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Abstract. This paper addresses the problem of building scalable seman-
tic overlay networks. Our approach follows the principle of data indepen-
dence by separating a logical layer, the semantic overlay for managing
and mapping data and metadata schemas, from a physical layer con-
sisting of a structured peer-to-peer overlay network for efficient routing
of messages. The physical layer is used to implement various functions
at the logical layer, including attribute-based search, schema manage-
ment and schema mapping management. The separation of a physical
from a logical layer allows us to process logical operations in the seman-
tic overlay using different physical execution strategies. In particular we
identify iterative and recursive strategies for the traversal of semantic
overlay networks as two important alternatives. At the logical layer we
support semantic interoperability through schema inheritance and se-
mantic gossiping. Thus our system provides a complete solution to the
implementation of semantic overlay networks supporting both scalability
and interoperability.

1 Introduction

Research on semantic overlay networks in P2P architectures has recently received
a lot of attention on the emerging area of peer-to-peer data management [9, 11,
16, 19]. All of these approaches are based on a generalization of the concept of
federated databases, where peers store data or (content) metadata according
to their local schemas and freely can define mappings (translations, views) from
their schemas to those of other peers. Thus a network is constructed where peers
are logically interconnected through schema mappings and where queries can be
propagated to other peers using different schemas, even over multiple hops. The
main concern of these works is on the problem of consistent query answering and
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reconciliation of different mappings occurring in the semantic overlay network [7,
25].

In parallel, structured overlay networks, for example, Chord [24] and P-
Grid [2], have been developed as a new infrastructure for routing requests for
resources that are distributed over large populations of peers using application-
specific keys in an efficient manner. Naturally, such networks can be employed in
order to efficiently respond to simple keyword-based queries. Structured overlay
networks clearly have the potential to also support the efficient operation of a
semantic overlay network. However, research on how to take advantage of this
potential is in its infancy.

In this paper we introduce an architecture and implementation leveraging
on the potential for scalability offered by structured overlay networks in the
realization of large-scale semantic overlay networks in order to enable semantic
interoperability in the large. A key aspect of the approach we take is to apply the
principle of data independence [13] by separating a logical from a physical layer.
This principle is well-known from the database area and has largely contributed
to the success of modern database system implementation. At the logical layer we
support various operations necessary for the maintenance and use of a semantic
overlay network and to support semantic interoperability, including attribute-
based search, schema management, schema inheritance and schema mapping. We
also provide support for a specific schema reconciliation technique, i.e., Semantic
Gossiping, that we have introduced earlier [3]. We provide these mechanisms
within the standard syntactic framework of RDF/OWL. At the physical layer
we provide efficient realizations of the operations exploiting a structured overlay
network, namely P-Grid. This requires mappings of operations and data to the
physical layer. Important aspects of this mapping are:

– The introduction of a specific name space for resources present in the peer
space, such that the infrastructure can resolve resource requests.

– The mapping of data and metadata to routable keys. Data consists of RDF
statements, whereas metadata are on schemas and schema mappings.

– The implementation of traversals of the semantic network for querying us-
ing intermediate schema mappings. An interesting aspect is the possibility
of using different strategies to implement such traversals at the structured
overlay network in ways that are substantially different from naive solutions,
which follow the structure of semantic overlay networks. We analyze two
types of processing strategies, iterative and recursive. Similarly as in stan-
dard database query processing, the data independence principle thus opens
up the possibility of optimization using different query processing strategies.

We have developed a first implementation following the architectural prin-
ciples outlined above building on the existing implementation of the P-Grid
structured overlay network. We report on initial performance experiments show-
ing the effect of using different query processing strategies for semantic network
traversal.

This is one of the first systems exploiting structured overlay networks for
the implementation of semantic overlay networks. Few other approaches exist.

2



EPFL Technical Report IC/2004/38

For example, PIER [14] is a database query engine on top of CAN or Chord
which imposes global, standard schemas. Edutella [16] uses naive implementa-
tion of query processing in schema-based overlays by propagating queries in the
logical network. Thus query processing cost grows linearly with network size.
Improvements have been studied by using super-peer architectures [15], caching
strategies [17], and simple indexing techniques. RDFPeers [9] implements an
RDF query system on top of Chord, but does not support a semantic overlay
network involving heterogeneous schemas and mappings among them.

