A Global Timed Bisimulation Preserving Abstraction
for Parametric Time-Interval Automata

Akio Nakata, Tadaaki Tanimoto, Suguru Sasaki, Teruo Higashino

Department of Information Networking,
Graduate School of Information Science and Technology,
Osaka University, Suita, Osaka 565-0871, Japan

Abstract

In the development of real-time (communicating) hardware or embedded-software
systems, it is frequently the case that we want to rédpimize the system'’s in-
ternal behavior while preserving the external timgdl behavior (that is, the inter-
face protocol). In such a design refinement, modification of the systems’ internal
branching structures, as well as re-scheduling of internal actions, may frequently
occur. Our goal is, then, to ensure that such branch optimization and re-scheduling
of internal actions preserve the systems’ external timed behavior, which is typically
formalized by the notion of (timed) testing equivalence since it is less sensitive to
the difference of internal branching structures than (timed) weak bisimulation. In
order to know the degree of freedom of such re-scheduling, parametric analysis
is useful. The model suitable for such an analysis is a parametric time-interval
automaton(PTIA), which is a subset of a parametric timed automaton[1]. It has
only a time interval with upper- and lower-bound parameters as a relative timing
constraint between consecutive actions. In this paper, at first, we propose an ab-
straction algorithm of PTIA which preserves global timed bisimulation[2]. Global
timed bisimulation is weaker than timed weak bisimulation andficéent con-
dition for timed testing equivalence. Then, we also show that after applying our
algorithm, the reduced PTIA has no internal actions, and thus the problem deriving
a parameter condition in order that given two models are global timed bisimilar can
be reduced to the existing parametric strong bisimulation equivalence checking[3].
Keywords: parametric timed automata, equivalence checking, timed testing equiv-
alence, global timed bisimulation, abstraction

1 Introduction

1.1 Purpose and Objective

Inrecent years, arfiective development methodology for hardwarebedded-software
with real time constraints is desired. Precise implementation of timing constraints for
I/O behavior is becoming important not only in embedded systems like mobile phones
but also in infrastructure systems for transportation, medicine, finance and defense.
But, as described in [4], it is almost impossible to verify the timing properties of real
time systems by formal methods only. In this paper, we consider the following real
time system development methodology: first, a skeleton code including /nlgd-

tions with real time requirements as comments like Esterel with pragmas [5] is given;
secondly, correctness of thgl timing behavior in the skeleton code is verified by
some heuristic method, as in [4]; and finally, refinement of the skeleton code for de-
tailed implementation is performed. In this methodology, it is important to verify the
equivalence of/D timing behavior between the initial design code and its refined code.

We also take into consideration in the verification that branch restructuring of codes is
performed in the refinement of the skeleton code. Moreover, it would be useful if we
put real time constraints containing parameters (e.g. uffpeer-bounds), and derive
automatically the constraint (e.g. the minimum or maximum value allowed) of param-
eters in which the equivalence is preserved. Such an analysis is called a parametric
analysis[1, 6]. To capture the control flow with time constraints and perform a para-
metric analysis, we propose a parametric time-interval automaton (PTIA), which is a
subset of a parametric timed automaton[1] having only a time interval with upper- and
lower-bound parameters as a relative timing constraint between consecutive actions.
We show that global timed bisimulation (GTB) equivalence checking for PTIAs can be
reduced to existing parametric strong timed bisimulation equivalence checking, where
GTB is a weakening of timed weak bisimulation, in that internal branch structures are
ignored.

1.2 Related Work

There are some proposals of parametric analyses for bisimulation equivalence. For
bisimulation without time, parametric strofageak bisimulation equivalence checking
algorithms on STG (Symbolic Transition Graph) and STGA (STG with Assignment)
are already proposed[7, 8, 9]. For timed strong bisimulation equivalence (bisimula-
tion equivalence where both time and all actions are considered observable), paramet-
ric equivalence checking is proposed in [3]. However, for timed weak bisimulation
equivalence (bisimulation equivalence where time is considered observable and inter-
nal actions are not considered observable), as far as we know, parametric equivalence
checking algorithm has not been proposed. As for research about real time software
design methodology, in [5] Esterel is extended to describe software with real time con-
straints given as comments and then timing properties are verified by model checker.

1.3 Why Global Timed Bisimulation?

In the development of real time software, several optimizations to meet real time re-
quirements are usually done by using a profiler. In particular, branch restructuring
plays an important role in the optimization. It is true that timed weak bisimulation was
proposed to determine equivalence of processes considering both time and observabil-
ity [10], but as pointed out by [2], timed weak bisimulation may not be suitable for
equivalence checking of real time software in the presence of optimization via branch
restructuring. Therefore we employ GTB to determine equivalence of processes, since
GTB is a weakening of timed weak bisimulation in that internal branch structures are
ignored.

1.4 Brief Description of Proposed Method

We take a skeleton code and a refined code, and convert them to PTIAs as internal
representations, where the skeleton code descri@dsdhaviors and real time require-
ments between some of th&l actions. Note that we also put a parametric timing
constraint to each internal ofQ action which has no real time requirement. (Assign-

ing some values to such parameters means giving some concrete scheduling of the
behavior.) The refined code is designed by inserting detailed internal actions into the
skeleton code and by dividing some real time constraints betw@endtions in the
skeleton code into constraints betwe¢® bnd internal actions. In this translation,

first, if input actions are described in branch or loop conditions, we delete such actions
from branch and loop conditions while preserving real time constraints by inserting
temporal variables, and second, all branches are abstracted to nondeterministic ones.
Third, we unroll all the loops under the assumption that each loop has an upper bound
for the number of loop iterations. Fourth, we convert the obtained nondetermistic and
loop-free programs into PTIAs whose transition graphs are DAGs(Directed Acyclic
Graphs). Finally, we merge a series of internal actions betw€eadtions along with
control flow while preserving real time constraints. With this transformation, we can
convert the original PTIA to a PTIA without internal actions, so that we can apply
an existing parametric timed strong bisimulation equivalence checking algorithm to
compare an initial skeleton code and a refined implementation code.

1.5 Paper Organization

In Section 2, we define the PTIA model and its operational semantics by defining a
mapping from the model to a timed extension of labelled transition system (timed LTS).
Section 3 describes the definition of global timed bisimulation on the timed LTS. We
propose a transformation algorithm on the PTIA and prove that the transformation
preserves global timed bisimulation equivalence in Section 4. In Section 5, we propose
a parametric global timed bisimulation equivalence checking algorithm. Conclusions
and future directions are given in Section 6.

2 Parametric Time-Interval Automata

Let Act andVar denote a set of actions and a set of variables, respectively. We de-
note the set of real-numbers Byand the set of non-negative real-numberdylet
Intvl(Var) denote a set of formulas of the form eitledr< t,t < €2, orel <t At < €2,
whereel ande2 are linear arithmetic expression (that is, only addition and subtraction
are allowed) over variables Mar \ {t} and constants iR, andt € Var is the special
variable representing the elapsed time since the latest visit of the current control state.

Definition 1 A parametric time-interval automat@a tuple(S, {t}, PVar, E, sit), where
Sis afinite set otontrol stategalso referred to asocationg, t € Var is theclock vari-
able PVar C Var s afinite set oparametersE C S x (ActuU {7}) x Intol(PVar) x Sis
a transition relation,sy;; is the initial state. Note that represents ainternal action

On the other hand, every other actionAtt represents ambservable actianNVe write

sia@’a—?t[f] sjif (s,a P, sj) € E. O

.. a@?[P] .
Informally, a transitiors, — s; means that the actiancan be executed froswhen
the values of both the clock variabiend parameters satisfy the formigcalled a
guard conditior), and after executed, the state moves igjtand the clock variablé
is reset to zero. In any statethe value of the clock variabkeincreases continuously,
representing the time passage.

Formal semantics of parametric time-interval automata is similar to general para-
metric timed automata, which is defined as follows. The values of clocks and param-
eters are given by a functian : ({t} U PVar) — R. We refer to such a function as a
value-assignmeniVe represent a set of all value-assignment¥ by We writeo = P
if a formulaP € Intol(Var) is true under a value-assignmente Val. The semantic
behavior of a parametric timed automaton is given as a semantic transition system on

concrete statesA concrete state is represented Byof), wheresis a control state and

o is a value-assignment. L&S def {(so0)|ls e S, o € Val} be a set of concrete states.
The semantic model istamed labelled transition system (timed LT@®hich is defined

as follows. A state of atimed LTS is a concrete stat€ 8 A transition of a timed LTS

is either adelay-transitionor anaction-transition A delay transition represents a time
passage within the same control state S, whereas an action transition represents an
execution of an action which changes the control state to the nexd ofr@rmally, a
timed labelled transition system is defined as follows.

Definition 2 Atimed labelled transition syste¢a timed LTSfor short) for a paramet-

ric time-interval automaton is a labelled transition systé@s, Actu R* U {7}, CE,

(sinit> oinit[t — 0])), where a set of states@S, a set of labels i&\ctUR™ U{r}, an initial

state is(Snit, oinit[t — 0]), and a transition relatiolCE € CS x (ActUR* U {r}) xCS

is defined as the minimum set that satisfies the following conditions (in the following,

we write(s,) — (€, 0”) if (8 0).1, (8, o)) € CE):

e (50)— (s 0 +0v)ifveR",

o (50) -5 (3,0t — O] ifac Actuir}, s°2%) ¢, ando k P,

whereo + v ando[t — 0] are the value-assignments derived fretywhich is defined
as follows:

For x e PVaru {t}
def o(X)+v if xe{t},
GRS { a(X) otherwise.

o 0 if x e {t},
(lt—> o)) & { o(X) otherwise.

3 Global Timed Bisimulation

In this section, we briefly recall the definition of global timed bisimulation (GTB) pro-
posed in Ref. [2], as well as the definition of the traditional timed weak bisimulation[11,
10] (TWB) and its relation to the GTB.

3.1 Timed Weak Bisimulation

In this section, we will briefly give the definition of timed weak bisimulation.

Definition 3 Atimed weak transition relatiom,, on states of a timed LTES, Actu
R* U {r},CE, (s, 00)) is defined as follows:

T d f o * T EA T
1. _)w:e (=)(=))
2. (50) —>, (5,07) (v € RY)
def 1,02, .oon €RY [0 =21 0
AAS1, 01,07, 9,072,075, ..., S, On, 07

st (80) =5 (S1,01) — (S1,0%) -+ —=4 (S 0n) —>

(S,) =0 (8,07]

a T a T
3. —, (aeAct dgf—>w—>—>w O

By using this transition relation, timed weak bisimulation is defined as follows:

Definition 4 A binary relationR on states of a timed LTS igianed weak bisimulation
if the following condition hold:
If (s1,01)R(S2, 072), then for anyr € Actu R* U {1},

1. V 5,1,0'1[(51,0—1) i)w (5'170"1) =
Elgz, 0',2 [(52, 0'2) i>w (%’0-,2) A (g_l_’ 0"1)R(%’ 0-,2)]]’

and

2. ¥ 8,05l (S2,02) —u (S,05) =
35’17 0—3_ [(Slv 0-1) —w (Sl’ 0—;[) A (gp Ui)R(%’ 0-’2)]]
We say that stategs;, o) and (s,, o) are timed weak bisimulation equivalent

denoted by(s;, 1) =t (S, 02) if and only if there exists a timed weak bisimulati®n
such that(s;, o1) R($p, 02). O

3.2 Global Timed Bisimulation

Global timed bisimulation[2] is a variant of bisimulation equivalence which consider
both timing and observability. Unlike timed weak bisimulation, global timed bisimula-
tion does not distinguish theference of branching structures of internal transitions.
Firstly, in order to make it suitable for our formalism, we rephrase the definition
of a static generalized transition relatiess,; and a dynamic generalized transition

relation—;, which are proposed in Ref. [2].
The intention of the following definition is that, from the original timed LTS, we

want to construct a new timed LTS usings,; and—, such that the constructed LTS
contains many other possible branching structures derived from the original one, which
is practically indistinguishable by any external observer (that is, @ayistic tester).

Definition 5 LetOGT((s, o)) be the set of all outgoing transitions (& o), that is, the
set of all transitions whose source statésso). A static generalized transition relation

— 4t (also denoted by5—>gt) and adynamic generalized transition relatieﬁ»gt on
states of a timed LTS are defined as follows:

1. preserving the timed weak transition relation

(@) If (s.0) =, (S,07), then(s, o) —g (S, 7).
(b) For eacha € Actu R*, if (s,0) —,, (S, 0”), then(s, o) — 4 (S, o).
2. simultaneous choice of internal transitions (see Fig. 1)
If OGT((S) = Uia{(S 0) — (Suvi» Tayi)} U Ujesl(s, 0) 5 (s, 09)) (a1 €

ActU R*), then(s, o) —t (Shews) @and for all j € J, (Shew» @) —4t (Sj, o),
wheres,g, is a newly introduced control state.

3. forward resolution of nondeterminism (see Fig. 2)

@

If OGT((s) = Uiail(s0) > (Sus.0a)} U Ujesl(s 0) = (5,09)} (i €
ActU R* anda € Act), then for eachj € J, (S, o) —41 (S, @), (S,) —> 1

Figure 1: Simultaneous Choice of Internal Actions

(s.0) R (s,0)

Figure 2: Forward Resolution of Nondeterminism

(sj, o), and (sﬁje),v,o-) (—I'>gt (Sy.i»0ay) for anyi e 1, Wheresgjgw is a newly

introduced control state depending on the choicég.of

. forward execution of an internal transition (see Fig. 3)
@i B
If OGT((s,) = Uiai{(s,0) — (Sui» 0aii)} V(S 0) —. (S5, 0p)} (i € ActU
R* andg € Actu R*) and if (s3, 05) — 4t (s;, aé) for somes, then(s, o) — 4
B . @i
(820 0), (880,) 4t (55, 07) and for anyi € 1, (s52,,) gt (Sui» Tar),
Wheresf(fgﬂ is a newly introduced control state depending on the choige of

. simultaneous execution of an observable action (see Fig. 4)

If OGT((s.0)) = Usarl(s.0) — (5. 0)IUUjesl(8 0) — (S, 0,)} (B € Act
ande; € Actu R*), then for any non-empty subdetc I, (s, o) lgt (sﬂ;L,o-)
and for anyi’ € I’ (Slg, o) —>4 (s, 07), wheresie, is a newly introduced
control state depending on the choice tf

. synchronized forward time passage of internal transitions (see Fig. 5)
Let==, % ()", = 12 -5 ==, fora e Act and=s, &% ... 2,
for v € R" if there exists som&, ..., v, such that = vy + -+ + vp,.

@

If OGT((s 7)) = Uial(s 0) = (Sui»0ai)} U Ujesl(s.0) — (85,0} (i €
Actu R*), and if forv € R, (s, 0)) = (s”,0%) for all j € J, then

(57 O_) _U>g'[(3(1”%1)’0-510&1)) and (S(‘llgwo-ggu) _T)gt (s(v)’ O-ﬁv)) for all J € \]1 where

Vi N N

(5.0) - g (s£.0)

@ N8 o LN
(...... ‘] N

Figure 3: Forward Execution of an Internal Transition

Figure 4: Simultaneous Execution of an Observable Action

0jOfL,...,n

NN N

(s,0) (ke Toen)

Figure 5: Synchronized Forward Time Passage of Internal Transitions

s¥ 'is a newly introduced control state depending on the time valaedo',

is a value assignment depending©rs, ando such thaf(s, o) SN (s, 05{2,,)). O

Using these transition relations, global timed bisimulation is defined as follows.

Definition 6 A binary relationRon states of atimed LTS iggobal timed bisimulation
if the following condition holds:
If (s1,01)R(S, 072), then for anye € ActU R U {e},

1V sl (s1.01) = (S 0) =
3s,, 0 [(S2,02) =4t (S, 0%) A (S,)R(S5, 09) [],
and,
2.V S, 05 (S2,02) —>gt (S5, 0%) =
35, 0% [(51.01) =t (51.0) A (S, TDR(S,, %) 1]

We say that states;, 1) and (s, o») are global timed bisimulation equivalent
denoted by(s;, 0r1) =1 (52, 02) if and only if there exists a global timed bisimulation
R such that(s;, 1) R(S, 02). O

As concerned to the relationship between timed weak bisimulation and global timed
bisimulation, the following proposition holds[2].

Proposition 1 For any two stateg$s;, 1) and(s;, 02) of atimed LTS, ifs1,01) =tub
(s2,02), then(sy, o1) =gty (S2, 072). o
4 Abstraction Algorithm

In this section, we propose some abstraction rules to eliminate internal actions of the
PTIA, and show that their rules preserve global timed bisimulation equivalence.

In the following, firstly, we describe some restrictions on PTIAs which ensure the
correctness of the proposed abstraction rules. Then, we describe the key idea and the
details of the proposed abstraction rules. Finally, we show that the abstraction rules
preserve global timed bisimulation equivalence.

4.1 Restrictions for Parametric Time-Interval Automata

In order to apply our proposed abstraction rules, we impose the following restrictions
[RLoopFree], [RInitStability], and [RObsBounded] for an input PTNA.

[RLoopFree] M contains no loops, that is, the transition grapivbis a DAG'.

[RInitStability] The initial statesy,;; of M must be either atablestate, or reachable to
a stable state by deterministic internal transitions (i.e. there are no branch from
initial state to a stable state). Herestablestate is a state whose every outgoing
transition is observable.

[RObsBounded] Any internal transition contained iW is observably boundedhat
is, for any execution path of M, there exists an extensiar of the pathr in
that any internal transition is appeared between some observable transitions.

. . t[P . . .
Formally, an internal transmoaTﬂ] s contained inM is observably bounded

. .. a1@A[Py] a@A[P] T@t[P]
ifforany transitionsequenc®iy — S+ S%1 — S — S (a1,...,ak €

ActuU {1}, P1,..., Py, P € Intvl(Var)) of M, there exists somies {1, ...,K} such

. Pl p@12 @7
thate; € Act, and for any transition sequensé@—t[>] g e S5t 220

Sk (B1,--.,Bk € ActU {1}, Qq,..., Qk € Intvl(Var)), there is an extension of the

+ @”1 +. +H @’l H
sequences " g1 s M T s Bl B € ActU (1),
Qki1,---> Qe € Intvl(Var)) and some € {1,...,k+ 1} such thap; € Act

4.2 Abstraction Rules for Parametric Time-Interval Automata

For any internal transition that is directly preceding by some observable transition, we
can eliminate the internal transition based on the following principles:

1. The internal nondeterminism caused by the internal transition can be converted
into the corresponding nondetermistic choice of the directly preceding observ-
able transition, just the same as the classical equational theory of testing equivalence[12].

2. On the contrary, the time passage caused by the internal transition can be moved
into those of the directly succeeding transitions which are either internal or ob-
servable.

This is the key idea for preserving testing equivalence considering time. Since any
internal action is observably bounded, by the restriction [RObsBounded], the sequence
of internal actions can be completely eliminated from the beginning internal action
(which is directly preceding by some observable action) to the ending one (which is
directly succeeding by some observable action).

However, if we want to transform some subgraph of the entire transition graph
of M, we must ensure that such a subgraph transformation preserves equivalence of

1For any loop contained in input programs, we assume that there exists a maximum kurfibenation
of the loop. Note that all branchs in the input programs are abstracted to nondeterministic ones

Figure 6: Congruence Property w.r.t. GTB

the entire transition graph. To make the discussion simple, we impose the restriction
[RLoopFree], we have only to consider the case that the transition graph is a DAG.
Furthermore, we prove that if the context of the subgraph under transformation is in
some form, such subgraph transformation preserves equivalence of the entire transition
systemM. To ensure that all internal transition can be eliminated by such a context-
sensitive transformation, we need the restriction [RInitStability].

The proposed abstraction rules are the followings:

1. abstraction for sequential structures
2. abstraction for branching structures

The details are described in the following sections.

4.2.1 Context Sensitivity of Abstraction Rules

Consider that some subgraph, of the entire transition graph of PTIM is replaced
into some equivalent subgraph, .. Such a transformation does not always preserve
equivalence of the entire transition graph. We will show th8tdf,appears the context
shown in Fig 6, then the subgraph transformation fildigy, to M7, preserves global

timed bisimulation equivalence.

Theorem 1 (Congruence Property for Subgraph Transformation of PTIA w.r.t GTB)

LetM =(S, {t}, PVar,E, suit) be a PTIA, ands;, s, € S.Lets; and $; be new states ob-

tained by adding the same observable branch frands,, that is, §; a@ﬂf’] s3 and

$ *@2F] ss for @ € Act, P € Intul(Var), § el s, if 51 ki s, for g € ActU {1},

Q e Intvl(Var), and$, ﬁ@—"ﬂg s ifs ﬂcﬂm s, for g € Actu {7}, Q € Intwl(Var).

Then, for anyry, o2 € Val, (S1, 01) =gib ($2, 02) if (S1,01) =g (S2, 072).
Proof. (sketch) Consider the executable transitions f{@mo) and($, 02). If some
observable transitio # « is executed (after some time consumption) f{Smo),
the behavior oMg,, must be chosen (otherwise,must be observed). From the as-
sumption(sy, 1) =g (S2, 02), and the definition of; and$;, B is also executable from
(%, 02) (after the same time consumption) and the behaviddgf is chosen. The fol-
lowing behaviors are obviously global timed equivalent si(@eo1) =, (S, 02).
The same is true {f$;, 01) and($;, o) are exchanged.

a

ry
i/rr :}>/ or
AA SR

same amount of time consumption Oy O Act
a

AN |
A VN

Figure 7: Illustration of Proof of Theorem 1

Next, consider thatr is executed fronfs;, ;). If the behavior ofM’ is chosen,
obviously($,, o) also choosév’ by the similar discussion above, and vice versa.
Finally, suppose that choice was not made after the executian 85 illustrated
in Fig. 7, we can derive a generalized transition relation for such a transition from
($1,01) by applying rules 2,4,5,6 of Definition 5. From the assump{®no1) =y,
(s2,02), we can also derive the generalized transition relation fr(8n o2) which
makes weakly bisimilar t¢$;, o1), and vice versa. Once some observable acjion
is executed, obviously they can simulate the following behaviors each other. From the
discussions above, we can prove the theorem.

4.2.2 Abstraction for Sequential Structures

The abstraction for sequential structures is illustrated in Fig. 8. In the left half of

. i, @A x<t< -
Fig 8, the transitiors, ’ [X—2<><y2] s; is internal and its directly preceding transition

a@A[x1<t<y1] . oy B@A[xg<t<ys]
el S, is observable. lIts sibling, -

Y@A[Xa<t<ys]
—

s4 and its directly succeed-

ing transitions; S5 may be either internal or observable. In this case,

.. . . A[X<t) 3
we eliminate the internal transitiosp @ [X—Z<><y2] sz as the right half of Fig 8. In

this abstraction, the nondetermistic behavior of the eliminated internal transition is

converted into the nondeterministic choice of the directly preceding observable tran-

. a@A[x <t< a@A[x <t< .
sitions s; [X—1<><m] s ands; [X—1<> =il s3. On the other hand, the time passage

of the eliminated internal transition is merged into the directly succeeding transitions
Y@A[X2+ Xa<t<yp+ya] Y@A[X2 +Xa<t<yp+ya]
— ands; —

Formally, the operation for merging two time intervals is defined as follows:

Definition 7 @® is a binary operator orintvl(Var) such that for any, Q € Intvl(Var),
(POQ)(t) = Itr, LIP(t) A Qta) At =11 +1o]. O

Then, the following lemma holds:

Lemma 4.1 Leta € Actandg,y € Actu {r}. LetM and M’ be PTIAs whose sets of

. a@2[P1] T@7[P2] B@APs] Y@2[P4] a@7[P1]
transtionsard s, — £,% — %% — %S — Sland{s, —
a@A[P AP, A[P2OP, A[PLOP. .
s s @2[P,] % S, B@2[Pg] s S, Y@A[P20P,] s s, Y@A[P20P,] s |, respectively. Then,

for any assignment € Val, (s1,0) =g (], 0).

10

a@[x st<y] a@’)t[x1<t<y]

a@[x stsy)]

FOx <1<yl ﬁ@’tlxg<t< i

@/ T@2A[x, <ts<y,] y@2ADG +X, St<y, +y,]

y@x, +x,st<y,+y,]
y@x, sts<y,]

@9‘/ Da 0 Act

0B, y0ActO{r}

Figure 8: Abstraction for Sequential Structures

[o]
o
ia
t,
O"B/%tz -t, OAIB/ItZ_tAH
o
y°

t O{t;R(1)},i=123 0r4

Figure 9: Semantic Models favl andM’ of Lemma 4.1

Proof. (sketch) The semantic modefandM’ are illustrated in Fig. 9. In Fig. 9, time
transitions are represented symbolically by the varialléise {1, 2, 3,4}). Eacht; can

be any possible value in the §8P;(t)}. For simplicity, we assume thit< t,. The case

t4 < tp is similar. From Definition 5, the transition graphs based on the generalized
transition relation of M’ is constructed as follows. First, rule 5 of Definition 5 is
applied (Fig. 10). Next, rule 6 is applied twice (Fig. 11) . It is easy to see that the
obtained generalized transition graphs lf in Fig. 9 andM’ in Fig. 11 are weakly
bisimilar. Therefore, from Definition §s;, o) and(s;, o) are global timed bisimilar.

More general case is that there are some outgimiogming transitions org;, S,
andsg, as shown in Fig 12. In this case, all the source states of the incoming transition
of s, must be stable in order to satisfy the congruence property in Theorem 1. In Fig 12,
the outgoing transitions of the stadgands; are observable. If this is satisfied, then all

the incoming transitions of, are converted into the nondeterministic choice, as shown

. . . ., @A xs<t< . L . .
in Fig 13. The internal transitios, ’ [X—5<><y5] s; is eliminated similarly, but since

o @A xe<t<ye] B @A[x7<t<y7]

s3 has some incoming transitiorss — Sz and sy — sz, these tran-
.. .. X . v @[Xg<t<ys] & @A[Xo<t<yo]
sitions and the original outgoing transitiogs — S5 and sz - S10

T@A[Xs<t<ys]
of the states; are preserved. Then, the time passage of the transgion —

11

Figure 10: Generalized Transition Relation ldf derived from Fig. 9 by rule 5 of
Definition 5

Figure 11: Generalized Transition RelationMf derived from Fig. 10 by rule 6 of
Definition 5

Y @A[Xs+Xg<t<ys+ys] Y @A[Xs+Xg<t<ys+ys]
— —

sz are moved into the transitions S, S S5,
&' @A[X5+Xo<t<ys+yo] & @A[Xs+Xo<t<ys+yo) ..
- S10, ands, — S10, Similarly.

Formally, the abstraction rule for sequential structures is defined as follows:

Definition 8 An Abstraction rule for Sequential Structurts PTIA is defined as a
transformation functiobsS egn PTIA as follows:

12

@\
at@A[x, St Yl B@Ax, <t< yz]\

a@Ax<tsy] B @Ax, Sts y,]
2 @

y@A[x; St<yy] @A, <t<y,]

T@2x stsy,)

a'@A[sty | F@AX st<y]
Oa,B,a",f"0Act v

Oy, 8,0, B,y,0 0Act O{r} s3

y@Axstsy] F@AX <t<y,]

Figure 12: Abstraction for Sequential Structures in Presence of Ouftjudoging
Transitions (Before Abstraction)

(s6r@xstswl (s8)
@, L @A, <t<y,]

a'@Ax <t<y]

a"@Ax,stsyl | a@Ax sty

a@Ax st<y]

B@Ax, st<y,]
T@A[x, st<y]

y @A <t<y]

Y @A + X% Sty +y]

r@axstsyl F@AX+% STy, +Y,]

Y @AX + % <t< Yo+l

FT@A[X + X Sty +
5@Ax, <t<y,] @A+ X Sty +Y,]

(9

Figure 13: Abstraction for Sequential Structures in Presence of Ouftjudoging
Transitions (After Abstraction)

@ @A[Py,] T@7?[P2] Bi@7Psj] Yk@?Pax]
[Nafst — I s —" sAANalS — A AeklSs T —

AbsSeq @ @A[P1;] @ @7?[P1;] Bi@?P3]

skl = [Aialsyi — SAsy — siAAale —
Yk@?P20P4y] Yk@?P20P4]
S A Nkek(S2 T — SkAS — Ssx}], where eachs;

(i € 1) is a stable stateg; € Act, Bj, vk € ActU {1}, Py, P2, P3j, Pay €
Intol(Var) foranyiel, j € J, ke K.

. : Lo d@7Q]
If there are some other incoming transmodes — s (l e L), thena
new states; is created and all the incoming and outgoing transitionsgf

13

(al = ﬁl)
(az = ,Bz)

one of the two
sequences is left

Figure 14: Abstraction for Branching Structures

action sequences and correspond|
time constraints are the same

ing

is copied into those of; before applying this rule.

O

We consider the abstraction functiéisS ef) as the mapping from a PTIM to
the modified PTIAM’ by applying one of the abstraction rules in Definition 8. We also
considerAbsS e) as the mapping from control statesMfto the corresponding states
of M’.

Then, we have the following theorem:

a@2[P] 7@3Q]
—_ Sl

Theorem 2 For any stable stats, if s —" S, any pathr beginning withs

contains no loops, and the internal transitispT@ﬂP] s, is observably bounded, then
foranyo, (s, o) =, (AbsSefp), o).

Proof. (sketch) From Theorem 1 and Lemma 4.1, we can easily prove the general case
by using induction on the number of the branches and using the congruence property
(Theorem 1).

4.2.3 Abstraction for Branching Structures

The abstraction for branching structures is illustrated in Fig. 14. Itis clear that any ex-
ternal observer cannot find which branch is selected if the observable action sequences
and the corresponding time constraints are the same. Thus, we leave just one of these
sequences If there are some outgoifigcoming transitions at some eliminated control
state, we move those transitions to the corresponding control state of another branch
which is left.

Formally, the abstraction rule for branching structures is defined as follows:

Definition 9 An Abstraction rule for Branching Structurésr PTIA is defined as a
transformation functiolbsBranclon PTIA as follows:

1@A[P1] 2@A[P;] a2@[Py an@2[Pn]

—
AL@AQ |, B@AQ2] |, S@7[Qs] Br@A[Qn]

2Note that the abstraction rule for branching structures is essentially not required for eliminating internal
actions— they can be eliminated only by using the abstraction rules for sequantial and loop structures. The
abstraction rule for branching structures is just for reducing the complexity (size) of the model. It is also
possible to eliminate branches havingfelient time constraints by using the operatot.“However, here

we do not include such a rule since it does not generally reduce the essential complexity of the model (for

@APIUP,] . @alP @2P
examples “® 57 ¢ is always the same a5 o5V ¢ 4 52852 ¢y,

)

14

AbsBranch @1@7[P1] @@A[P] @3@A[P3] an@3A[Pr]

[0 Snl,
whereay, @y, ..., an, B1, B2,An € ActU {r} ande; = B andP; = Q; for
alie{l,...,n}.

2[R]
If there are some other outgoing transitiqfnyg] s’ froms (2<i<n),
o AR . . "
then we replace it witls iy §’. The case of incoming transition &
is similar.
O
Similar toAbsS e@), we consider the abstraction functiBbhsBranclf) as the map-
ping from a PTIAM to the modified PTIAM’

Since the following theorem is rather straightforward, here we only show the re-
sults.

Theorem 3 If S al@ﬂfﬁ] s QZ%PZ] 5 az@_z[fg] an@_’?t[)Pn] s and s ﬁl@_’-’t[)QI]
@1 @ »@2[Qn
s’lﬁ2 kg %ﬁz FU] @] sn), then for anyr, (S0,) =41 (AbsBranciso), o).

O

4.3 Terminating Property of Abstraction Algorithm

Our proposed abstraction algorithm is to apply repeatedly the abstraction rules in Sec-
tion 4.2 until no changes occur. In this section, we show that this abstraction algorithm
is ensured to terminate.

Firstly, we define the abstraction algorithm more precisely.

Definition 10 Abstraction Algorithmis defined as follows:
1. Input PTIAM.
2. Apply Abstraction Rule for Sequential Structuresto
3. Apply Abstraction Rule for Branching StructuresMo
4. Repeat (2)-(3) until no changes occurredvn
5. Output PTIAM. O

Definition 11 Let Abg) be the abstraction function which represents the application
of eitherAbsS ef) or AbsBranclf). O

Then, the following theorem holds.

Theorem 4 For any PTIAM, there exists some natural numbesuch thatAbs'(M)
contains no internal transitions. Her&bs'(M) means the PTIA to which the abstrac-
tion rules are applied times.

Proof. (sketch) From Definition 11, it can be proven that the functdiry) generally
monotonically decreases the number of internal transitions. Moreover, it can be shown
that any internal transitions can be eliminated by the proposed abstraction rules if
their directly preceding transitions are observable and they are observably bounded.
Furthermore, since the transition graph is a DAG and the initial state is stable, we can
repeatedly apply the abstraction rules from the top to the bottom of the DAG. From the
fact above, we can prove the theorem.

15

From this theorem, the following corollary immediately holds.

Corollary 1 The abstraction algorithm in Definition 10 eventually terminates for any
input M. O

5 Equivalence Checking

In this section, we show that parametric global timed bisimulation equivalence check-
ing on PTIA is reduced to parametric timed strong bisimulation checking on PTIA
without internal transitions.

By applying the algorithm of Definition 10 to two PTIAg; and M, we obtain
two PTIAs AbgM;) andAbqM,), which have no internal transitions and global timed
bisimulation equivalent td1; andM,, respectively. On the other hand, from the result
of Ref.[3], we can obtain the parameter condition in order fkiad M;) andAbg{M,)
are timed strong bisimulation equivalent. Since timed strong bisimulation equivalence
implies global timed bisimulation equivalence, and global timed bisimulation equiva-
lence satisfies the transitive law, the obtained parameter condition is also the parameter
condition in order thaM; andM are global timed bisimulation equivalent.

Definition 12 A binary relationR on states of a timed LTS istimed strong bisimula-
tion if the following condition hold:
If (s1,01)R(S2, 072), then for anyr € ActU R* U {1},

1. V8,0 (s1,01) > (S, 0%) =
38}, % [(82, 72) = (8, %) A (S},)RS, 09 11,
and,
2. V8,05 (S, 02) — (S, 0%) =
3s,, 0 [(s1.01) = (51,0%) A (S,)R(S,, 075) 1]
We say that stategs;, 01) and (s, 0) are timed strong bisimulation equivalent

denoted by{si, 1) =tsp (S2, 072) if and only if there exists a timed strong bisimulation
Rsuch that(s;, o71) R (S, 02).

The following relationship holds among timed strong bisimulation, timed weak
bisimulation, and global timed bisimulation.

Proposition 2 For any two stategs;,o1) and (s, 0») of a timed LTS(s;,01) =tsp
(S1,01) implies (s, 01) =tub (S1,01), and (s, 01) =tsp (S1,01) implies(sy, o1) =g
(s1,01). O

From the discussions above, the following theorem holds.

Theorem 5 For any PTIAsM; and M,, if there exists some natural numberandm
such thatAb<(M;) and Ab<"(M;) contain no internal transitions, andb<(M1) =g
Abg"(My) if and only if My =41 Ma. O

16

6 Conclusion

In this paper, we proposed a parametric time-interval automaton(PTIA) and its trans-
formation algorithm to eliminate internal actions while preserving global timed bisim-
ulation, and showed that parametric global timed bisimulation equivalence checking on
PTIA can be reduced to the existing parametric timed strong bisimulation equivalence
checking method without internal transitions.

The future work is to relax some of the restrictions imposed on target PTIAs, espe-
cially for the loops. For preserving GTB, we confirmed that abstraction is still possible
by the proposed abstraction rules in some cases containing loops, but there are some
weird examples the proposed abstraction rules cannot be applied. On the other hand,
for preserving timed trace equivalence, we are successfully developed the abstraction
algorithm for unrestricted PTIAs. We are currently working on PTIAs containing vari-
ous loop structures and developing more general abstraction algorithms for preserving
GTB andor timed trace equivalence.

References

[1] Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proc.
25th ACM Annual Symp. on the Theory of Computing (STOC'93). (1993) 592—
601

[2] de Frutos, D., Ibpez, N., Nifiez, M.: Global timed bisimulation: An introduc-
tion. In: Proc. of Joint Conf. on Formal Description Techniques for Distributed
Systems and Communication Protocols Xll, and Protocol Specification, Testing,
and Verification XIX (FORTHEPSTV'99). (1999) 401-416

[3] Nakata, A., Higashino, T., Taniguchi, K.: Time-action alternating model for
timed LOTOS and its symbolic verification of bisimulation equivalence. In
Gotzhein, R., Bredereke, J., eds.: Proc. of Joint Int'l Conf. on Formal Description
Techniques for Distributed Systems and Communication Protocols, and Proto-
col Specification, Testing, and Verification (FORPSTV'96), IFIP, Chapman
& Hall (1996) 279-294

[4] Xu, J.: On inspection and verification of software with timing requirements.
IEEE Trans. on Software Engineeri@§ (2003) 705-720

[5] Sifakis, J., Tripakis, S., Yovine, S.: Building models of real-time systems from
application software. Proceedings of the IEEF2003) 100-111

[6] Wang, F.: Parametric timing analysis for real-time systems. Information and
Computationl30(1996) 131-150

[7] Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science
138(1995) 353-389

[8] Lin, H.: Symbolic transition graph with assignment. In: Proc. of CONCUR’96.
Lecture Notes in Computer Sciences, Springer-Verlag (1996)

[9] Li, Z., Chen, H.: Computing stroniggeak bisimulation equivalences and obser-
vation congruence for value-passing processes. In: Proc. of Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). (1999)
300-314

17

[10] Larsen, K.G., Wang, Y.: Time abstracted bisimulation: Implicit specifications
and decidability. In Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt,
D., eds.: Proc. of 9th Int'l Conf. on Mathematical Foundations of Program-
ming Semantics (MFPS’93). Volume 802 of Lecture Notes in Computer Science.,
Springer-Verlag (1993) 160-175

[11] Alur, R., Courcoubetis, C., Henzinger, T.A.: The observational power of clocks.
In: Proc. of CONCUR’94. Volume 836 of Lecture Notes in Computer Science.,
Springer-Verlag (1994) 162-177

[12] de Nicola, R., Hennessy, M.: Testing equivalence for processes. Theoretical
Computer Sciencd4 (1984) 83—-133

18

