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Abstract. The dynamics of immune response to initial infection and
reinfection by the same pathogen sometime later, are considerably dif-
ferent. Primary response, which follows initial infection, is characterised
by relatively slow precursor cell activation and population growth rates,
with a consequent elongated pathogen clearance profile, typically ex-
tended over six days or more. On the other hand, secondary response (to
reinfection by the same pathogen some time later) is notable for short
effector activation time, high specificity of response, rapid pathogen elim-
ination and high degree of memory cell participation. In this paper, we
present a seven state non-deterministic finite automata (NFA) of the ef-
fector T cell lifecycle, which is encoded as a set of states and state tran-
sitions. Our objective is to study the degree to which variable infection
outcome is dependent on the accumulation of chance events. Such chance
events may be represented as the consequence of premature, delayed or
even failed state transitions. We show how small variation in crucial state
transitions probabilities during the lifecycle can induce widely variable
infection outcomes. This model is implemented as a spatially extended,
concurrent two-dimensional stochastic cellular automata, executing on a
MPI-based Linux cluster.

1 Introduction

Cellular Automata (CA) have been applied to numerous areas of complex physi-
cal systems modelling [1]. CA have several important characteristics which make
them amenable to efficient computational implementation, including ease of rep-
resenting (in the form of n-dimensional arrays), discrete nature of the underly-
ing computations, simplicity of rules or laws which are programmed into the
CA, and the highly repetitious nature of the processing steps. However, cellu-
lar automata posses additional fascinating properties, for example, patterns of
self-organisation of a complexity which cannot be derived numerically from the
rules on which the underling cellular automata is based. As a result of this com-
plexity, [2] has postulated that some form of CA must underlie many complex
physical phenomena visible in nature. Furthermore, with the application of non-
deterministic (stochastic) cellular automata, the idea of randomness in CA site
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selection and update rule enforcement has yielded further insight into modelling
stochastic natural systems such as molecular motion, turbulence in water flow
and various biological processes, especially models of the human immune system
[3,4,5,6,7]. In this paper we present an approach that seeks to avoid a computa-
tional modelling process exclusively influenced by current experimental immune
system research trends. We propose a relaxation of the deterministic assump-
tions inherent in earlier work [8], and explore the dynamics of a more stochastic
system. Stochastic events appear to play a crucial role in certain immune system
functions [9]. The contribution of this work is as follows: (i) an extended non-
deterministic state transition model of the effector T cell lifecycle is introduced.
This model successfully reproduces time-realistic effector and pathogen popu-
lation dynamics during primary and secondary response, and during repeated
reinfection, (ii) we identify three stages in the effector T cell lifecycle model
which are critical in regulating the course of primary and secondary response,
and (iii) the model is implemented as a spatially extended two-dimensional cellu-
lar automata lattice executing concurrently on a MPI-based Linux cluster. This
allows us to scale the model to cell density levels in the order of 106 CTL cells -
which approaches levels typically observed in in-vivo murine experiments. This
work is arranged as follows: section 2 is a brief overview of some key features
of the adaptive immune response which we model, and serves as an introduc-
tion to some specific terminology. Section 2 is intended for readers who may be
unfamiliar with general principles of immunology. Section 3 discusses the model
structure and explains the motivation and implementation of the underlying
non-deterministic cellular automata. Section 4 presents results of the simula-
tion, and in particular, some interesting features which emerge. Finally, section
5 is a discussion of the results, and an outline of further enhancements.

2 Adaptive Immune Response

Common to all immune systems is the principal of sensing of localised space for
the purposes of intrusion detection. Intrusion, in this case, is the appearance
of a bacteria, viral particle or infected cell which may be classified as non-self.
Any non-self genetic material discovered must be eliminated in order to prevent
infection (or even death), of the host. Broadly speaking, the means by which
the non-self intruder gained access to the blood stream or lymphatic compart-
ments is not of interest1. There are a great variety in the pathogen challenge
and immune response course (not all of which are a concern here). One such
scenario arises as follows: when a viral particle has been taken up by an antigen-
presenting cell (APC), such as a dendritic cell, it is degraded into one or more
peptide chains within the cytosol region of the APC, and is then bound to the
major histocompatible complex (MHC) class I molecule (a process known as
antigen processing) before finally being presented on the surface of the APC as