The rest of this paper is structured as follows: We start with an overview
of our approach in Section 2. The presented architecture and implementation
uses our P-Grid P2P system as the physical layer which we briefly describe in
Section 3. Section 4 presents the mechanisms used to index metadata and schema
information and the details of query resolution. Section 5 describes semantic
interoperability and Section 6 is dedicated to GridVine, the implementation of
our approach, and provides initial performance evaluations. Finally, we discuss
related work in Section 7 and conclude.

2 Overview of our Approach

2.1 Data Independence

Following the principle of data independence enounced in the introduction, our
approach revolves around a tow-layer model: a physical layer based on the P-
Grid access structure underpinning GridVine, a logical semantic overlay layer
(see Figure 1). P-Grid (Section 3) is an efficient, self-organizing and fully de-
centralized access structure. Based on a distributed hash table (DHT), it scales
gracefully with the number of nodes. GridVine uses two of P-Grid’s basic func-
tionalities: the Insert(key, value) primitive for storing new data items based on
a key identifier and the Retrieve(key) primitive for retrieving data items given a
key.

Insert(key, value) Retrieve(key) Return(value)

Logical Layer
(GridVine)

Physical Layer
(P-Grid)

Insert(RDF triple)

Insert(RDF schema)

Insert(Schema translation)

SearchFor(query)

Return(tuples)

Figure 1: The two-layer model

Taking advantage of these two rather limited primitives, we build a full-
fledged semantic overlay network on top of P-Grid. The system exposes a new set
of primitives (depicted on top of Figure 1) allowing end-users to insert metadata,
schemas and schema translations as well as retrieve semantic information using
expressive query languages. Capitalizing on recent developments, we chose the
RDF / RDFS pair as languages to encode metadata and vocabulary definitions in
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GridVine. These two languages represent the fundamental building blocks of the
emerging Semantic Web [26] and are predestined to become de facto standards
for encoding metadata as well as their corresponding schematic information.

The exact mechanisms we choose for inserting metadata into the P-Grid
are naturally of utmost importance, since they directly influence the query ca-
pabilities of the overall system, and are extensively discussed in the following
(Section 4). In order to support the processing of schema-specific information,
we introduce a meta-schema specifying common characteristics for all custom
schemas derived by the users. Also, we introduce new addressing spaces, i.e.,
URI schemes, to identify resources both on the physical (P-Grid data items)
and logical (semantic information) layers.

2.2 Decentralized Semantics

Classification of resources and definition of vocabularies are essential for leverag-
ing metadata creation and fostering semantic interoperability through reuse of
conceptualizations. Legacy information sharing systems typically support static
sets of centrally imposed, predefined schemas. We consider such a monolithic
approach as far too rigid for adequately capturing information sources in a net-
work of autonomous and heterogeneous parties. Not only is this not desirable
from an ideological perspective, it also misses out on the power of P2P. Seeing
users as experts of the information they share, they themselves are most fit to
come up with a proper schema to describe their data. However desirable it may
be to let users come up with their own schemas in a bottom-up manner, it also
severely endangers global semantic interoperability and search capabilities: How
could one ensure optimal precision and recall when searching for data items that
might be referred to by a large variety of terms? Our answer to this question if
twofold, including both schema inheritance and Semantic Gossiping mechanisms.

Schema inheritance provides GridVine with basic schema reusability and
interoperability capabilities. As for other social networks [6], we expect the pop-
ularity of schemas in GridVine to follow scale-free preferential attachment laws,
such that a small subset of schemas gain unparalleled popularity while the oth-
ers remain mainly confidential. By allowing users to derive new schemas from
well-known base schemas, we implicitly foster interoperability by reusing sets of
conceptualizations belonging to the base schemas.

Semantic Gossiping [3, 4] is a semantic reconciliation method that can be
applied to foster semantic interoperability in decentralized settings. The method
aims at establishing global forms of agreement starting from a graph of purely
local mappings among schemas. Following this approach, we allow peers in Grid-
Vine to create, and possibly index, translation links mapping one schema onto
another. These links can then be used to propagate queries in such a way that
relevant data items annotated according to different schemas can also be re-
trieved. Query forwarding can be implemented using several approaches. In the
following, we identify and evaluate two radically different strategies for forward-
ing queries: iterative forwarding, where peers process series of translation links
repeatedly, and recursive forwarding, where peers delegate the forwarding to
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other peers. Schema inheritance and Semantic Gossiping are further described
in Section 5.

