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Abstract

In the development of real-time (communicating) hardware or embedded-software
systems, it is frequently the case that we want to refine/optimize the system’s in-
ternal behavior while preserving the external timed I/O behavior (that is, the inter-
face protocol). In such a design refinement, modification of the systems’ internal
branching structures, as well as re-scheduling of internal actions, may frequently
occur. Our goal is, then, to ensure that such branch optimization and re-scheduling
of internal actions preserve the systems’ external timed behavior, which is typically
formalized by the notion of (timed) testing equivalence since it is less sensitive to
the difference of internal branching structures than (timed) weak bisimulation. In
order to know the degree of freedom of such re-scheduling, parametric analysis
is useful. The model suitable for such an analysis is a parametric time-interval
automaton(PTIA), which is a subset of a parametric timed automaton[1]. It has
only a time interval with upper- and lower-bound parameters as a relative timing
constraint between consecutive actions. In this paper, at first, we propose an ab-
straction algorithm of PTIA which preserves global timed bisimulation[2]. Global
timed bisimulation is weaker than timed weak bisimulation and a sufficient con-
dition for timed testing equivalence. Then, we also show that after applying our
algorithm, the reduced PTIA has no internal actions, and thus the problem deriving
a parameter condition in order that given two models are global timed bisimilar can
be reduced to the existing parametric strong bisimulation equivalence checking[3].
Keywords: parametric timed automata, equivalence checking, timed testing equiv-
alence, global timed bisimulation, abstraction

1 Introduction

1.1 Purpose and Objective

In recent years, an effective development methodology for hardware/embedded-software
with real time constraints is desired. Precise implementation of timing constraints for
I/O behavior is becoming important not only in embedded systems like mobile phones
but also in infrastructure systems for transportation, medicine, finance and defense.
But, as described in [4], it is almost impossible to verify the timing properties of real
time systems by formal methods only. In this paper, we consider the following real
time system development methodology: first, a skeleton code including only I/O ac-
tions with real time requirements as comments like Esterel with pragmas [5] is given;
secondly, correctness of the I/O timing behavior in the skeleton code is verified by
some heuristic method, as in [4]; and finally, refinement of the skeleton code for de-
tailed implementation is performed. In this methodology, it is important to verify the
equivalence of I/O timing behavior between the initial design code and its refined code.
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We also take into consideration in the verification that branch restructuring of codes is
performed in the refinement of the skeleton code. Moreover, it would be useful if we
put real time constraints containing parameters (e.g. upper-/lower-bounds), and derive
automatically the constraint (e.g. the minimum or maximum value allowed) of param-
eters in which the equivalence is preserved. Such an analysis is called a parametric
analysis[1, 6]. To capture the control flow with time constraints and perform a para-
metric analysis, we propose a parametric time-interval automaton (PTIA), which is a
subset of a parametric timed automaton[1] having only a time interval with upper- and
lower-bound parameters as a relative timing constraint between consecutive actions.
We show that global timed bisimulation (GTB) equivalence checking for PTIAs can be
reduced to existing parametric strong timed bisimulation equivalence checking, where
GTB is a weakening of timed weak bisimulation, in that internal branch structures are
ignored.

1.2 Related Work

There are some proposals of parametric analyses for bisimulation equivalence. For
bisimulation without time, parametric strong/weak bisimulation equivalence checking
algorithms on STG (Symbolic Transition Graph) and STGA (STG with Assignment)
are already proposed[7, 8, 9]. For timed strong bisimulation equivalence (bisimula-
tion equivalence where both time and all actions are considered observable), paramet-
ric equivalence checking is proposed in [3]. However, for timed weak bisimulation
equivalence (bisimulation equivalence where time is considered observable and inter-
nal actions are not considered observable), as far as we know, parametric equivalence
checking algorithm has not been proposed. As for research about real time software
design methodology, in [5] Esterel is extended to describe software with real time con-
straints given as comments and then timing properties are verified by model checker.

1.3 Why Global Timed Bisimulation?

In the development of real time software, several optimizations to meet real time re-
quirements are usually done by using a profiler. In particular, branch restructuring
plays an important role in the optimization. It is true that timed weak bisimulation was
proposed to determine equivalence of processes considering both time and observabil-
ity [10], but as pointed out by [2], timed weak bisimulation may not be suitable for
equivalence checking of real time software in the presence of optimization via branch
restructuring. Therefore we employ GTB to determine equivalence of processes, since
GTB is a weakening of timed weak bisimulation in that internal branch structures are
ignored.

1.4 Brief Description of Proposed Method

We take a skeleton code and a refined code, and convert them to PTIAs as internal
representations, where the skeleton code describes I/O behaviors and real time require-
ments between some of the I/O actions. Note that we also put a parametric timing
constraint to each internal or I/O action which has no real time requirement. (Assign-
ing some values to such parameters means giving some concrete scheduling of the
behavior.) The refined code is designed by inserting detailed internal actions into the
skeleton code and by dividing some real time constraints between I/O actions in the
skeleton code into constraints between I/O and internal actions. In this translation,
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first, if input actions are described in branch or loop conditions, we delete such actions
from branch and loop conditions while preserving real time constraints by inserting
temporal variables, and second, all branches are abstracted to nondeterministic ones.
Third, we unroll all the loops under the assumption that each loop has an upper bound
for the number of loop iterations. Fourth, we convert the obtained nondetermistic and
loop-free programs into PTIAs whose transition graphs are DAGs(Directed Acyclic
Graphs). Finally, we merge a series of internal actions between I/O actions along with
control flow while preserving real time constraints. With this transformation, we can
convert the original PTIA to a PTIA without internal actions, so that we can apply
an existing parametric timed strong bisimulation equivalence checking algorithm to
compare an initial skeleton code and a refined implementation code.

1.5 Paper Organization

In Section 2, we define the PTIA model and its operational semantics by defining a
mapping from the model to a timed extension of labelled transition system (timed LTS).
Section 3 describes the definition of global timed bisimulation on the timed LTS. We
propose a transformation algorithm on the PTIA and prove that the transformation
preserves global timed bisimulation equivalence in Section 4. In Section 5, we propose
a parametric global timed bisimulation equivalence checking algorithm. Conclusions
and future directions are given in Section 6.

2 Parametric Time-Interval Automata

Let Act andVar denote a set of actions and a set of variables, respectively. We de-
note the set of real-numbers byR and the set of non-negative real-numbers byR+ Let
Intvl(Var) denote a set of formulas of the form eithere1 ≤ t, t ≤ e2, ore1 ≤ t ∧ t ≤ e2,
wheree1 ande2 are linear arithmetic expression (that is, only addition and subtraction
are allowed) over variables inVar \ {t} and constants inR, andt ∈ Var is the special
variable representing the elapsed time since the latest visit of the current control state.

Definition 1 Aparametric time-interval automatonis a tuple〈S, {t},PVar,E, sinit〉, where
S is a finite set ofcontrol states(also referred to aslocations), t ∈ Var is theclock vari-
able, PVar⊆ Var is a finite set ofparameters, E ⊆ S× (Act∪ {τ})× Intvl(PVar)×S is
a transition relation,sinit is the initial state. Note thatτ represents aninternal action.
On the other hand, every other action inAct represents anobservable action. We write

si
a@?t[P]−→ sj if (si ,a,P, sj) ∈ E. 2

Informally, a transitionsi
a@?[P]−→ sj means that the actionacan be executed fromsi when

the values of both the clock variablet and parameters satisfy the formulaP (called a
guard condition), and after executed, the state moves intosj and the clock variablet
is reset to zero. In any states, the value of the clock variablet increases continuously,
representing the time passage.

Formal semantics of parametric time-interval automata is similar to general para-
metric timed automata, which is defined as follows. The values of clocks and param-
eters are given by a functionσ : ({t} ∪ PVar) 7→ R. We refer to such a function as a
value-assignment. We represent a set of all value-assignments byVal. We writeσ |= P
if a formula P ∈ Intvl(Var) is true under a value-assignmentσ ∈ Val. The semantic
behavior of a parametric timed automaton is given as a semantic transition system on
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concrete states. A concrete state is represented by (s, σ), wheres is a control state and
σ is a value-assignment. LetCS def

= {(s, σ)|s ∈ S, σ ∈ Val} be a set of concrete states.
The semantic model is atimed labelled transition system (timed LTS), which is defined
as follows. A state of a timed LTS is a concrete state inCS. A transition of a timed LTS
is either adelay-transitionor anaction-transition. A delay transition represents a time
passage within the same control states ∈ S, whereas an action transition represents an
execution of an action which changes the control state to the next ones′. Formally, a
timed labelled transition system is defined as follows.

Definition 2 A timed labelled transition system(a timed LTSfor short) for a paramet-
ric time-interval automaton is a labelled transition system〈CS, Act∪ R+ ∪ {τ}, CE,
(sinit , σinit [t → 0])〉, where a set of states isCS, a set of labels isAct∪R+∪{τ}, an initial
state is(sinit , σinit [t → 0]), and a transition relationCE ⊆ CS× (Act∪R+ ∪ {τ}) ×CS
is defined as the minimum set that satisfies the following conditions (in the following,

we write(s, σ)
l−→ (s′, σ′) if ((s, σ), l, (s′, σ′)) ∈ CE):

• (s, σ)
v−→ (s, σ + v) if v ∈ R+,

• (s, σ)
a−→ (s′, σ[t → 0]) if a ∈ Act∪ {τ}, s

a@?t[P]−→ s′, andσ |= P,

whereσ + v andσ[t → 0] are the value-assignments derived fromσ, which is defined
as follows:

For x ∈ PVar∪ {t}
(σ + v)(x) def

=

{
σ(x) + v if x ∈ {t},
σ(x) otherwise.

(σ[t → 0])(x) def
=

{
0 if x ∈ {t},
σ(x) otherwise.

2

3 Global Timed Bisimulation

In this section, we briefly recall the definition of global timed bisimulation (GTB) pro-
posed in Ref. [2], as well as the definition of the traditional timed weak bisimulation[11,
10] (TWB) and its relation to the GTB.

3.1 Timed Weak Bisimulation

In this section, we will briefly give the definition of timed weak bisimulation.

Definition 3 A timed weak transition relation→w on states of a timed LTS〈CS,Act∪
R+ ∪ {τ},CE, (s0, σ0)〉 is defined as follows:

1.
τ−→w

def
= ((

0→)∗(
τ→)∗)∗

2. (s, σ)
v−→w (s′, σ′) (v ∈ R+)

def
= ∃v1, v2, ..., vn ∈ R+ [ v =

∑n
i=1 vi

∧∃s1, σ1, σ
′
1, s2, σ2, σ

′
2, ..., sn, σn, σ

′
n

s.t. (s, σ)
τ−→w (s1, σ1)

v1−→ (s1, σ
′
1) · · · τ−→w (sn, σn)

vn−→
(sn, σ

′
n)

τ−→w (s′, σ′) ]
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3.
a−→w (a ∈ Act) def

=
τ−→w

a−→ τ−→w 2

By using this transition relation, timed weak bisimulation is defined as follows:

Definition 4 A binary relationRon states of a timed LTS is atimed weak bisimulation
if the following condition hold:

If (s1, σ1)R(s2, σ2), then for anyα ∈ Act∪ R+ ∪ {τ},
1. ∀ s′1, σ

′
1[ (s1, σ1)

α−→w (s′1, σ
′
1) ⇒

∃s′2, σ
′
2 [ (s2, σ2)

α−→w (s′2, σ
′
2) ∧ (s′1, σ

′
1)R(s′2, σ

′
2) ] ] ,

and,

2. ∀ s′2, σ
′
2[ (s2, σ2)

α−→w (s′2, σ
′
2) ⇒

∃s′1, σ
′
1 [ (s1, σ1)

α−→w (s1, σ
′
1) ∧ (s′1, σ

′
1)R(s′2, σ

′
2) ] ]

We say that states(s1, σ1) and (s2, σ2) are timed weak bisimulation equivalent,
denoted by(s1, σ1) ≡twb (s2, σ2) if and only if there exists a timed weak bisimulationR
such that(s1, σ1) R (s2, σ2). 2

3.2 Global Timed Bisimulation

Global timed bisimulation[2] is a variant of bisimulation equivalence which consider
both timing and observability. Unlike timed weak bisimulation, global timed bisimula-
tion does not distinguish the difference of branching structures of internal transitions.

Firstly, in order to make it suitable for our formalism, we rephrase the definition
of a static generalized transition relation−→gt and a dynamic generalized transition

relation
α−→gt, which are proposed in Ref. [2].

The intention of the following definition is that, from the original timed LTS, we

want to construct a new timed LTS using−→gt and
α−→gt such that the constructed LTS

contains many other possible branching structures derived from the original one, which
is practically indistinguishable by any external observer (that is, anyrealistic tester).

Definition 5 LetOGT((s, σ)) be the set of all outgoing transitions of(s, σ), that is, the
set of all transitions whose source state is(s, σ). A static generalized transition relation

−→gt (also denoted by
ε−→gt) and adynamic generalized transition relation

α−→gt on
states of a timed LTS are defined as follows:

1. preserving the timed weak transition relation

(a) If (s, σ)
τ−→w (s′, σ′), then(s, σ) −→gt (s′, σ′).

(b) For eachα ∈ Act∪ R+, if (s, σ)
α−→w (s′, σ′), then(s, σ)

α−→gt (s′, σ′).

2. simultaneous choice of internal transitions (see Fig. 1)

If OGT((s, σ)) =
⋃

i∈I {(s, σ)
αi−→ (sαi ,i , σαi ,i)} ∪

⋃
j∈J{(s, σ)

τ−→ (sj , σ j)} (αi ∈
Act∪ R+), then(s, σ) −→gt (snew, σ) and for all j ∈ J, (snew, σ)

τ−→gt (sj , σ j),
wheresnew is a newly introduced control state.

3. forward resolution of nondeterminism (see Fig. 2)

If OGT((s, σ)) =
⋃

i∈I {(s, σ)
αi−→ (sαi ,i , σαi ,i)} ∪

⋃
j∈J{(s, σ)

a−→ (sj , σ j)} (αi ∈
Act∪ R+ anda ∈ Act), then for eachj ∈ J, (s, σ) −→gt (s( j)

new, σ), (s( j)
new, σ)

a−→gt
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Figure 1: Simultaneous Choice of Internal Actions
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Figure 2: Forward Resolution of Nondeterminism

(sj , σ j), and (s( j)
new, σ)

αi−→gt (sαi ,i , σαi ,i) for any i ∈ I , wheres( j)
new is a newly

introduced control state depending on the choice ofj.

4. forward execution of an internal transition (see Fig. 3)

If OGT((s, σ)) =
⋃

i∈I {(s, σ)
αi−→ (sαi ,i , σαi ,i)} ∪ {(s, σ)

β−→, (sβ, σβ)} (αi ∈ Act∪
R+ andβ ∈ Act∪ R+) and if (sβ, σβ) −→gt (s′β, σ

′
β) for someβ, then(s, σ) −→gt

(s(β)
new, σ), (s(β)

new, σ)
β−→gt (s′β, σ

′
β) and for anyi ∈ I , (s(β)

new, σ)
αi−→gt (sαi ,i , σαi ,i),

wheres(β)
new is a newly introduced control state depending on the choice ofβ.

5. simultaneous execution of an observable action (see Fig. 4)

If OGT((s, σ)) =
⋃

i∈I {(s, σ)
a−→ (si , σi)}∪⋃ j∈J{(s, σ)

α j−→ (sα j , j , σα j , j)} (a ∈ Act

andα j ∈ Act∪ R+), then for any non-empty subsetI ′ ⊆ I , (s, σ)
a−→gt (s(I ′)

new, σ)

and for anyi′ ∈ I ′ (s(I ′)
new, σ)

τ−→gt (si′ , σi′), wheres(I ′)
new is a newly introduced

control state depending on the choice ofI ′.

6. synchronized forward time passage of internal transitions (see Fig. 5)

Let=⇒gt
def
= (−→gt)∗,

a
=⇒gt

def
==⇒gt

a−→gt=⇒gt for a ∈ Act, and
v

=⇒gt
def
=

v1−→gt · · · vn−→gt

for v ∈ R+ if there exists somev1, . . . , vn such thatv = v1 + · · · + vn.

If OGT((s, σ)) =
⋃

i∈I {(s, σ)
αi−→ (sαi ,i , σαi ,i)} ∪

⋃
j∈J{(s, σ)

τ−→ (sj , σ j)} (αi ∈
Act ∪ R+), and if for v ∈ R+, (sj , σ j)

v
=⇒gt (s(v)

j , σ
(v)
j ) for all j ∈ J, then

(s, σ)
v−→gt (s(v)

new, σ
(v)
new) and (s(v)

new, σ
(v)
new)

τ−→gt (s(v)
j , σ

(v)
j ) for all j ∈ J, where

βP βP′ ⇒gt→

1Q nQ

β1α
nα

βP′
1Q nQ

β1α
nα

βP

gt→),( σs ),( σβ )(
news

Figure 3: Forward Execution of an Internal Transition
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Figure 5: Synchronized Forward Time Passage of Internal Transitions

s(v)
new is a newly introduced control state depending on the time valuev, andσ(v)

new

is a value assignment depending onv, s, andσ such that(s, σ)
v−→ (s, σ(v)

new). 2

Using these transition relations, global timed bisimulation is defined as follows.

Definition 6 A binary relationRon states of a timed LTS is aglobal timed bisimulation
if the following condition holds:

If (s1, σ1)R(s2, σ2), then for anyα ∈ Act∪ R+ ∪ {ε},

1. ∀ s′1, σ
′
1[ (s1, σ1)

α−→gt (s′1, σ
′
1) ⇒

∃s′2, σ
′
2 [ (s2, σ2)

α
=⇒gt (s′2, σ

′
2) ∧ (s′1, σ

′
1)R(s′2, σ

′
2) ] ] ,

and,

2. ∀ s′2, σ
′
2[ (s2, σ2)

α−→gt (s′2, σ
′
2) ⇒

∃s′1, σ
′
1 [ (s1, σ1)

α
=⇒gt (s1, σ

′
1) ∧ (s′1, σ

′
1)R(s′2, σ

′
2) ] ]

We say that states(s1, σ1) and (s2, σ2) are global timed bisimulation equivalent,
denoted by(s1, σ1) ≡gtb (s2, σ2) if and only if there exists a global timed bisimulation
Rsuch that(s1, σ1) R (s2, σ2). 2

As concerned to the relationship between timed weak bisimulation and global timed
bisimulation, the following proposition holds[2].

Proposition 1 For any two states(s1, σ1) and (s2, σ2) of a timed LTS, if(s1, σ1) ≡twb

(s2, σ2), then(s1, σ1) ≡gtb (s2, σ2). 2

4 Abstraction Algorithm

In this section, we propose some abstraction rules to eliminate internal actions of the
PTIA, and show that their rules preserve global timed bisimulation equivalence.
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In the following, firstly, we describe some restrictions on PTIAs which ensure the
correctness of the proposed abstraction rules. Then, we describe the key idea and the
details of the proposed abstraction rules. Finally, we show that the abstraction rules
preserve global timed bisimulation equivalence.

4.1 Restrictions for Parametric Time-Interval Automata

In order to apply our proposed abstraction rules, we impose the following restrictions
[RLoopFree], [RInitStability], and [RObsBounded] for an input PTIAM .

[RLoopFree] M contains no loops, that is, the transition graph ofM is a DAG1.

[RInitStability] The initial statesinit of M must be either astablestate, or reachable to
a stable state by deterministic internal transitions (i.e. there are no branch from
initial state to a stable state). Here, astablestate is a state whose every outgoing
transition is observable.

[RObsBounded] Any internal transition contained inM is observably bounded, that
is, for any execution pathπ of M, there exists an extensionπ′ of the pathπ in
that any internal transition is appeared between some observable transitions.

Formally, an internal transitions
τ@t[P]−→ s′ contained inM is observably bounded

if for any transition sequencesinit
α1@?t[P1]−→ s1 · · · sk−1

αk@?t[Pk]−→ s
τ@t[P]−→ s′ (α1, . . . , αk ∈

Act∪ {τ}, P1, . . . ,Pk,P ∈ Intvl(Var)) of M, there exists somei ∈ {1, . . . , k} such

thatαi ∈ Act, and for any transition sequences
τ@t[P]−→ s′

β1@?t[Q1]−→ s1 · · · sk−1
βk@?t[Qk]−→

sk (β1, . . . , βk ∈ Act∪ {τ}, Q1, . . . ,Qk ∈ Intvl(Var)), there is an extension of the

sequencesk
βk+1@?t[Qk+1]−→ sk+1 · · · sk+l−1

βk+l@?t[Qk+l ]−→ sk+l (βk+1, . . . , βk+l ∈ Act∪ {τ},
Qk+1, . . . ,Qk+l ∈ Intvl(Var)) and somei ∈ {1, . . . , k + l} such thatβi ∈ Act.

4.2 Abstraction Rules for Parametric Time-Interval Automata

For any internal transition that is directly preceding by some observable transition, we
can eliminate the internal transition based on the following principles:

1. The internal nondeterminism caused by the internal transition can be converted
into the corresponding nondetermistic choice of the directly preceding observ-
able transition, just the same as the classical equational theory of testing equivalence[12].

2. On the contrary, the time passage caused by the internal transition can be moved
into those of the directly succeeding transitions which are either internal or ob-
servable.

This is the key idea for preserving testing equivalence considering time. Since any
internal action is observably bounded, by the restriction [RObsBounded], the sequence
of internal actions can be completely eliminated from the beginning internal action
(which is directly preceding by some observable action) to the ending one (which is
directly succeeding by some observable action).

However, if we want to transform some subgraph of the entire transition graph
of M, we must ensure that such a subgraph transformation preserves equivalence of

1For any loop contained in input programs, we assume that there exists a maximum numberk of iteration
of the loop. Note that all branchs in the input programs are abstracted to nondeterministic ones
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Figure 6: Congruence Property w.r.t. GTB

the entire transition graph. To make the discussion simple, we impose the restriction
[RLoopFree], we have only to consider the case that the transition graph is a DAG.
Furthermore, we prove that if the context of the subgraph under transformation is in
some form, such subgraph transformation preserves equivalence of the entire transition
systemM. To ensure that all internal transition can be eliminated by such a context-
sensitive transformation, we need the restriction [RInitStability].

The proposed abstraction rules are the followings:

1. abstraction for sequential structures

2. abstraction for branching structures

The details are described in the following sections.

4.2.1 Context Sensitivity of Abstraction Rules

Consider that some subgraphMsub of the entire transition graph of PTIAM is replaced
into some equivalent subgraphM′sub. Such a transformation does not always preserve
equivalence of the entire transition graph. We will show that ifMsubappears the context
shown in Fig 6, then the subgraph transformation fromMsub to M′sub preserves global
timed bisimulation equivalence.

Theorem 1 (Congruence Property for Subgraph Transformation of PTIA w.r.t GTB)
Let M =〈S, {t},PVar,E, sinit〉 be a PTIA, ands1, s2 ∈ S.Let ŝ1 and ŝ2 be new states ob-

tained by adding the same observable branch froms1 and s2, that is, ŝ1
α@?t[P]−→ s3 and

ŝ2
α@?t[P]−→ s3 for α ∈ Act, P ∈ Intvl(Var), ŝ1

β@?t[Q]−→ s′1 if s1
β@?t[P]−→ s′1 for β ∈ Act∪ {τ},

Q ∈ Intvl(Var), andŝ2
β@?t[Q]−→ s′2 if s2

β@?t[P]−→ s′2 for β ∈ Act∪ {τ}, Q ∈ Intvl(Var).
Then, for anyσ1, σ2 ∈ Val, (ŝ1, σ1) ≡gtb (ŝ2, σ2) if (s1, σ1) ≡gtb (s2, σ2).

Proof. (sketch) Consider the executable transitions from(ŝ1, σ1) and(ŝ2, σ2). If some
observable transitionβ , α is executed (after some time consumption) from(ŝ1, σ1),
the behavior ofMsub must be chosen (otherwise,α must be observed). From the as-
sumption(s1, σ1) ≡gtb (s2, σ2), and the definition of̂s1 andŝ2, β is also executable from
(ŝ2, σ2) (after the same time consumption) and the behavior ofM′sub is chosen. The fol-
lowing behaviors are obviously global timed equivalent since(s1, σ1) ≡gtb (s2, σ2).
The same is true if(ŝ1, σ1) and(ŝ2, σ2) are exchanged.
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Figure 7: Illustration of Proof of Theorem 1

Next, consider thatα is executed from(ŝ1, σ1). If the behavior ofM′ is chosen,
obviously(ŝ2, σ2) also chooseM′ by the similar discussion above, and vice versa.