1 Some viruses, for example, the influenza and corona viruses, enter the host through
the air passages and not through tissue damage.
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an MHC:peptide complex, a process known as antigen presenting. APC will re-
circulate through the lymphatic system in order to alert the immune system to
an infection. Sensing of the lymphatic compartments (of which there are many)
for antigen-presenting cells, is a systematic function of immune cell (lymphocyte)
recirculation. Cytotoxic lymphocyte (CTL) precursor cells constantly recirculate
and sample their environment in the search for foreign pathogens. The process
of sampling involves two cells binding for some small time period, during which
the immune cell senses the receptor of the bound cell to determine if the bound
cell is an invading pathogen (or not). If the bound cell is an invading pathogen,
the immune cell may be stimulated to produce clones of itself in order to attack
and remove other cells bearing the same genetic material. Under normal cir-
cumstances, the production of clones ceases after some fixed period of time, and
once the infection has been cleared, most CTL cells will undergo programmed
death (apoptosis). A small subset of the clone population will remain activated
indefinitely, and this population represents effector memory. In the presented
here, we do not model free antigen, but only antigen epitopes which have been
bound to the surface of an antigen presenting cell.

3 The Model

Our model runs in discrete 30-minute timesteps, and all entities in the model act
asynchronously at each timestep (τ). As primary response normally consists of 4
days of cell replication (clonal expansion), the cells in our model will stop dividing
at τ = 192. The recirculation space of the lymphatic compartment is modelled
as a two dimensional stochastic cellular automata lattice of length L = 103,
with periodic boundary conditions and neighbourhood radius r = 1 (in two-
dimensions), with a maximum of 8 neighbours. Each site is selected at random
for update during the timestep. Not every site is will be visited at each timestep,
but each site can be updated at most once in any given timestep. At τ = 0 some
5000 antigen entities are introduced into randomly selected sites on the lattice
(following a uniform distribution), and the model executes until τ = 3000 (62.5
days of elapsed time). The CTL population grows exponentially in response
to APC stimulation, with a clonal expansion rate which is a function of the
affinity between the CTL and APC. The dynamics of affinity are modelled using
shape space [10,11]. The stimulation rate never exceeding 0.036, which yields a
population of daughter clones of ∼ 1000 after 4.5 days of clonal expansion. Each
lattice site may contain only one entity at any given timestep. The set of entities
and states supported is shown in Table 1, which also introduces some important
notation used throughout this paper.

3.1 Non-deterministic Finite Automata

To allow the study of a distribution of possible outcomes, we identify a subset of
the CTL lifecycle state transitions, and replace the certainty of a transition from
state w to state v on event e with some probability (< 1) of state transition.
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Let us start by defining what is meant by state transition relaxation: If X is a
discrete random variable (drv) representing the transition from state w to state
v, and e is some event linking wv, the relaxed state transition Xr is:

P (Xr|e) = 0 ≤ ψ ≤ 1 (1)

The choice of value for ψ will naturally depend on the wv in question. In
contrast to earlier models 2, Eq. (1) implies duality in the presence of event e:
transition on e (Xr) or not (X̄r). This extension results in a non-deterministic
finite automaton (NFA) [12]. Fig. (1) is a non-deterministic finite automata
model of the lifecycle of the CTL (and follows notation explained in Table 1).
E is the set of events the model, and consists of both deterministic and non-
deterministic elements. We define a subset of three critical non-deterministic
events S ⊂ E as: S = {e2,8, e3, e5}. Each ei ∈ S is defined as follows:

e2, e8 An infected antigen presenting cell will be destroyed by a bound cyto-
toxic lymphocyte cell which recognises it. Recognition is a function of the
distance between the two cells in shape space.

e3 An activated proliferating immune cell (state ctl+�) will normally end
clonal expansion on the event 〈e3 : age(ctl+�) > 192〉.

e6 The fraction of effector T cells entering the long-lived memory pool. Nor-
mally the majority of activated effector cells undergo programmed cell
death (apoptosis) at the end of primary response. However, recruitment
to the memory pool consumes around 5 − 10% of activated CTL [13,14,
15], thus, a further stochastic transition occurs on e6, with of ctl+† enter
ctl+• on event 〈e6 : age(ctl+†) ≥ 192〉.

erpt Repeated reinfection events, resulting in repeated doses of infected antigen
presenting cells introduced into the simulation, at timestep τ + 300n, n =
0, 1, ..., 9.