3 The P-Grid P2P system

GridVine uses our P-Grid [2] P2P system as its physical layer. P-Grid is based
on the principles of distributed hash tables (DHT) [20]. As any DHT approach,
P-Grid associates peers with data keys from a key space, i.e., partitions of the
underlying distributed data structure. Each peer is responsible for some part of
the overall key space and maintains additional (routing) information to forward
queries and requests.

Without constraining general applicability we use binary keys in the fol-
lowing. P-Grid peers refer to a common underlying tree structure in order to
organize their routing tables. In the following we will assume that the tree is
binary. This is not a fundamental limitation as a generalization of P-Grid to
k-ary structures has been introduced in [5], but will simplify the presentation.

Each peer p ∈ P is associated with a leaf of the binary tree. Each leaf
corresponds to a binary string π ∈ Π. Thus each peer p is associated with a
path π(p). For search, the peer stores for each prefix π(p, l) of π(p) of length l

a set of references ρ(p, l) to peers q with property π(p, l) = π(q, l), where π is
the binary string π with the last bit inverted. This means that at each level of
the tree the peer has references to some other peers that do not pertain to the
peer’s subtree at that level which enables the implementation of prefix routing
for efficient search. The cost for storing the references (in routing tables) and the
associated maintenance cost are scalable as they are proportional to the depth
of the underlying binary tree.

Each peer stores a set of data items δ(p). For d ∈ δ(p) the binary key key(d)
is calculated using an order-preserving hash function. key(d) has π(p) as prefix
but we do not exclude that temporarily also other data items are stored at a
peer, that is, the set δ(p, π(p)) of data items whose key matches π(p) can be a
proper subset of δ(p). In addition, peers also maintain references σ(p) to peers
having the same path, i.e., their replicas.

P-Grid supports two basic operations: Retrieve(key) for searching a certain
key and retrieving the associated data item and Insert(key, value) for storing
new data items.

Since P-Grid uses a binary tree, Retrieve(key) intuitively is efficient, i.e.,
O(log(|Π|)), measured in terms of messages required for resolving a search re-
quest, in a balanced tree. For skewed data distributions we show in [1] that
due to the probabilistic nature of the P-Grid approach the expected search cost
measured by the number of messages required to perform the search remains
logarithmic, independently how the P-Grid is structured. This is important as
it allows us to apply simple order-preserving hashing functions to metadata an-
notations, which may lead to non-uniformly distributed key distributions. As
P-Grid uses an order-preserving hash function to compute keys and define their
association with peers, P-Grid prefix and range queries of arbitrary granularity
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efficiently, i.e., O(log(|Π|) + |{p|κ is prefix of π(p)}|. Prefix queries will be an
important constituent in the generic implementation of metadata queries.

Insert(key, value) is based on P-Grid’s more general update functionality [10]
which provides probabilistic guarantees for consistency and is efficient even in
highly unreliable, replicated environments, i.e., O(log(|Π|)+replication factor).

4 Semantic Support

In the following, we elaborate on how GridVine handles the creation and indexing
of RDF triples and schemas. Section 4.3 will then use the indexing scheme in
order to resolve complex queries using P-Grid.

4.1 Metadata Storage

In the present case, we make statements about data items shared in the under-
lying P-Grid infrastructure. A structured overlay network allows to implement
an application specific addressing space. Therefore we introduce P-Grid specific
URI schemes p−grid : //, for resources, and p−grids : //, for schema-elements.
This does not exclude the use of other URI schemes in conjunction with the P-
Grid specific ones, however the infrastructure would have to ensure that the
identifiers can be resolved.

In the case were all resources are identified by P-Grid URIs, a typical sit-
uation would be a statement where the subject is identified by a P-Grid key,
i.e., a binary string such as 11110101, whereas the predicate and domain refer
to P-Grid specific RDF schemas, that allow to constrain the applicability of the
schema constructs to P-Grid resources and which in turn are managed by the
P-Grid infrastructure. An example of such a statement would be the P-Grid re-
source 11110101 (subject) is entitled (predicate) Rain, Steam and Speed (object),
which, translated into the XML syntax of RDF, would result in a file as the one
transcribed in Figure 2.

¨

§

¥

¦

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="pgrid://11110101">
<Title xmlns="pgrids://01001101:bmp#">Rain, Steam and Speed</Title>

</rdf:Description>
</rdf:RDF>

Figure 2: An RDF statement encoded in XML

Since most RDF query languages [21] are based on constraint searches on the
triples’ subject, predicate or object, we reference each individual triple three times,
generating separate keys based on their subject, predicate and object values.
Thus, the insertion operation of a triple t ∈ T is performed as follows:

Insert(t) ≡ Insert(tsubject, t), Insert(Hash(tpredicate), t), Insert(Hash(tobject), t).

Prefix searches, e.g., on part of the string corresponding to an object value,
are inherently supported by routing in the P-Grid overlay network. If general
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substring searches are desired, this imposes to index all the suffixes of a generated
key as well. If we introduce l as the average length of the strings representing the
subject, object or predicates, 3l Insert() operations would incur when indexing
an RDF triple in GridVine.

4.2 Schema Definition And Storage

Schematic information in GridVine is encoded using the most elementary schematic
layer from the W3C Semantic Web initiative, i.e., RDFS [26]. RDF Schema is
an extension of RDF providing mechanisms for describing groups of related re-
sources and the relationships between these resources. Among other capabilities,
it allows to define classes of resources (classes) and predicates (properties) and
to specify constraints on the subject (domain) or the object (range) of a given
class of predicates.

In the current version, GridVine schemas allow to declare a single application
specific class with an arbitrary number of properties that have this class as do-
main. The class is derived by subclassing from a generic class P−GridDataItem
which represents all P-Grid addressable subjects. The infrastructure is able to
process references to these resources. The properties referring to this class as
domain allow to declare an application-specific vocabulary (i.e., metadata at-
tributes) with arbitrary values as ranges. Each property derives from a generic
property P −GridDataItemProperty. P-Grid meta-schema and its relation to
user-defined RDF schemas are summarized in Figure 3.

Schema Schema concept

rdfs:subPropertyOfrdfs:subClassOf

rdfs:domain

P-Grid Data Item P-Grid Data Item
Property

rdfs:domain

P-Grid Meta Schema

Figure 3: Relations of a P-Grid schema to the P-Grid meta schema

As we intend to store and retrieve schematic information for the various file
categories derived by the users, we create distinct RDFS files for each category,
regrouping the definition of a subclass as well as all its affiliated properties. We
create a unique identifer for the category by concatenating the path π(p) of the
category creator and the name of its class. We then insert it into P-Grid as any
other file:

Insert(rdf schema) ≡ Insert(Hash(π(p) : class name), rdf schema).

Note that due to the possibility of performing substring searches, schemas can
also be searched by their category name only.

4.3 Resolving Queries in GridVine

The simplest query one may pose against the system would consist in a triple
pattern with only one bound variable, i.e., a query retrieving (parts of) triples
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given the value of their subject, predicate or object. For example, the following
RDQL [23] query: SELECT ?y WHERE (<p-grid://01101000>, ?y,?z) would
return all the predicates used to annotate data item 01101000. In GridVine, we
call such a query a native query. Native queries are resolved routing one message
through the P-Grid infrastructure. In our case, a message containing the above
query and the address of the peer p from which the query originates is routed as
explained in Section 3 to the peer(s) q responsible for storing data item d with
key(d) = 01101000. Upon reception of the query, q checks its local database
and sends back to p the set of triples matching the query, which in turn parses
the answer and displays the result. The whole process still generates O(log(|Π|))
messages: O(log(|Π|)) messages to resolve the P-Grid entry plus one message for
the answer. Native queries on literals (e.g., searches on the value of a property)
are resolved exactly in the same way, but start beforehand by hashing the literal
in order to get its corresponding key.

More generally, triple patterns consist of expressions where the subject, the
predicate and the object can all be replaced by variables which may be bound
or not. GridVine resolves triple patterns differently depending on the number of
unbound variables they contain:

Three unbound variables triple patterns retrieve all the triples stored in the system, implying
O(|Π|log(|Π|)) messages.

Two unbound variables triple patterns are standard native queries, and may as such be resolved
using the method described above.

One unbound variable triple patterns can be resolved by issuing a native query; The predicate
of the query may either be the first or the second bound expression of the triple patterns. The
query issued must include both predicates in order for the query destination to filter out the
triples correctly.

Zero unbound variable triple patterns are constant and require no further resolution.

Triple patterns are powerful primitives that can be used to support more expres-
sive query languages. GridVine supports RDQL query resolutions through triple
pattern combinations, following strategies similar to the ones presented in [9].

5 Semantic Interoperability

As previously mentioned, we believe that the lack of semantic interoperability
is a critical threat against large-scale semantic networks. We detail below the
mechanisms we take advantage of in order to foster semantic interoperability in
GridVine.

5.1 Schema Inheritance

We let users freely derive new categories from the existing ones. We impose that
the new class representing the subcategory subclasses the base category class.
Following rdfs:subClassOF semantics, this implies that the subcategory automat-
ically inherit the properties defined in the base category through the definition
of the property ranges (since instances of the subclass are also instances of the
base class). Additionally, subcategories may introduce a set of original proper-
ties directly related to the subclass. Figure 4 below provides an example where
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a category for annotating JPEG files is derived from a more generic category of
image files.

The process can of course be applied recursively in the sense that a subcate-
gory may in turn serve as a super-category for a new derivation, creating complex
hierarchies of categories and classes from the most popular base schemas. Since
subcategories subsume their base categories, subcategories of a given category
may be used indifferently as instances of the base category. In particular, searches
on a property belonging to a base category automatically affect all its subcate-
gories as well. Thus, we create sets of semantically interoperable schemas from
properties shared by all the derivations of a given, potentially very popular, base
schema.

P-Grid Data Item P-Grid Data Item 

Property

Image File

JPEG File JPEG IF Offset

rdfs:subClassOf

rdfs:subClassOf

P-Grid Meta Schema

rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

WidthTitle

Figure 4: A simple example of category inheritance

5.2 Semantic Gossiping

In [3, 4], we introduced Semantic Gossiping as a new semantic reconciliation
method. Semantic gossiping aims at establishing global forms of agreement start-
ing from a graph of purely local mappings among schemas. Peers that have an-
notated their data according to the same schema are said to belong to the same
semantic neighbourhood. Each peer has the possibility to create (either manu-
ally or automatically) a mapping between two schemas, in effect creating a link
between two semantic neighbourhoods. The network as such can be seen as a
directed graph of translations.

This translation graph exhibits two interesting properties: First, using local
translations and with the possibility to learn about other existing translations
in the system, transitivity allows for the forwarding of queries to semantic do-
mains for which there is no direct translation link (transitive closure). A second
observation is that the graph has cycles. One of the fundamental assumptions
that underlies the approach is that the translations between different seman-
tic domains may be partially or totally incorrect. Analysis of composite cycles
and returned results make it possible to check the quality of translations and to
determine the degree of semantic agreement in a community, as described in [3].

Following this approach, we allow peers in GridVine to create translation
links mapping one schema onto another. Translations will be used to prop-
agate queries from one semantic domain to another (see Section 6.1). Since
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RDFS does not support schema mapping, we chose OWL [26] as mapping lan-
guage. Translation links are stored as OWL documents consisting of series of
owl:equivalentProperty statements which characterize the correspondences be-
tween the two schemas at the property level. Figure 5 below is an example of
such a file. Individual property equivalence statements are reified in order to
account for partially-overlapping properties: Peers can thus refer to the vari-
ous equivalence statements and qualify the individual mappings with a semantic
similarity value as introduced in our Semantic Gossiping papers [3, 4].

¨

§

¥

¦

<?xml version="1.0"?> <?xml version="1.0" encoding="ISO-8859-1" ?>
<rdf:RDF xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<Image_Description xmlns="pgrids://10000101:exif#">
<owl:equivalentProperty rdf:ID="m1" rdf:resource="pgrids://01001101:bmp#Title"/>

</Image_Description>
<Exif_Image_Width xmlns="pgrids://10000101:exif#">
<owl:equivalentProperty rdf:ID="m2" rdf:resource="pgrids://01001101:bmp#Width"/>

</Exif_Image_Width>
</rdf:RDF>

Figure 5: An example of translation

To forward queries properly, we need to retrieve all the schemas related by
translation links starting from a given schema. Thus, we index the translations
based on their source schemas (e.g., pgrids://10000101:exif in Figure 5):

Insert(owl file) ≡ Insert(Hash(π(psource) : source class name), owl file).
Forwarding a query is then logically handled using gossiping as described in [3,
4]: Starting from a given semantic domain, the query gets transformed and it-
eratively traverses other semantic domains following translations links until it is
considered as being too different (either from a syntactic or a semantic point of
view) from the original query. A new query is issued after each translation step.
In the following section, we will show that using the P-Grid overlay network,
different physical implementations of Semantic Gossiping can be realized.

6 Implementation

6.1 Architectural Overview

GridVine was implemented by extending our existing P-Grid implementation,
Gridella, available as a Java library. Our prototype implementation is available
upon request. Figure 6 shows the basic architecture of the implementation where
the left side depicts the basic Gridella architecture which is extended by Grid-
Vine’s semantic functionalities on the right side of the figure. The Semantics
component is used to interface the components of the semantic layer with P-
Grid. The RDF component is responsible for the creation and management of
the RDF based metadata and provides the gossiping functionality. The Extrac-
tors subcomponent facilitates automatic metadata extraction to leverage the
burden of manual annotation (e.g., automatic extraction of EXIF information
for images). Functionalities related to schemas are provided by the RDFS com-
ponent, while the OWL component handles all issues regarding translations.
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P-Grid

Network

Gridella

Core

Semantics

RDF RDFS OWL

Gossip

Extractors

Figure 6: The GridVine component model

Handling of queries Figure 7(a) shows the initiator’s side for handling queries
in P-Grid. GridVine uses this basic P-Grid functionality to provide its semantic
search capabilities. The user initiates the query via the GUI which hands it
over to the P-Grid component to perform the actual search. The parameter type
defines the type of data to search for (GUID, File, RDF, RDF, RDFS, OWL) and
is implicitly assigned by the system (and encoded in the query in the following).
The query is then routed to other peers which are “closer” to the required result
as described in Section 3.

Gridella

search(type, query)

The user enters a

new query

P-Grid

search(query)

Core

binaryKey(query)

Network

Maps the ASCII

query string to a

binary value

startSearch(query)

checkResponsibility(key)

Checks if this peer is

responsible for this

query

[not responsible]

remoteQuery(peer, query)

(a) Initiation of a Gridella search

Gossip

Query(RDFType, query)

new Query(OWLType, predicate)

System

border

(Internet)

QueryReply(results)

[SELF gossiping]

new Query(OWLType, predicate’ )

query’ = transformQuery()

Transforms the

original query to

another semantic

domain

new Query(RDFType, query’ )

(b) The gossiping framework

Fig. 7. GridVine searches

Handling incoming queries is dual to issuing queries: If the receiving peer can
answer the query, i.e., is responsible for the partition of the key space the query
belongs to, it will answer it (according to the type of the query), otherwise it
will forward it. Forwarding works as shown in Figure 7(a). Figure 8 shows the
situation when the peer can answer the query.
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Network

newMessage(query)

A new query is

received.

Core
DataItem

Manager

DataTypeH

andler

getTypeHandler(queryType)

Looks for a data

type handler for

this query type

[handler found]

localSearch(query)

checkResponsibility(key)

Checks if this peer is

responsible for this

query

[responsible]

localSearch(query)

localSearch(query)

Find local

matches for

the query

PGrid

newQuery(host, query)

newLocalResult(result)

Figure 8: Handling of a Gridella query

Semantic Gossiping The introduction of RDF type queries enables semantic
gossiping. Any RDF type query that makes use of a predicate (inherently re-
ferring a certain schema) can in principle be transformed to another schema by
applying a translation of the predicate or schema. Figure 7(b) shows how this is
implemented.

In resolving translation links we support two approaches: iterative and re-
cursive. In iterative resolution the peer issuing the RDF query will try to find
all translations links itself: The peer issues a query for the translation of a cer-
tain concept. Upon finding a translation, it translates the original query using
the found translation (Query’) and issues a search for the transformed query.
Furthermore, the gossiping peer will issue a query for a translation of the trans-
lation (Predicate’). This continues until no more translation is available or the
transformed query is considered as being too different from the original query
following syntactic and semantic similarity values [4].

In recursive resolution, the issuing peer tries to resolve the translation by
delegating rather than doing it itself: First, it looks for translations of the con-
cepts used in the query and translates the query upon finding a translation. The
transformed query is issued and results for the query will be returned to the
issuer of the query. The receiver of the transformed query will follow the exact
same procedure, and so on recursively.

6.2 Experimental Evaluation

We briefly discuss below the performance of the two Semantic Gossiping tech-
niques GridVine implements. The tests were performed using the current imple-
mentation on a Fast Ethernet network of 60 SUN Ultra10 stations (Solaris 8).
We first created 15 different semantic domains (i.e., 15 different categories C0 to
C15) related to each other through 15 translation links as depicted in Figure 9(a).
We chose to organize the translations in a very regular way (i.e., a tree) in order
to get a better grasp on the results obtained, but note that our approach and
implementation work equally well for any translation graph (see also [3, 4]).

We then launched 15 peers, each on a separate computer and each locally
storing a triple related to a different category. By issuing a query from the peer
using C0, we could retrieve all the 15 triples from the 15 semantic domains by
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forwarding the query through the translation link hierarchy. A second setting
was created by replicating this first setting four times, running 60 peers using
the same category setting (i.e., we had 4 peers per category each storing one
triple locally).

T(C0->C1) T(C0->C2)

T(C1->C3) T(C1->C4) T(C2->C5) T(C2->C6)

T(C3->C7)

T(C3->C8) T(C4->C10)

T(C5->C11)

T(C5->C12)

T(C6->C13)

T(C6->C14)

T(C4->C9)

C0

C1 C2

C3 C4 C5 C6

C7 C8 C9 C10 C11 C12 C13 C14

(a) Evaluation setup
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(b) Semantic Gossiping, 15/60 peers

Fig. 9. Semantic gossiping evaluation, 15/60 peers, 15 translation links

The results, time elapsed versus quantity of results (up to 15/60 results)
received by the peer issuing the query, for both settings and for iterative and
recursive forwarding are displayed on Figure 9(b). As expected, iterative for-
warding works in a fairly linear manner. Also, note the initial delay incurred by
letting one peer process and send all the queries for iterative forwarding with
60 peers. Our recursive approach proceeds more in stages, as it delegates the
whole process of query forwarding to intermediary peers. This second approach
proves to be particularly scalable with the number of peers: Results are rather
independent of the number of peers or results returned, since the number of
peers processing and forwarding the query increases with the network size.

7 Related Work

Hyperion [8] is an on-going project which proposes an architecture and outlines a
set of challenges for decentralized data management in P2P systems. SWAP [12]
is an approach combining P2P and Semantic Web techniques. It relies on an
RDF(S) model and on structure extraction for handling queries in a P2P setting.
Edutella [16] employs a super-peer topology and facilitates the clustering of
data based on ontology, rule, or query. In PeerDB [19], each peer holds a set
of locally available metadata (Local Dictionary) and a set of metadata that can
be accessed by other nodes in the network (Export Dictionary). Metadata can
be added through an SQL query facility. No global schema is imposed. The
system is built on top of BestPeer [18] that employs mobile agents to satisfy
queries. Putting aside the drawbacks of mobile agents and mobile code, this
approach’s main drawback is that the process is not fully automated, as the user
has to decide which mappings are actually meaningful. The Piazza peer data
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management project [25] takes an approach to semantic heterogeneity that is
similar to Semantic Gossiping. Unlike our semantic gossiping approach, Piazza
does not provide any measures to judge the (in)correctness of mappings. The
indexing is centralized and thus the scalability of the system is limited. To date
Piazza also does not have a working implementation to validate its approach in
a real-world scenario.

All the above approaches address semantic interoperability but offer limited
scalability. Other approaches address scalability but do not deal with seman-
tic interoperability. For example, Peer-to-Peer Information Exchange Retrieval
(PIER) [14] is a database-style query engine built on top of a DHT (CAN [22]
or Chord [24]). Its main focus is to provide database query processing facilities
to widely distributed environments. One of PIER’s restrictions is that it im-
poses global, standard schemas following the rational that some schemas will
become de facto standards. RDFPeers [9] builds on top of the Multi-Attribute
Addressable Network (MAAN), which extends Chord, to efficiently answer multi-
attribute and range queries on RDF triples. However, it neither provides support
for user-defined schemas nor does it address interoperability issues.

8 Conclusions

To the best of our knowledge, GridVine is the first semantic overlay network
based on an scalable, efficient and totally decentralized access structure support-
ing the creation of local schemas while fostering global semantic interoperability.
Following the principle data independence, our approach separates the logical
and physical aspects such that it can be generalized to any physical infrastruc-
ture that provides functionalities similar to our P-Grid P2P system.
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