Skip to main content

Heredity, Complexity, and Surprise: Embedded Self-Replication and Evolution in CA

  • Conference paper
Cellular Automata (ACRI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3305))

Included in the following conference series:

Abstract

This paper reviews the history of embedded, evolvable self-replicating structures implemented as cellular automata systems. We relate recent advances in this field to the concept of the evolutionary growth of complexity, a term introduced by McMullin to describe the central idea contained in von Neumann’s self-reproducing automata theory. We show that conditions for such growth are in principle satisfied by universal constructors, yet that in practice much simpler replicators may satisfy scaled-down – yet equally relevant – versions thereof. Examples of such evolvable self-replicators are described and discussed, and future challenges identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azpeitia, I., Ibáñez, J.: Spontaneous emergence of robust cellular replicators. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 132–143. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Barricelli, N.A.: Symbiogenetic evolution processes realized by artificial methods. Methods IX(35-36), 143–182 (1957)

    Google Scholar 

  3. Burks, A.W. (ed.): Essays on Cellular Automata. University of Illinois Press, Urbana (1970)

    MATH  Google Scholar 

  4. Burks, A.W.: Von Neumann’s self-reproducing automata. In: [3], pp. 3–64 (1970)

    Google Scholar 

  5. Byl, J.: Self-reproduction in small cellular automata. Physica D 34, 295–299 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chou, H.H., Reggia, J.A.: Emergence of self-replicating structures in a cellular automata space. Physica D 110, 252–276 (1997)

    Article  MATH  Google Scholar 

  7. Chou, H.H., Reggia, J.A.: Problem solving during artificial selection of selfreplicating loops. Physica D 115, 293–372 (1998)

    Article  MATH  Google Scholar 

  8. Codd, E.F.: Cellular automata. ACM Monograph Series. Academic Press, New York (1968)

    MATH  Google Scholar 

  9. Devore, J., Hightower, R.: The Devore variation of the Codd self-replicating computer. Original work carried out in the early 1970s though apparently never published. Presented at the Third Workshop on Artificial Life, Santa Fe, NM (1992)

    Google Scholar 

  10. Hutton, T.J.: Evolvable self-replicating molecules in an artificial chemistry. Artificial Life 8, 341–356 (2002)

    Article  MathSciNet  Google Scholar 

  11. Ibáñez, J., Anabitarte, D., Azpeitia, I., Barrera, O., Barrutieta, A., Blanco, H., Echarte, F.: Self-inspection based reproduction in cellular automata. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 564–576. Springer, Heidelberg (1995)

    Google Scholar 

  12. Langton, C.G.: Self-reproduction in cellular automata. Physica D 10, 135–144 (1984)

    Article  Google Scholar 

  13. Langton, C.G.: Artificial life. In: Artificial Life, Santa Fe Institute Studies in the Sciences of Complexity, vol. IV, pp. 1–47. Addison-Wesley, Redwood City (1989)

    Google Scholar 

  14. Lohn, J.D., Reggia, J.A.: Automatic discovery of self-replicating structures in cellular automata. IEEE Transactions on Evolutionary Computation 1, 165–178 (1997)

    Article  Google Scholar 

  15. Mange, D., Sipper, M.: Von Neumann’s quintessential message: genotype + ribotype = phenotype. Artificial Life 4, 225–227 (1998)

    Article  Google Scholar 

  16. Marchal, P.: John von Neumann: The founding father of artificial life. Artificial Life 4, 229–235 (1998)

    Article  Google Scholar 

  17. McMullin, B.: John von Neumann and the evolutionary growth of complexity: Looking backward, looking forward. Artificial Life 6, 347–361 (2000)

    Article  Google Scholar 

  18. Morita, K., Imai, K.: A simple self-reproducing cellular automaton with shapeencoding mechanism. In: Langton, C.G., Shimohara, K. (eds.) Artificial Life V: Proceedings of the Fifth International Workshop on the Synthesis and Simulation of Living Systems, Nara, Japan, pp. 489–496. MIT Press, Cambridge (1996)

    Google Scholar 

  19. Perrier, J.Y., Sipper, M., Zahnd, J.: Toward a viable, self-reproducing universal computer. Physica D 97, 335–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pesavento, U.: An implementation of von Neumann’s self-reproducing machine. Artificial Life 2, 337–354 (1995)

    Article  Google Scholar 

  21. Ray, T.S.: An approach to the synthesis of life. In: Artificial Life II, SFI Studies on the Sciences of Complexity, vol. XI, pp. 371–408. Addison-Wesley Publishing Company, Redwood City (1991)