Each of the above events (en) has an associated probability ψn. The set
{ψ1, ψ2, ψ3, ψ4}, therefore fully describes each simulation configuration of the
model (all other parameters being kept constant). In the results presented in the
following section, we define the following four experimental onfigurations of P:

1. P1 : {0.9, 0.9, 0.9, 0.0}
2. P2 : {0.9, 0.9, 0.95, 0.0}
3. P3 : {0.9, 0.9, 0.9, 1}
4. P4 : {0.9, 0.9, 0.95, 1}

The first two configurations of P test the fidelity of the model response when
confronted with a singular secondary infection event some 30 days after the initial
infection. The first configuration represents a normal response and is intended to
calibrate the model for near optimal conditions. For P1, we would expect to see
CTL production levels broadly characterised by low, elongated peak for primary
infection, followed by an increase in memory CTL. Another expected observation
2 in that P (Xr|e) = 1
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Fig. 1. A seven-state non-deterministic finite automata of the cytotoxic lymphocyte
cell lifecycle. Transition events (en), which carry the same label, are non-deterministic.

is APC clearance: over some 6 − 10 days for primary response, and significantly
faster during secondary response. The second configuration is an increase in ψ3
from 0.9 to 0.95 and is intended to test the impact of a 5% decline in the number
of cells which transition to the effector memory state (ctl+† → ctl+⊕). Some viral
infections are known to case damage or loss of the memory pool [16], and we
test to see the impact this has on our model. We test repeated reinfection with
normal and depleted memory cell production (P3 and P4, respectively). Many
pathogens are known to lead to acute and persistent viral infections, and we test
the importance of memory cell production in these cases. Again we deplete the
memory production by 5% and study the consequences of this loss. Section 4.1
examines the results of persistent infection in our model.

4 Results

The model is initially executed with parameter set P1 and P2 (with no repeat
reinfection), and the results are shown in Fig. 2. In (a), the initial infection
is visible at τ = 0 with pathogen density pd = 5000, (the broken line) and
consequent effector response reaching a maximum value at τ = 300, with ed =
8.2 × 103. Fig. 2(b) shows the antigen presenting cell population level (only).
No memory cells are present during primary response, and as such, the effector
cell population is made up entirely of clones produced by stimulated precursor
cells. To the right of each effector cell peak is a plateau of memory cells. The
slope of the CTL density peak is extreme, indicating that the state transitions
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Table 1. Notation and definition of model entity states

Notation Definition

ctl− naive recirculating effector precursor

ctl+� proliferating lymphocyte

ctl+• dead activated lymphocyte (apoptosis)

ctl+⊕ activated memory effector

ctl+⊕� activated proliferating memory effector

ctl+⊕† activated memory effector

ctl+† armed activated effector

apc+ active infected antigen presenting cell

apc+• dead infected antigen presenting cell

from ctl+� to ctl+† to ctl+⊕ (or ctl+•) occurring with a high degree of certainty.
At time τ = 1500 (day 31), secondary exposure to the same pathogen occurs,
and the model exhibits following general behaviour: (i) the secondary immune
response is preceeded by a pool of committed CTL memory cells which have
already been primed to respond to the re-appearing pathogen, (ii) the activated
CTL density is some 10 times higher than primary response, and does not last as
long, and (iii) the pathogen is reduced to half its original level much more rapidly
than during primary response. With P1, the model exhibits efficient detection
and clearance behaviour associated with a healthy immune system. From Fig.
2, it can be seen the advantage in both time and infected cell clearance which is
conferred on a response based largely on memory: the half life of the virus during
primary response is around 3.25 days, with 90% pathogen clearance achieved at
around τ = 480, or 10 days of simulation time. Compared to secondary response
on reinfection we see an infected cell half life of τ ≈ 60 or 1.25 days - an efficiency
of around 87%. Effectively, this is because memory cells, having already been
primed by a previous encounter with the specific pathogen, undergo expansion
with lower death rates than during primary response: they therefore accumulate
more quickly [17]. The results for P2 are shown in Fig. 2(c) and (d). Here,
the probability of entering apoptosis is increased from 0.9 to 0.95. This means
that the memory cell population would be around 5% of that activated effector
population post-primary response. Recent work (notably [17]) has shown that
some ≈ 90% of activated effector undergo apoptosis after primary response.
Therefore, ψ3 = 0.95 would represent an unusually high suppression of memory
function. Clearly, the reduction of memory effector production should not effect
primary response, and this is borne out by CTL density levels prior to τ = 1500
(c). We see a normal 10-day clearance regime (d) during primary response, but
a less effective response during reinfection: in fact, the memory cell pool in the
time range 500 ≤ τ ≤ 1500 has fallen to ≈ 500. Once reinfection occurs, the APC
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Fig. 2. CTL and pathogen lattice density levels (a),(c) over a simulated 62.5 day period,
with an initial infection at time τ = 0 and a reinfection by the same pathogen occurring
at τ = 1500, for 3 values of P. Antigen presenting cell (APC) density is shown by the
broken line, with the solid line indicating levels of effector memory and activated cells
combined. For clarity, (b),(d) show population levels for APC for each P.

