service and the different roles those parties occupy.
Secondly, we can differentiate between interactions initiated by the service and
those initiated by other parties. Finally, we can describe relevant service states
that influence the subsequently allowed interactions. As discussed in Section 5
such a model can play a crucial role in enabling the development of security
devices that take advantage of semantic web-based descriptions of services [28]
as well as more sophisticated compositions of services.



We now aim to develop appropriate reasoning engines that can be integrated
within GRIA for handling such interaction protocol descriptions, with the par-
ticular aim of using them within a semantic fireall. In addition, we will investi-
gate the integration of policies within the description as well as the verification
of an interaction protocol against domain-wide policies. Finally, any high level
description techniques adopted to describe and analyse interaction protocols
must eventually be grounded in existing and emerging security specifications
like WS-Security [29], WS-SecurityPolicy [30] and web service standards such as
BPEL4WS [12]) in order to enable their enforcement at the message level. In con-
sequence, further research will include investigation of techniques for mapping
high level descriptions on to these Web service standards.
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