    Google Scholar 

  22. Reggia, J.A., Armentrout, S.L., Chou, H.-H., Peng, Y.: Simple systems that exhibit self-directed replication. Science 259, 1282–1287 (1993)

    Article  MathSciNet  Google Scholar 

  23. Ronald, E.M.A., Sipper, M., Capcarrère, M.S.: Design, observation, surprise!: A test of emergence. Artificial Life 5, 225–239 (1999)

    Article  Google Scholar 

  24. Salzberg, C.: Emergent evolutionary dynamics of self-reproducing cellular automata. Master’s thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands (2003)

    Google Scholar 

  25. Salzberg, C., Antony, A., Sayama, H.: Evolutionary dynamics of cellular automata-based self-replicators in hostile environments. BioSystems (in press)

    Google Scholar 

  26. Salzberg, C., Antony, A., Sayama, H.: Complex genetic evolution of selfreplicating loops. In: Artificial Life IX: Proceedings of the Ninth International Conference on Artificial Life. MIT Press, Cambridge (2004) (in press)

    Google Scholar 

  27. Salzberg, C., Antony, A., Sayama, H.: Visualizing evolutionary dynamics of selfreplicators: A graph-based approach. Artificial Life (2004) (in press)

    Google Scholar 

  28. Sayama, H.: Introduction of structural dissolution into Langton’s self-reproducing loop. In: Adami, C., Belew, R.K., Kitano, H., Taylor, C.E. (eds.) Artificial Life VI: Prodceedings of the Sixth International Conference on Artificial Life, pp. 114–122. MIT Press, Los Angeles (1998)

    Google Scholar 

  29. Sayama, H.: A new structurally dissolvable self-reproducing loop evolving in a simple cellular automata space. Artificial Life 5, 343–365 (1999)

    Article  Google Scholar 

  30. Sayama, H.: Self-replicating worms that increase structural complexity through gene transmission. In: Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.) Artificial Life VII: Proceedings of the Seventh International Conference on Artificial Life. MIT Press, Cambridge (2000)

    Google Scholar 

  31. Sipper, M.: Fifty years of research on self-replication: An overview. Artificial Life 4, 237–257 (1998)

    Article  Google Scholar 

  32. Sipper, M., Reggia, J.A.: Go forth and replicate. Scientific American 285(2), 26–35 (2001)

    Article  Google Scholar 

  33. Smith, A., Turney, P., Ewaschuk, R.: Self-replicating machines in continuous space with virtual physics. Artificial Life 9, 21–40 (2003)

    Article  Google Scholar 

  34. Stauffer, A., Sipper, M.: An interactive self-replicator implemented in hardware. Artificial Life 8, 175–183 (2002)

    Article  Google Scholar 

  35. Suzuki, K., Ikegami, T.: Interaction based evolution of self-replicating loop structures. In: Proceedings of the Seventh European Conference on Artificial Life, Dortmund, Germany, pp. 89–93 (2003)

    Google Scholar 

  36. Taylor, T.J.: From artificial evolution to artificial life. PhD thesis, University of Edinburgh (1999)

    Google Scholar 

  37. Tempesti, G.: A new self-reproducing cellular automaton capable of construction and computation. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 555–563. Springer, Heidelberg (1995)

    Google Scholar 

  38. Thatcher, J.W.: Universality in the von Neumann cellular model. In: [3], pp. 132–186 (1970)

    Google Scholar 

  39. Tyler, T.: Crystal 1D: Template-based replication. Online documentation and source code, http://cell-auto.co.uk/crystal1d/

  40. Vitányi, P.: Sexually reproducing cellular automata. Mathematical Biosciences 18, 23–54 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  41. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966); Edited and completed by A. W. Burks

    Google Scholar 

  42. von Neumann, J.: Re-evaluation of the problems of complicated automata problems of hierarchy and evolution (Fifth Illinois Lecture). In: Aspray, W., Burks, A. (eds.) Papers of John von Neumann on Computing and Computer Theory, pp. 477–490. MIT Press, Cambridge (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salzberg, C., Sayama, H. (2004). Heredity, Complexity, and Surprise: Embedded Self-Replication and Evolution in CA. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds) Cellular Automata. ACRI 2004. Lecture Notes in Computer Science, vol 3305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30479-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30479-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23596-5

  • Online ISBN: 978-3-540-30479-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics