
From Software APIs to Web Service Ontologies:
a Semi-Automatic Extraction Method

Marta Sabou

Dept. of AI, Vrije Universiteit, Amsterdam, The Netherlands, email:marta@cs.vu.nl

Abstract. Successful employment of semantic web services depends on
the availability of high quality ontologies to describe the domains of
these services. As always, building such ontologies is difficult and costly,
thus hampering web service deployment. Our hypothesis is that since
the functionality offered by a web service is reflected by the underlying
software, domain ontologies could be built by analyzing the documenta-
tion of that software. We verify this hypothesis in the domain of RDF
ontology storage tools. We implemented and fine-tuned a semi-automatic
method to extract domain ontologies from software documentation. The
quality of the extracted ontologies was verified against a high quality
hand-built ontology of the same domain. Despite the low linguistic qual-
ity of the corpus, our method allows extracting a considerable amount
of information for a domain ontology.

1 Introduction

The promise of the emerging Semantic Web Services field is that machine un-
derstandable semantics augmenting web services will facilitate their discovery
and integration. Several projects used semantic web service descriptions in very
different application domains (bioinformatics grid[17], Problem Solving Meth-
ods[10]). A common characteristic of these descriptions is that they rely on a
generic description language, such as OWL-S[3], to specify the main elements of
the service (e.g. inputs, outputs) and on a ontology containing knowledge in the
domain of the service such as the type of offered functionality (e.g. TicketBook-
ing, CarRental) or the types of service parameters (e.g. Ticket, Car).

The quality of the domain ontologies used influences the complexity of rea-
soning tasks that can be performed with the semantic descriptions. For many
tasks (e.g. matchmaking) it is preferable that web services are described ac-
cording to the same domain ontology. This implies that the domain ontology
used should be generic enough to be used in many web service descriptions.
Domain ontologies also formally depict the complex relationships that exist be-
tween the domain concepts. Such rich descriptions allow performing complex
reasoning tasks such as flexible matchmaking. We conclude that building qual-
ity (i.e. generic and rich) domain ontologies is at least as important as designing
a generic web service description language such as OWL-S.

The acquisition of semantic web service descriptions is a time consuming and
complex task whose automation is desirable, as signaled by many researchers in

this field, for example [16]. Pioneer in this area is the work reported in [6] which
aims to learn web service descriptions from existing WSDL1 files using machine
learning techniques. They classify these WSDL files in manually built task hier-
archies. Complementary, we address the problem of building such hierarchies, i.e.
domain ontologies of web service functionalities (e.g. TicketBooking). This task
is a real challenge since in many domains only a few web services are available.
These are not sufficient for building generic and rich ontologies.

Our approach to the problem of building quality domain ontologies is mo-
tivated by the observation that, since web services are simply exposures of ex-
isting software to web-accessibility, there is a large overlap (often one-to-one
correspondence) between the functionality offered by a web service and that of
the underlying implementation. Therefore we propose to build domain ontolo-
gies by analyzing application programming interfaces(APIs). We investigate two
research questions:

1. Is it possible and useful to build a domain ontology from software APIs?
2. Can we (semi-)automatically derive (part of) a domain ontology from APIs?

This paper reports on work performed in the domain of RDF based ontology
stores. Section 2 tackles the first question by presenting an ontology which was
manually built from API documentation and reporting on using this ontology
to describe existing web services. To address the second question, we present a
(semi-) automatic method to derive (part of) a domain ontology in Section 3 and
describe experimental results in Section 4. We use the manually built ontology
as a Golden Standard for evaluating the result of the extraction process. We list
related work in Section 5, then conclude and point out future work in Section 6.

2 Constructing a Golden Standard

Tools for storing ontologies are of major importance for any semantic web appli-
cation. While there are many tools offering ontology storage (a major ontology
tool survey [5] reported on the existence of 14 such tools), only very few are
available as web services (two, according to the same survey). Therefore, in this
domain it is problematic to build a good domain ontology by analyzing only the
available web services. Nevertheless, a good domain ontology is clearly a must
since we expect that many of these tools will become web services soon. We at-
tempted to build a domain ontology by analyzing the APIs of three tools (Sesame
[1], Jena [9], KAON RDF API[7]). We report on this ontology2 in Section 2.1
then show that we could use it to describe web services in Section 2.2.