Finally, suppose that choice was not made after the execution ofα. As illustrated
in Fig. 7, we can derive a generalized transition relation for such a transition from
(ŝ1, σ1) by applying rules 2,4,5,6 of Definition 5. From the assumption(s1, σ1) ≡gtb
(s2, σ2), we can also derive the generalized transition relation from(ŝ2, σ2) which
makes weakly bisimilar to(ŝ1, σ1), and vice versa. Once some observable actionγ
is executed, obviously they can simulate the following behaviors each other. From the
discussions above, we can prove the theorem.

4.2.2 Abstraction for Sequential Structures

The abstraction for sequential structures is illustrated in Fig. 8. In the left half of

Fig 8, the transitions2
τ@?t[x2≤t≤y2]−→ s3 is internal and its directly preceding transition

s1
α@?t[x1≤t≤y1]−→ s2 is observable. Its siblings2

β@?t[x3≤t≤y3]−→ s4 and its directly succeed-

ing transitions3
γ@?t[x4≤t≤y4]−→ s5 may be either internal or observable. In this case,

we eliminate the internal transitions2
τ@?t[x2≤t≤y2]−→ s3 as the right half of Fig 8. In

this abstraction, the nondetermistic behavior of the eliminated internal transition is
converted into the nondeterministic choice of the directly preceding observable tran-

sitions s1
α@?t[x1≤t≤y1]−→ s2 and s1

α@?t[x1≤t≤y1]−→ s3. On the other hand, the time passage
of the eliminated internal transition is merged into the directly succeeding transitions

s2
γ@?t[x2+x4≤t≤y2+y4]−→ s5 ands3

γ@?t[x2+x4≤t≤y2+y4]−→ s5.
Formally, the operation for merging two time intervals is defined as follows:

Definition 7 Θ is a binary operator onIntvl(Var) such that for anyP,Q ∈ Intvl(Var),
(PΘQ)(t) def

= ∃t1, t2[P(t1) ∧ Q(t2) ∧ t = t1 + t2]. 2

Then, the following lemma holds:

Lemma 4.1 Letα ∈ Act andβ, γ ∈ Act∪ {τ}. Let M and M′ be PTIAs whose sets of

transtions are{ s1
α@?t[P1]−→ s2, s2

τ@?t[P2]−→ s3, s2
β@?t[P3]−→ s4, s3

γ@?t[P4]−→ s5 } and{ s′1
α@?t[P1]−→

s′2, s′1
α@?t[P1]−→ s′3, s′2

β@?t[P3]−→ s4, s′2
γ@?t[P2ΘP4]−→ s5 s′3

γ@?t[P2ΘP4]−→ s5 }, respectively. Then,
for any assignmentσ ∈ Val, (s1, σ) ≡gtb (s′1, σ).
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Figure 8: Abstraction for Sequential Structures
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Figure 9: Semantic Models forM andM′ of Lemma 4.1

Proof. (sketch) The semantic model ofM andM′ are illustrated in Fig. 9. In Fig. 9, time
transitions are represented symbolically by the variablesti (i ∈ {1,2,3,4}). Eachti can
be any possible value in the set{t|Pi(t)}. For simplicity, we assume thatt4 ≤ t2. The case
t4 < t2 is similar. From Definition 5, the transition graphs based on the generalized
transition relation ofM′ is constructed as follows. First, rule 5 of Definition 5 is
applied (Fig. 10). Next, rule 6 is applied twice (Fig. 11) . It is easy to see that the
obtained generalized transition graphs ofM in Fig. 9 andM′ in Fig. 11 are weakly
bisimilar. Therefore, from Definition 6,(s1, σ) and(s′1, σ) are global timed bisimilar.

More general case is that there are some outgoing/incoming transitions ons1, s2

ands3, as shown in Fig 12. In this case, all the source states of the incoming transition
of s2 must be stable in order to satisfy the congruence property in Theorem 1. In Fig 12,
the outgoing transitions of the states1 ands6 are observable. If this is satisfied, then all
the incoming transitions ofs2 are converted into the nondeterministic choice, as shown

in Fig 13. The internal transitions2
τ@?t[x5≤t≤y5]−→ s3 is eliminated similarly, but since

s3 has some incoming transitionss8
α′@?t[x6≤t≤y6]−→ s3 ands9

β′@?t[x7≤t≤y7]−→ s3, these tran-

sitions and the original outgoing transitionss3
γ′@?t[x8≤t≤y8]−→ s5 ands3

δ′@?t[x9≤t≤y9]−→ s10

of the states3 are preserved. Then, the time passage of the transitions2
τ@?t[x5≤t≤y5]−→

11
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Definition 5
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Figure 11: Generalized Transition Relation ofM′ derived from Fig. 10 by rule 6 of
Definition 5

s3 are moved into the transitionss2
γ′@?t[x5+x8≤t≤y5+y8]−→ s5, s′2

γ′@?t[x5+x8≤t≤y5+y8]−→ s5,

s2
δ′@?t[x5+x9≤t≤y5+y9]−→ s10, ands′2

δ′@?t[x5+x9≤t≤y5+y9]−→ s10, similarly.
Formally, the abstraction rule for sequential structures is defined as follows:

Definition 8 An Abstraction rule for Sequential Structuresfor PTIA is defined as a
transformation functionAbsS eqon PTIA as follows:

12
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[
∧

i∈I {s1,i
αi@?t[P1,i ]−→ s2} ∧ s2

τ@?[P2]−→ s3 ∧∧
j∈J{s2

β j@?[P3, j ]−→ s4, j} ∧∧
k∈K{s3

γk@?[P4,k]−→
s5,k ]

AbsSeq
=⇒ [

∧
i∈I {s1,i

αi@?t[P1,i ]−→ s2 ∧ s1,i
αi@?[P1,i ]−→ s3} ∧∧

j∈J{s2
β j@?[P3, j ]−→

s4, j} ∧ ∧
k∈K{s2

γk@?[P2ΘP4,k]−→ s5,k ∧ s3
γk@?[P2ΘP4,k]−→ s5,k}], where eachs1,i

(i ∈ I ) is a stable state,αi ∈ Act, β j , γk ∈ Act∪ {τ}, P1,i ,P2,P3, j ,P4,k ∈
Intvl(Var) for anyi ∈ I , j ∈ J, k ∈ K.

If there are some other incoming transitionssl
6

δl@?t[Ql ]−→ s3 (l ∈ L), then a
new states′3 is created and all the incoming and outgoing transitions ofs3

13



0s

1s '1s

ns

[ ]221 yty ≤≤ [ ]221 ' yty ≤≤

[ ]211 xtx ≤≤ [ ]211 ' xtx ≤≤
1α

2α

1β

2β
( )11 βα =
( )22 βα =

Abs 1s

ns

0s

[ ]221 yty ≤≤

[ ]211 xtx ≤≤
1α

2α

one of the two 
sequences is left

action sequences and corresponding 
time constraints are the same

Figure 14: Abstraction for Branching Structures

is copied into those ofs′3 before applying this rule.

2

We consider the abstraction functionAbsS eq() as the mapping from a PTIAM to
the modified PTIAM′ by applying one of the abstraction rules in Definition 8. We also
considerAbsS eq() as the mapping from control states ofM to the corresponding states
of M′.

Then, we have the following theorem:

Theorem 2 For any stable states, if s
α@?t[P]−→ s1

τ@?t[Q]−→ s2, any pathπ beginning withs

contains no loops, and the internal transitions1
τ@?t[Q]−→ s2 is observably bounded, then

for anyσ, (s, σ) ≡gtb (AbsS eq(s), σ).
Proof. (sketch) From Theorem 1 and Lemma 4.1, we can easily prove the general case
by using induction on the number of the branches and using the congruence property
(Theorem 1).

4.2.3 Abstraction for Branching Structures

The abstraction for branching structures is illustrated in Fig. 14. It is clear that any ex-
ternal observer cannot find which branch is selected if the observable action sequences
and the corresponding time constraints are the same. Thus, we leave just one of these
sequences2. If there are some outgoing/incoming transitions at some eliminated control
state, we move those transitions to the corresponding control state of another branch
which is left.

Formally, the abstraction rule for branching structures is defined as follows:

Definition 9 An Abstraction rule for Branching Structuresfor PTIA is defined as a
transformation functionAbsBranchon PTIA as follows:

[ s0
α1@?t[P1]−→ s1

α2@?t[P2]−→ s2
α2@?t[P3]−→ · · · αn@?t[Pn]−→ sn

∧ s0
β1@?t[Q1]−→ s′1

β2@?t[Q2]−→ s′2
β2@?t[Q3]−→ · · · βn@?t[Qn]−→ sn)

2Note that the abstraction rule for branching structures is essentially not required for eliminating internal
actions— they can be eliminated only by using the abstraction rules for sequantial and loop structures. The
abstraction rule for branching structures is just for reducing the complexity (size) of the model. It is also
possible to eliminate branches having different time constraints by using the operator “∪”. However, here
we do not include such a rule since it does not generally reduce the essential complexity of the model (for

example,s
a@?t[P1∪P2]−→ s′ is always the same ass

a@?t[P1]−→ s′ ∧ s
a@?t[P2]−→ s′).

14



AbsBranch
=⇒ [ s0

α1@?t[P1]−→ s1
α2@?t[P2]−→ s2

α3@?t[P3]−→ · · · αn@?t[Pn]−→ sn],
whereα1, α2, ..., αn, β1, β2, ..., βn ∈ Act∪ {τ} andαi = βi andPi = Qi for
all i ∈ {1, . . . , n}.
If there are some other outgoing transitions′i

γ@?t[R]−→ s′′i from s′i (2 ≤ i ≤ n),

then we replace it withsi
γ@?t[R]−→ s′′i . The case of incoming transition tos′i

is similar.

2

Similar toAbsS eq(), we consider the abstraction functionAbsBranch() as the map-
ping from a PTIAM to the modified PTIAM′

Since the following theorem is rather straightforward, here we only show the re-
sults.

Theorem 3 If s0
α1@?t[P1]−→ s1

α2@?t[P2]−→ s2
α2@?t[P3]−→ · · · αn@?t[Pn]−→ sn and s0

β1@?t[Q1]−→
s′1

β2@?t[Q2]−→ s′2
β2@?t[Q3]−→ · · · βn@?t[Qn]−→ sn), then for anyσ, (s0, σ) ≡gtb (AbsBranch(s0), σ).

2

4.3 Terminating Property of Abstraction Algorithm

Our proposed abstraction algorithm is to apply repeatedly the abstraction rules in Sec-
tion 4.2 until no changes occur. In this section, we show that this abstraction algorithm
is ensured to terminate.

Firstly, we define the abstraction algorithm more precisely.

Definition 10 Abstraction Algorithmis defined as follows:

1. Input PTIAM.

2. Apply Abstraction Rule for Sequential Structures toM.

3. Apply Abstraction Rule for Branching Structures toM.

4. Repeat (2)-(3) until no changes occurred inM.

5. Output PTIAM. 2

Definition 11 Let Abs() be the abstraction function which represents the application
of eitherAbsS eq() or AbsBranch(). 2

Then, the following theorem holds.

Theorem 4 For any PTIAM, there exists some natural numbern such thatAbsn(M)
contains no internal transitions. Here,Absn(M) means the PTIA to which the abstrac-
tion rules are appliedn times.
Proof. (sketch) From Definition 11, it can be proven that the functionAbs() generally
monotonically decreases the number of internal transitions. Moreover, it can be shown
that any internal transitions can be eliminated by the proposed abstraction rules if
their directly preceding transitions are observable and they are observably bounded.
Furthermore, since the transition graph is a DAG and the initial state is stable, we can
repeatedly apply the abstraction rules from the top to the bottom of the DAG. From the
fact above, we can prove the theorem.
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From this theorem, the following corollary immediately holds.

Corollary 1 The abstraction algorithm in Definition 10 eventually terminates for any
input M. 2

5 Equivalence Checking

In this section, we show that parametric global timed bisimulation equivalence check-
ing on PTIA is reduced to parametric timed strong bisimulation checking on PTIA
without internal transitions.

By applying the algorithm of Definition 10 to two PTIAsM1 and M2, we obtain
two PTIAsAbs(M1) andAbs(M2), which have no internal transitions and global timed
bisimulation equivalent toM1 andM2, respectively. On the other hand, from the result
of Ref.[3], we can obtain the parameter condition in order thatAbs(M1) andAbs(M2)
are timed strong bisimulation equivalent. Since timed strong bisimulation equivalence
implies global timed bisimulation equivalence, and global timed bisimulation equiva-
lence satisfies the transitive law, the obtained parameter condition is also the parameter
condition in order thatM1 andM2 are global timed bisimulation equivalent.

Definition 12 A binary relationRon states of a timed LTS is atimed strong bisimula-
tion if the following condition hold:

If (s1, σ1)R(s2, σ2), then for anyα ∈ Act∪ R+ ∪ {τ},

1. ∀ s′1, σ
′
1[ (s1, σ1)

α−→ (s′1, σ
′
1) ⇒

∃s′2, σ
′
2 [ (s2, σ2)

α−→ (s′2, σ
′
2) ∧ (s′1, σ

′
1)R(s′2, σ

′
2) ] ] ,

and,

2. ∀ s′2, σ
′
2[ (s2, σ2)

α−→ (s′2, σ
′
2) ⇒

∃s′1, σ
′
1 [ (s1, σ1)

α−→ (s1, σ
′
1) ∧ (s′1, σ

′
1)R(s′2, σ

′
2) ] ]

We say that states(s1, σ1) and (s2, σ2) are timed strong bisimulation equivalent,
denoted by(s1, σ1) ≡tsb (s2, σ2) if and only if there exists a timed strong bisimulation
Rsuch that(s1, σ1) R (s2, σ2).

The following relationship holds among timed strong bisimulation, timed weak
bisimulation, and global timed bisimulation.

Proposition 2 For any two states(s1, σ1) and (s2, σ2) of a timed LTS,(s1, σ1) ≡tsb

(s1, σ1) implies (s1, σ1) ≡twb (s1, σ1), and (s1, σ1) ≡tsb (s1, σ1) implies (s1, σ1) ≡gtb
(s1, σ1). 2

From the discussions above, the following theorem holds.

Theorem 5 For any PTIAsM1 and M2, if there exists some natural numbersn andm
such thatAbsn(M1) andAbsm(M2) contain no internal transitions, andAbsn(M1) ≡tsb

Absm(M2) if and only ifM1 ≡gtb M2. 2
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6 Conclusion

In this paper, we proposed a parametric time-interval automaton(PTIA) and its trans-
formation algorithm to eliminate internal actions while preserving global timed bisim-
ulation, and showed that parametric global timed bisimulation equivalence checking on
PTIA can be reduced to the existing parametric timed strong bisimulation equivalence
checking method without internal transitions.

The future work is to relax some of the restrictions imposed on target PTIAs, espe-
cially for the loops. For preserving GTB, we confirmed that abstraction is still possible
by the proposed abstraction rules in some cases containing loops, but there are some
weird examples the proposed abstraction rules cannot be applied. On the other hand,
for preserving timed trace equivalence, we are successfully developed the abstraction
algorithm for unrestricted PTIAs. We are currently working on PTIAs containing vari-
ous loop structures and developing more general abstraction algorithms for preserving
GTB and/or timed trace equivalence.
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