population is cleared some 31% more effectively than during primary response.
The APC half life is τ = 108, 90% clearance is achieved after reinfection at
τ ≈ 1788 (or some 5.9 days of simulated time). However, the characteristics of
P2 are significantly degraded compared to that observed in P1.

4.1 Persistent Reinfection

Some viral pathogens are capable of persistent reinfection, in that, although pop-
ulation levels of infected antigen presenting cells may decline in response to clear-
ance pressure by a specific CTL response, over time, the number of infected cells
rises to chronic and sometimes acute levels. Examples of such viruses are HIV,
HTLV, hepatitis C (HCV), hepatitis B virus, CMV EBV and rubella [16]. Such
persistent reinfection pathogens have been associated with normal immune func-
tion suppression. In this section, we simulate persistent reinfection by randomly
scattering a repeat ‘dose’ of the pathogen, introduced at τ +300n, n = 0, 1, ..., 9.
This reinfection pattern is a represents a resurgence of infected cells every 6.25
days, in discrete bursts. The results of this simulation are shown in Fig. 3.

With respect to Fig. 3 (a), the response to the first reinfection is clearly
strong: some 3.8 × 105 lymphocytes are generated and the reinfection is rapidly
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Fig. 3. The model is exposed to repeated infection events, arising at time τ = 300n, n =
0, 1, ..., 9, equivalent to an infection every 6 days.

eliminated. As further infections arise starting at τ = 600, the existing memory
pool never falls below 1.8 × 105, and is critical in bringing the repeated rein-
fections under control in time periods (b) which rarely exceed 130 timesteps
(or 2.8 days of simulated time). We also see from (a) that slightly lower re-
sponses are sufficient in order to effect optimal clearance. Results from (a) and
(b) support the clinical findings that the memory cell levels tends to be higher
after secondary and tertiary infections [17], which in turn, supports the clinical
practice of vaccination boosting. Finally, when the simulation is executed with
diminished memory cell creation and repeatedly stressed with reinfection (P4),
average primary and secondary response levels are similar (around 1.2 × 104).
Each response is characterised by rapid expansion and reduction of effector lym-
phocyte clones. There are no memory cells to confer clearance advantage, and
each response is initiated from low levels (around 1.2 × 102).

5 Discussion and Conclusions

The approach taken in this research was to construct a stochastic model of the
effector T cell lifecycle, in order to study a distribution of possible simulation
outcomes. We have shown how the model reproduces well the time and space
dynamics of initial and secondary infection. In addition, we believe the research is
valuable in modelling the relationship between repeated reinfection and effector
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cell transition to memory or apoptosis. We have demonstrated how repeated
reinfection can be controlled only within a limited range of ψ3: too much memory
causes the lymphatic compartment to fill-up, too little memory induces the need
for clonal expansion from naive precursor cells, and a elongated APC clearance
profile. When the ratio of apoptosis to memory is ‘just right’ (0.88 ≤ ψ3 ≤ 0.92),
antigen presenting cell levels (during repeated reinfection) are brought under
control in increasingly rapid time frames. The next steps in this research are
to test the homeostasis of our model: where does the model break down, and
what insight does this provide. Very recent clinical work [16] suggests that the
immune system must periodically preferentially eliminate some memory cells
which exhibit poor cross-reactivity. One of the benefits of the the stochastic
effector T cell lifecycle model presented here is the relative ease with which this
theory could be investigated. The benefits of selective memory cells reduction
may form the basis of further work with this model.
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