2.1 Manually building the domain ontology

Method hierarchy. We identified overlapping functionalities offered by the
APIs of these tools and modelled it in a hierarchy (see Fig. 2). The class Method
depicts one specific functionality (similar to the OWL-S Profile concept).
1 WSDL is the industry standard for syntactic web service descriptions.
2 Available at http://www.cs.vu.nl/˜marta/apiextraction.

According to our view, there are four main
categories of methods for: adding data (Ad-
dData), removing data (RemoveData), retriev-
ing data (RetrieveData) and querying (QueryMe-
thod). Naturally, several specializations of these
methods exist. For example, depending on the
granularity of the added data, methods exist
for adding a single RDF statement (AddState-
ment) or a whole ontology (AddOntology).
Note, that this hierarchy reflects our own con-
ceptualization and does not claim to be unique.
Indeed, from another perspective, one can re-
gard query methods to be a subtype of data
retrieval methods. We have chosen however to
model them as a separate class as they require
inputs of type Query. Besides the method hi-
erarchy, we also describe elements of the RDF
Data Model (e.g. Statement, Predicate, Reified-
Statement) and their relationships.
During ontology building we introduced a main
functionality category (a direct subclass of
Method) if at least two APIs offered methods
with such functionality (e.g. querying is only
supported by Sesame and Jena). Functionali-
ties offered just by one API were added as more

Fig. 1: The Method hierarchy.
specialized concepts with the goal of putting them in the context of generally
offered functionality (e.g. SeRQL querying is only provided by Sesame).
Ontology richness. We enriched our ontology by identifying knowledge useful
for several reasoning tasks. We enhanced the definition of methods in multiple
ways such as: imposing restrictions on the type and cardinality of their param-
eters, describing their effects and types of special behavior (e.g. idempotent).
We also identified methods which have the same effect, i.e equivalent. Knowl-
edge about equivalent methods is important for tasks such as matchmaking. For
more information on this ontology the reader is referred to [13]. We conclude that
APIs are rich enough to make the building of a rich domain ontology possible.

2.2 Using the domain ontology for web service description

We used the domain ontology to describe the web-interface of Sesame. The do-
main ontology offered all required concepts to describe the functionality of the
web service and also indicated how the concepts we have used fit in a larger spec-
trum of possible functionalities. This is a clear advantage in comparison to the
domain ontology3 we have built in a previous project solely for the Sesame web
3 Available at http://www.cs.vu.nl/˜marta/apiextraction.

service [12]. While that ontology was satisfactory for the goals of that project,
it was qualitatively inferior to the one we have obtained by analyzing the APIs
of multiple tools.

We checked the generality of our domain ontology by using it to describe
a web-interface which was not considered during ontology building. This is the
recent W3C RDF Net API submission4 which proposes a generic interface to be
implemented by any service that wishes to expose RDF to client applications,
therefore making the first step towards a standard RDF based web service inter-
face. The submission distills six functionalities that any RDF engine should offer.
Four of them (query, getStatements, insertStatements, removeStatements) are in-
stances of the QueryMethod, RetrieveGenericStatement, AddStatement and Re-
moveStatement concepts respectively. The other two (putStatements, updateS-
tatements) are complex operations and they correspond to sequences of concepts
(RemoveAll, AddStatement and RemoveStatement, AddStatement respectively).

The manually built ontology is also an integrated part of the KAON Ap-
plication Server, a middleware system which facilitates the interoperability of
semantic web tools (e.g. ontology storages, reasoners). Many middleware tasks
can be enhanced by reasoning with the semantic descriptions of the functional-
ity and implementation details of registered tools [14]. Also, the middleware can
expose the functionality of any registered tool as a web service and generate the
semantic description of the web service from that of the underlying tool.

Summarizing Section 2, we note that by analyzing software APIs we were
able to build a rich domain ontology and successfully employ it to describe (1)
a web service whose API served as material for defining the ontology, (2) an
emerging standard in this domain and (3) RDF storage tools registered with a
semantic middleware. The manually built ontology serves as a Golden Standard
for evaluating the semi-automatic extraction process presented next.

3 Semi-automatically Extracting Concepts

In this section we present our semi-automatic ontology extraction process (Sec-
tion 3.1) and two possible refinements of this method (Sections 3.3 and 3.2).

3.1 The extraction process

The goal of the extraction process is to identify, by analyzing software API
documentation, a set of concepts describing generally offered functionalities in
the application domain of that software. It consists of several steps.

Step 1 - Tokenise/POS tag the corpus - Automatic. This step pre-
processes the corpus. After tokenisation we use the QTAG probabilistic Part Of
Speech (POS) tagger5 to determine the part of speech of each token.

Step2 - Extract Pairs - Automatic. This step extracts a set of poten-
tially useful verb-noun pairs from the POS tagged documents. We extract all
4 http://www.w3.org/Submission/2003/SUBM-rdf-netapi-20031002/
5 http://web.bham.ac.uk/o.mason/software/tagger/index.html

pairs where the verb is in present tense, past tense or gerund form. Between
the verb and the noun(phrase) we allow any number of determiners(e.g. “the”,
“a”) and/or adjectives. The choice for such a pattern is straightforward since in
javadoc style documentation verbs express the functionality offered by the meth-
ods and the following noun phrase (often their object) usually identifies the data
structure involved in this functionality. We reduce the number of extracted pairs
by lemmatization, so if “removes model” and “remove models” are extracted,
the resulting pair is “remove model”. We define the resulting pairs as distinct.

Step3 - Extract Significant Pairs -
Manual, with some support. This step
identifies all the significant pairs from the
set of previously extracted distinct pairs.
We define a pair to be significant for our
task if it reflects the functionality of the
method from whose description it was ex-
tracted. The ontology engineer has to de-
cide by himself which of the extracted
pairs are significant. Manually inspecting
these pairs is time consuming, especially
in cases when the set of extracted pairs
contains many pairs of low importance for
the ontology engineer. To solve this prob-
lem we adopted two strategies. First, we
fine-tuned the extraction process so that
the output contains a minimal number of
insignificant pairs (Section 3.2). Second,
we developed a set of ranking schemes to
order the pairs according to their signifi-
cance (Section 3.3). We present these re-
finement methods in different subsections
due to their complexity, but we consider
them closely related to the extraction pro-
cess itself. Fig. 2: The Extraction process.

Step4 - Ontology Building - Manual with support. Finally, the ontol-
ogy engineer derives a concept from each significant pair. Often different pairs
represent the same concept. For example, both “load graph” and “add model”
correspond to the AddOntology concept. These concepts are the bases of the final
ontology. Even if arranging them in a hierarchy is still a manual task, we support
the ontology engineer with visual methods in discovering subclass relationships
(Section 4.2). Further, we present the two refinement methods.

3.2 Refining the extraction by evaluation

Using a multi-stage evaluation method we aim to fine-tune the extraction process
so that the output contains a minimum number of insignificant pairs. We present
the evaluation metrics here and exemplify their use for fine-tuning in Section 4.3.

Stage 1 - evaluating pair extraction. At this stage we evaluate the qual-
ity of the first two steps of the ontology extraction process, i.e. the POS tagging
and the pair extraction steps. We denote with allpairs all manually identified
pairs that we wish to extract and with validpairs the subset of these pairs that
are extracted. Extracted pairs that do not fulfill the extraction pattern are de-
noted by invalidpairs. We define two metrics, adapted from the well-known in-
formation retrieval recall and precision.

Recall =
validpairs

allpairs
and Precision =

validpairs

validpairs + invalidpairs

Quality criteria. We consider a pair extraction successful if both metrics have
a high value. High recall testifies that many valid pairs were extracted from the
corpus and high precision shows a low number of invalid pairs.

Stage 2 - evaluating pair significance. Evaluating the extraction process
from the point of view of pair significance targets the improvement of the third
ontology extraction step. For this, we count all pairs that were classified as sig-
nificant during the manual inspection of the corpus (all signpairs), all extracted
significant (signpairs) and all extracted insignificant (insignpairs) pairs. Similar
to the previous stage, we compute recall and precision for the significant pairs
as follows.

SRecall =
signpairs

all signpairs
and SPrecision =

signpairs

signpairs + insignpairs

Quality criteria. An extraction is successful if the ontology builder is pre-
sented with a high ratio of significant pairs from those existent in the corpus
(high SRecall), and if there are only few insignificant pairs (high SPrecision).

Stage 3 - evaluating ontology coverage. At this stage we compare the
extracted ontology with the manually built ontology. There has been little work
in measuring similarity between two ontologies, one of the recent advances being
the work published in [8]. We are interested to know how many of the concepts
contained in the Golden Standard could be extracted, and therefore a simple
lexical overlap measure, as introduced in [2], suffices. Let LO1 be the set of all
extracted concepts and LO2 the set of concepts of the Golden Standard. The
lexical overlap (LO) equals to the ratio of the number of concepts shared by
both ontologies and the number of concepts we wish to extract.

LO(O1, O2) =
|LO1 ∩ LO2 |

|LO2 |
and OI(O1, O2) =

|LO1 \ LO2 |
|LO2 |

Human ontology building is not perfect. We encountered cases when the
extraction process prompted us to introduce new concepts which were overlooked
during the manual process, as illustrated in Section 4.2. We introduce an ontology
improvement (OI) metric which equals to the ratio of new concepts (expressed
as the set difference between extracted and desired concepts) and all concepts of
the manual ontology. As a quality criteria we aim to increase the value of both
metrics.

3.3 Refining the extraction by measuring significance

The previous subsection addressed the problem of decreasing the effort of the
ontology engineer when determining significant pairs (step 3) by evaluating and
fine-tuning the extraction so that the number of extracted insignificant pairs
is minimal. In this section we adopt a different strategy: we use pair ranking
schemes to order the extracted pairs according to their significance. We built
these schemes on pair frequency, term weight and API relevance considerations.

Pair Frequency. Our first intuition was that significant pairs are pairs that
appear often and also in many different method descriptions. Denoting pfpair

the frequency of the pair in the corpus and dfpair the number of documents in
the corpus in which the pair appears, we compute the rank of a pair as:

rankpair = pfpair ∗ dfpair

Term Weight. This weighting scheme considers that the rank of a pair
is directly proportional with the weight of its components. We give the same
importance to the weight of the component verb and noun. Other variations in
which one of these terms is considered more important could be investigated in
the future.

rankpair = wverb ∗ wnoun where the weight of a term in the corpus is:

wi =
∑

k

wdi,k =
∑

k

(tfi,k ∗ dfi) = dfi ∗
∑

k

tfi,k = dfi ∗ cfi

– wdi,k - is the weight of term i in document k. It is defined as wdi,k = tfi,k∗dfi;
– tfi,k - is the frequency of term i in document k;
– dfi - is the number of documents in which term i appears;
– cfi - is the frequency of term i in the whole corpus.

API Relevance. Our final ranking scheme filters the pairs based on the
number of APIs in which they appear. Intuitively, this corresponds to a different
ontology building strategy than the one supported by the previous two schemes.
Before we derived the “union” of all functionalities while here the focus is on
their “intersection”. Accordingly, pairs found in the maximum number of APIs
are given the highest rank. Pairs belonging to the same number of APIs, are
ordered using the Term Weight ranking scheme.

4 Experimental Results

4.1 Experimental setup

The goal of our experiments is to test the basic extraction process and the en-
hancements achieved with the refinement methods. We conduct three sets of
experiments. First, we apply the basic extraction process and examine the ex-
tracted concepts (4.2). Second, we use the evaluation method (1) to get an insight

in the internal working of the basic extraction, (2) to suggest improvements for
the extraction method and (3) to evaluate if the enhanced extraction is superior
to the basic one (4.3). Finally, we perform a comparative evaluation of the pair
ranking schemes on the output of the basic extraction process (4.4).

Corpora. We used two distinct corpora6 in our experiments. The first cor-
pus, Corpus 1, contains the documentation of the tools we used to build the
manual ontology (Jena, KAON RDF API, Sesame) and accounts to 112 docu-
ments. The second corpus, Corpus 2, contains 75 documents collected from four
tools: InkLing7, the completely rewritten API of Sesame, the Stanford RDF API8

and the W3C RDF model9. Each document in the corpora contains the javadoc
description of one method. This description consists of a general description of
the method functionality (termed “text”), followed by the description of the pa-
rameters, result type and the exceptions to be thrown (termed “parameters”).
See for example the add method of the Jena API. We exclude the syntax of the
method because it introduces irrelevant technical terms such as java, com, org.

add

Add all the statements returned by an iterator to this model.

Parameters:

iter - An iterator which returns the statements to be added.

Returns:this model

Throws: RDFException - Generic RDF Exception

4.2 Extracting concepts with the basic extraction process

From Corpus 1 we extracted 180 pairs (80 distinct after lemmatization in Step
2) from which 31 distinct concepts were distilled. The first half of Table 1 lists
these concepts, divided in 18 concepts already identified in the manual ontology
(first column) and 13 new concepts which were ignored during the manual ontol-
ogy building due to several reasons, as follows (second column). First, concepts
that denote implementation related details (transactions, repositories) are tool
specific functionalities and were not interesting for our task to determine RDF
based functionalities. Then, concepts related to the creation of elements were ig-
nored because only Jena offers such methods. “ModifyModel” actually denotes
the effect of many methods that we ignored while modelling.

To check the applicability of our method to data sets that did not influence
its design, we have applied it to Corpus 2. The extraction resulted in 79 pairs
(44 distinct) synthesized in 14 concepts shown in the second half of Table 1. We
conclude that our method worked on a completely new corpus allowing us to
extract concepts for each four main categories identified manually.

The significant pairs identified in the third extraction step are currently only
used to derive a set of concepts, however it is possible to determine their (and the

6 The corpora are available on http://www.cs.vu.nl/˜marta/apiextraction.
7 http://swordfish.rdfweb.org/rdfquery/
8 http://www-db.stanford.edu/ melnik/rdf/api.html
9 http://dev.w3.org/cvsweb/java/classes/org/w3c/rdf/

Corpus 1 Corpus 2

Concept New Concept Concept New Concept

AddData AbandonChanges AddData(4) CreateOntology
AddOntology (2) BeginTransaction AddOntology VerifyData
AddStatement(2) CommitTransaction AddStatement

ContainsStatement CreateOntology ContainsTriple
ContainsTriple CreateProperty EvalauteQuery (3)
QueryMethod CreateResource RemoveAll

RDQLQueryMethod CreateStatement (2) RemoveStatement(3)
RQLQueryMethod GetURL RetrieveAllStatements

SerQLMethod GetUsername RetrieveData
RemoveAll ModifyModel RetrieveObject

RemoveOntology RetrieveRepositories RetrieveProperty
RemoveStatement(2) SupportSetOperations RetrieveSubject
RetrieveAllStatements SupportsTransactions

RetrieveData (2)
RetrieveObject(2)

RetrieveOntology(2)
RetrieveProperty
RetrieveResource

Table 1. Extracted existing and new concepts from both experimental corpora.

corresponding concepts’) hierarchical relationships . We experimented with the
Cluster Map [4] visualization technique, developed by Aduna (www.adnua.biz),
to highlight potential subclass relationships. The Cluster Map was developed to
visualise the instances of a number of classes, organized by their classifications.

Figure 3 displays API methods (small
spheres - playing the role of instances)
grouped according to the significant
pairs that were extracted from their
descriptions (bigger spheres with an
attached label stating the name of
the pair - considered classes here).
Balloon-shaped edges connect instances
to the class(es) they belong to. We ob-
serve that all instances of the rql, rdql
and serql query pairs (i.e. all methods
from which these pairs were extracted)

Fig. 3: Hierarchy visualisation.

are also instances of the query pair, hence intuitively indicating that the con-
cepts resulting from these pairs are in a subclass relationship, where the concept
derived from the “evaluate query” pair is the most generic concept.

We observe that, in both corpora, the number of distinct pairs (80, 44) is
mush higher than the finally derived concepts (31, 14). To better understand this
behavior of the extraction process we employ the evaluation method defined in
Section 3.2, as described in the next Section.

4.3 Fine-tuning the extraction process by evaluation

In this section we describe the fine-tuning of the extraction process by using the
evaluation method. Methodologically, there are three main steps in a fine tuning
process. First (A), we evaluate the performance of the extraction process for the
evaluation metrics defined. Second (B), according to its performance we decide
on several modifications that could enhance the performance. Finally (C), we
evaluate the enhanced process (on the original and a new corpus) to check if the
predicted improvements took place, i.e. if the fine-tuning process was successful.

A) Evaluating the extraction process. The original extraction process was
applied on Corpus 1. We observed that, in this corpus, the text section is gram-
matically more correct than the parameters section. Also, the predominant num-
ber of verbs were in present form, especially those that describe method function-
alities. Accordingly, to verify our observations, we have evaluated the ontology
extraction process in these two different parts of the method description and for
the three different verb forms. A summary of the performance evaluation for the
original extraction is shown in the third column of Table 2. Readers interested
in the detailed evaluation data are referred to [13].

Stage 1 - evaluating pair extraction. We have counted the extracted
valid and invalid pairs and computed the precision and recall of the pair extrac-
tion per verb category. The recall of pairs with present tense verbs is quite low
(0.65) because, in the text area, these verbs appear in an unusual position - the
first word in the sentence - a position usually being attributed to nouns. The
POS tagger often fails in such cases, especially when the verbs can be mistaken
for nouns (e.g. lists). In contrast, the precision of extracting present tense verbs
is high. Both the recall and the precision of the extraction on the corpus as a
whole are low (see Table 2) due to the existence of many present tense verbs
which are often mistaken for nouns (recall) and the past tense verbs (precision).

Stage 2 - evaluating pair significance. Low significance recall (0.64 for
text, 0.69 for parameters, 0.65 globally) shows that a lot of significant pairs are
not extracted from the corpus. This is a direct consequence of the low extraction
recall of pairs in general (e.g. many of the pairs which are not extracted are
significant). The significance precision is almost double in the text (0.59) versus
the parameter (0.28) section. Therefore pairs extracted from the textual part
are much more likely to be significant than pairs extracted from the parameter
part. This heavily affects the precision of the whole corpus (0.5).

Stage 3 - evaluating ontology coverage. The first half of Table 1 shows
all distinct extracted concepts. Eighteen concepts from the manual ontology were
identified yielding in a lexical overlap of LO = 0.5, a very good result given that
a lot of significant pairs were not extracted from the corpus. Besides this, 13 new
concepts were identified resulting in an ontology improvement of OI = 0.36. In
other words, we extracted half of the concepts that we identified manually and
we suggested improvements that could enlarge the ontology with 36%.

B) Conclusions for enhancements. We decided (1) to ignore the parameter
section, because it heavily lowers the SPrecision of the whole corpus. Also, (2)

we will only extract pairs with present tense verbs, because there are only a few
verbs in other forms but they negatively influence the pair retrieval precision of
the corpus. These measures serve the decrease of insignificant pairs extracted
from the corpus in step 2 but do not solve the recall problem. For that we need
to train the POS tagger, a task regarded as future work.

C) Quality increase of the enhanced process. The particularities of Corpus
1 influenced the fine-tuning of the process. Therefore we check the improvement
of the performance on both corpora. Table 2 summarizes the evaluation results
for the original and the enhanced extraction process. The enhanced process uses
a modified linguistic pattern (only extracts present tense verbs) and is only
applied on the textual part of the method descriptions.

Corpus 1 Corpus 2

Ev.Step Ev. Matrics Original Enhanced Original Enhanced

1 Recall 0.69 0.65 - -
Precision 0.76 0.98 - -

2 SRecall 0.65 0.62 - -
SPrecision 0.5 0.78 0.48 0.67

3 LO 0.5 0.39 0.3 0.25
OI 0.36 0.36 0.05 0.03

Table 2. Comparison of the original and the enhanced extraction for two corpora.

For Corpus 1 the precision of the output was highly increased in both eval-
uation stages: 22% for the first stage and 28% for the second. This serves our
goal to reduce the number of insignificant pairs extracted in step 2. Despite
the heavy simplifications the ontological loss was minimal (11%). The enhanced
process only missed 4 concepts because their generating pairs appeared in the
parameter section (QueryMethod) or had verbs in past tense form (RetrieveOb-
ject, RetrieveProperty, RetrieveResource). For Corpus 2, we did not perform any
manual inspection and therefore could only compute the SPrecision and the on-
tology comparison metrics. Similarlly, the pair significance increased (with 20%)
resulting in a small decrease of ontology overlap (with 5%).

4.4 Refining the extraction by measuring significance

Pair ranking schemes order the extracted pairs according to their significance.
We evaluated which of them is the best discriminator for pair significance. To
evaluate the performance of ranking schemes, we have manually determined the
type of all pairs, extracted in the second step of the basic extraction process
from Corpus 1, as: (1) insignificant, (2) significant leading to a new concept and
(3) significant leading to an already identified concept in the manual ontology.
We represented the output of each ranking scheme by plotting the rank position

assigned to pairs against their significance. We drew a linear trendline (and
computed its equation) to determine the behavior of the scheme. Considering
the highest rank positions the most significant, in the optimal case, the trendline
would have an increasing tendency, assigning high ranks to high significance. A
high slope of the trendline indicates a good performance of the ranking scheme.

Pair Frequency. Fig. 4 shows
the performance of the Pair Frequency
ranking scheme. The slope of the lin-
ear trendline has a low value (0,0044)
denoting a suboptimal behavior. In-
deed, several significant pairs still ap-
pear on the lowest rank positions and
then insignificant pairs predominate
until the highest positions. The very
top of the ranked set consists indeed Fig. 4: Pair Frequency Scheme.

of significant pairs. The reason for this behavior is that often very frequent pairs
do not reflect functionality while rare pairs do. Often rare pairs interrelate a sig-
nificant verb (e.g. “add”) with a significant noun (e.g. “model”). This prompted
us to consider the weights of the constituent terms, as in the next scheme.

Term Weight. Observe in Fig.
5 that, comparatively to the previ-
ous scheme, the behavior of the Term
Weight scheme is closer to the desired
one: the slope of the linear trend-
line is higher (0,0137). Also, many in-
significant pairs are identified for low
rank positions and no significant pair
is placed on the lowest 20 position
(bottom quarter). However, there is Fig. 5: Term Weight Scheme.

a mixed amount of significant and insignificant pairs for a large interval of rank
positions. On top positions fewer insignificant and more significant pairs exist.

API Relevance. The API Rel-
evance ranking performs slightly bet-
ter comparatively to the Term Weight
method, having a higher slope for the
linear trendline (0,0151). The num-
ber of shared pairs within APIs is
surprisingly low. There is a single
pair shared by all three APIs (“add
statement”), and three pairs shared
by two of the three APIs (“support Fig. 6: API Relevance Scheme.

transaction”, “remove statement” , “contain statement”). Note that we only
measured the intersection of lexical pairs, however, the intersection of concepts
derived from the lexical pairs would yield in a much larger set (since different
lexical pairs often denote the same concept).

4.5 Discussion

The basic extraction process proved very helpful: it extracted half of the concepts
existent in the manually built ontology and also suggested some new additions
which were ignored during ontology building. We checked the applicability of
the extraction method on a different corpus than the one which served for its
design and obtained concepts from all major categories of functionalities. While
the extracted concepts are already a valuable help in ontology building, early
experiments show that hierarchical information could be derived automatically
as well. However, many of the pairs extracted in the second step were insignificant
causing considerable time delays when filtering out the significant pairs. Also, we
had no insight in the internal working of the process to understand its behavior.
Our refinement methods address these two issues.

The evaluation refinement method allowed us to get a better understanding of
the corpus and the behavior of the extraction process on this corpus. The derived
observations helped us to fine-tune to extraction so that much less insignificant
pairs were extracted in the second step and the loss of ontological information
was minimal. The improvements were verified on the original and a new corpus
as well.

Our experiments show that ranking schemes based on simple frequency mea-
sures can filter some of the significant pairs, making step 3 less time consuming.
The Term Weight based scheme performs better than the Pair Ranking scheme,
and the API relevance achieves the best performance. We experimented with
many more possible schemes, but none of them performed significantly better.
We conclude that there is a limit to the performance of simple frequency based
methods, however additional background knowledge, specifically of synonymy
between terms, could lead to enhanced results. For example knowing which ac-
tions (verbs) and data structures (nouns) are synonyms would help determining
which lexical pairs are conceptually equivalent and allow us to work with con-
cepts rather than lexical pairs. Our intuition is that synonymy between verbs
could be determined from generic knowledge (e.g. WordNet) but more special-
ized domain knowledge is required for the synonymy of data structures.

5 Related Work

The problem of automating the task of web service semantics acquisition was
addressed by the work of two research teams. Heß[6] employs the Naive Bayes
and SVM machine learning algorithms to classify WSDL files (or web forms)
in manually defined task hierarchies. Our work is complementary, since we ad-
dress the acquisition of such hierarchies. Also, our method does not rely on any
manually built training data as the machine learning techniques do. Patil[11]
employ graph similarity techniques to determine a relevant domain for a WSDL
file and to annotate the elements of the WSDL file. Currently they determine
the semantics of the service parameters and plan to concentrate on functionality
semantics in the future. They use existent domain ontologies and acknowledge
that their work was hampered by the lack of these ontologies.

There has been several efforts in the ontology learning community to learn
concept hierarchies (e.g. [2], [15]), but none of them used sources similar to API
documentation. The work that is methodologically closest to our solution is the
work of Cimiano[2]. They identify a set of verb-noun pairs with the intention
to build a taxonomy by using the Formal Concept Analysis theory. As a result,
their metrics for filtering the best pairs are different from ours. They define and
evaluate three such metrics. Finally, they compare their extracted ontology to a
manually built one. We adopted one of their ontology comparison metrics.

6 Conclusions and Future Work

The hypothesis of the presented work is that, given the similarity in function-
ality between web services and their underlying implementation, functionality
focused domain ontologies could be derived from the underlying software’s docu-
mentation. In this paper we answer two research questions. First, we prove that
it is possible and useful to build domain ontologies from software documenta-
tion, by manually building such an ontology from API documentation and using
it to describe several web services. Second, we investigate the possibility of au-
tomating the ontology extraction process and present a low-investment method
for extracting concepts denoting functionality semantics. Even if these concepts
represent only part of the available information in the APIs, extracting them is
a considerable help for the ontology engineer. We plan to check the applicability
of our method in other domains than that of RDF ontology stores.

We plan several enhancements to our extraction method. First, we wish to
fine-tune the used linguistic tools (POS tagger) to the grammatical character-
istics of our corpus. Second, we want to automate the conceptualization step
possibly using synonymy considerations. Finally, we will investigate automatic
learning of hierarchical relationships. The visualisation techniques we used sug-
gested several good heuristics in determining such relationships and promise to
become intuitive tools for non professional ontology builders.

We are aware of some limitations of our work. First, our corpora are too small
for applying statistical techniques. We plan to enlarge them by adding other
API documentations or including other sources such as internal code comments,
user manuals etc. Also, we consider using extraction methods better suited for
small corpora, for example clustering methods. Second, we ignore all existent
structural information, therefore loosing a lot of semantics. We plan to build
methods which leverage on the structured nature of the javadoc descriptions.
For example, terms appearing in the textual description should have a higher
weight than those appearing in the parameter section. Also, we wish to take into
account the structure of the code (e.g. package/class hierarchies) to determine
the main data structures and their relationships.

We conclude that software APIs are rich sources for ontology building and
even simple statistical methods are able to extract much of the contained knowl-
edge. The promising results published in this paper prompt us to further pursue
our work towards boosting a web of semantic web services.

Acknowledgements. We thank P. Cimiano and J.Tane for their support with
the TextToOnto tool and W. van Atteveldt, F. van Harmelen, P. Mika and H.
Stuckenschmidt for their review and comments on earlier versions of this paper.

References

1. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In I. Horrocks and J. A. Hendler,
editors, Proceedings of the First International Semantic Web Conference, LNCS,
Sardinia, Italy, 2002.

2. P. Cimiano, S. Staab, and J. Tane. Automatic Acquisition of Taxonomies from
Text: FCA meets NLP. In Proceedings of the ECML/PKDD Workshop on Adaptive
Text Extraction and Mining, Cavtat–Dubrovnik, Croatia, 2003.

3. The OWL-S Services Coalition. OWL-S: Semantic Markup for Web Services. White
Paper. http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2003.

4. C. Fluit, M. Sabou, and F. van Harmelen. Handbook on Ontologies in Information
Systems, chapter Supporting User Tasks through Visualisation of Light-weight On-
tologies. International Handbooks on Information Systems. Springer-Verlag, 2003.

5. A. Gomez Perez. A survey on ontology tools. OntoWeb Delieverable 1.3, 2002.
6. A. Heß and N. Kushmerick. Machine Learning for Annotating Semantic Web

Services. In AAAI Spring Symposium on Semantic Web Services, March 2004.
7. A. Maedche, B. Motik, and L. Stojanovic. Managing Multiple and Distributed

Ontologies in the Semantic Web. VLDB Journal, 12(4):286–302, 2003.
8. A. Maedche and S.Staab. Measuring similarity between ontologies. In Proceedings

of EKAW. Springer, 2002.
9. B. McBride. Jena: A Semantic Web Toolkit. IEEE Internet Computing, 6(6):55–59,

November/December 2002.
10. E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A Framework and In-

frastructure for Semantic Web Services. In Proceedings of the Second International
Semantic Web Conference, LNCS. Springer-Verlag, 2003.

11. A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S Web service Anno-
tation Framework. In Proceeding of the World Wide Web Conference, 2004.

12. D. Richards and M. Sabou. Semantic Markup for Semantic Web Tools: A DAML-S
description of an RDF-Store. In Proceedings of the Second International Semantic
Web Conference, LNCS, pages 274–289, Florida, USA, 2003. Springer.

13. M. Sabou. Semi-Automatic Learning of Web Service On-
tologies from Software Documentation. Technical report.
http://www.cs.vu.nl/ marta/papers/techreport/olws.pdf, 2004.

14. M. Sabou, D. Oberle, and D. Richards. Enhancing Application Servers with Se-
mantics. In Proceedings of AWESOS Workshop, Australia, April 2004.

15. C. Sporleder. A Galois Lattice based Approach to Lexical Inheritance Hierarchy
Learning. In Proccedings of the Ontology Learning Workshop, ECAI, 2002.

16. C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and
L. Moreau. Automating Experiments Using Semantic Data on a Bioinformatics
Grid. IEEE Intelligent Systems, 19(1):48–55, 2004.

17. C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A Suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data. Jour-
nal of Cooperative Information Science, 2003.

