Skip to main content

A Hybrid Discrete-Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb

  • Conference paper
Book cover Cellular Automata (ACRI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3305))

Included in the following conference series:

Abstract

We present a dynamic, three-dimensional, composite model framework for vertebrate development. Our integrated model combines submodels that address length-scales from subcellular to tissues and organs in a unified framework. Interacting submodels include a discrete model derived from non-equilibrium statistical mechanics (Cellular Potts Model) and continuous reaction-diffusion models. A state diagram with associated rules and a set of ordinary differential equations model genetic regulation to define and control cell differentiation. We apply the model spatiotemporal bone patterning in the proximo-distal (from body towards digits) direction of developing avian limb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaturvedi, R., Izaguirre, J.A., Huang, C., Cickovski, T., Virtue, P., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S.A., Glazier, J.A.: In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2659, pp. 39–49. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S.A., Glazier, J.A.: CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20, 1129–1137 (2004)

    Article  Google Scholar 

  3. Newman, S.A., Comper, W.D.: ’Generic’ physical mechanisms of morphogenesis and pattern formation. Development 110, 1–18 (1990)

    Google Scholar 

  4. Hentschel, H.G.E., Glimm, T., Glazier, J.A., Newman, S.A.: Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. To appear in Proceedings R. Soc. Lond: Bio. Sciences (2004)

    Google Scholar 

  5. Murray, J.D.: Mathematical Biology, 2nd edn. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  6. Miura, T., Shiota, K.: Tgf Beta2 acts as an activator molecule in reaction-diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. Dev. Dyn. 217, 241–249 (2000)

    Article  Google Scholar 

  7. Moftah, M.Z., Downie, S., Bronstein, N., Mezentseva, N., Pu, J., Maher, P., Newman, S.A.: Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2. Dev. Biol. 249, 270–282 (2002)

    Article  Google Scholar 

  8. Tsonis, P.A., Del Rio-Tsonis, K., Millan, J.L., Wheelock, M.J.: Expression of N-cadherin and alkaline phosphatase in the chick limb bud mesenchymal cells: Regulation by 1,25- dihydroxyvitamin D3 and TGF-betal. Exp. Cell Res. 213, 433–437 (1994)

    Article  Google Scholar 

  9. Steinberg, M.S.: Reconstruction of tissues by dissociated cells. Science 141, 401–408 (1963)

    Article  Google Scholar 

  10. Glazier, J.A., Graner, F.: A simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47, 2128–2154 (1993)

    Article  Google Scholar 

  11. Upadhyaya, A.: Thermodynamic and fluid properties of cells, tissues and membranes, Ph.D. thesis, University of Notre Dame (2000)

    Google Scholar 

  12. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  13. Alber, M., Glimm, T., Hentschel, H.G.E., Kazmierczak, B., Newman, S.A.: Stability of n-Dimensional Patterns in a Generalized Turing System: Implications for Biological Pattern Formation (2004) (submitted)

    Google Scholar 

  14. Zeng, W., Thomas, G.L., Newman, S.A., Glazier, J.A.: A Novel Mechanism for Mesenchymal Condensation during Limb Chondrogenesis in vitro. In: Capasso, V., Ortisi, M. (eds.) Mathematical Modeling and Computing in Biology and Medicine: 5th Conference of the European Society of Mathematical and Theoretical Biology, Milan (2002)

    Google Scholar 

  15. Kiskowski, M.A., Alber, M.S., Thomas, G.L., Glazier, J.A., Bronstein, N.B., Pu, J., Newman, S.A.: Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning. Dev. Biol. 271, 372–387 (2004)

    Article  Google Scholar 

  16. Cohen Jr., M.M., Kreiborg, S.: Hands and feet in the Apert syndrome. Am. J. Med. Genet. 57, 82–96 (1995)

    Article  Google Scholar 

  17. Alber, M., Kazmierczak, B., Hentshcel, H.G.E., Newman, S.A.: Existence of solutions to a new model of avian limb formation (2004) (submitted)

    Google Scholar 

  18. Martin, G.R.: The roles of FGFs in the early development of vertebrate limbs. Genes. Dev. 12, 1571–1586 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaturvedi, R., Huang, C., Izaguirre, J.A., Newman, S.A., Glazier, J.A., Alber, M. (2004). A Hybrid Discrete-Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds) Cellular Automata. ACRI 2004. Lecture Notes in Computer Science, vol 3305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30479-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30479-1_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23596-5

  • Online ISBN: 978-3-540-30479-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics