Skip to main content

Synchronization of Protein Motors Modeled by Asynchronous Cellular Automata

  • Conference paper
  • 3792 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3305))

Abstract

Spermatozoa propel themselves in fluids through a rhythmically beating flagellum. Though it is known that the motor protein “dynein” is at the base of such movements, it is unclear how the behaviors of individual elements add up to the coordinated movement of the flagellum. Being single-cell entities, spermatozoa lack nerve systems, so an explanation for their movements ought to be found in a mechanism on molecular scales. This paper aims to clarify part of a possible mechanism in terms of asynchronous cellular automata. The question answered is: “Given a 1-dimensional cellular automaton with von Neumann neighborhood of which each cell—being updated at random times—cycles through three states; how can waves, i.e., patterns of cells in certain states, be formed that on average move in one direction?”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astumian, R.D.: Making molecules into motors. Scientific American 285(1), 57–64 (2001)

    Article  Google Scholar 

  2. Blok, H.J., Bergersen, B.: Synchronous versus asynchronous updating in the game of life. Phy. Rev. E 59, 3876–3879 (1999)

    Article  Google Scholar 

  3. Brokaw, C.J.: Bend propagation by a sliding filament model for flagella. Journal of Experimental Biology 55, 289–304 (1971)

    Google Scholar 

  4. Brokaw, C.J.: Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophysical Journal 12, 564–586 (1972)

    Article  Google Scholar 

  5. Brokaw, C.J.: Computer simulation of flagellar movement. VI. Simple curvaturecontrolled models are incompletely specified. Biophysical Journal 48, 633–642 (1985)

    Article  Google Scholar 

  6. Brokaw, C.J.: Computer simulation of flagellar movement. VII. Conventional but functionally different cross-bridge models for inner and outer arm dyneins can explain the effects of outer arm dynein removal. Cell Motility and the Cytoskeleton 42, 134–148 (1999)

    Article  Google Scholar 

  7. Camalet, S., Jülicher, F., Prost, J.: Self-organized beating and swimming of internally driven filaments. Physical Review Letters 82, 1590–1593 (1999)

    Article  Google Scholar 

  8. Gueron, S., Levit-Gurevich, K.: Computation of the internal forces in cilia: application to ciliary motion, the effects of viscosity, and cilia interactions. Biophysical Journal 74, 1658–1676 (1998)

    Article  Google Scholar 

  9. Hines, M., Blum, J.J.: Bend propagation in flagella. I. Derivation of equations of motion and their simulation. Biophysical Journal 23, 41–57 (1978)

    Article  Google Scholar 

  10. Hines, M., Blum, J.J.: Bend propagation in flagella. II. Incorporating if dynein cross-bridge kinetics into the equations of motion. Biophysical Journal 25, 421–442 (1979)

    Article  Google Scholar 

  11. Howard, J.: Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 (1997)

    Article  Google Scholar 

  12. Ingerson, T.E., Buvel, R.L.: Structures in asynchronous cellular automata. Physica D 10, 59–68 (1984)

    Article  MathSciNet  Google Scholar 

  13. Jülicher, F., Prost, J.: Cooperative molecular motors. Physical Review Letters 75, 2618–2621 (1995)

    Article  Google Scholar 

  14. Kamimura, S., Kamiya, R.: High-frequency nanometre-scale vibration in ‘quiescent’ flagellar axonemes. Nature 340, 476–478 (1989)

    Article  Google Scholar 

  15. Kamimura, S., Kamiya, R.: High-frequency vibration in flagellar axonemes with amplitudes reflecting the size of tubulin. Journal of Cell Biology 116, 1443–1454 (1992)

    Article  Google Scholar 

  16. Lindemann, C.B., Kanous, K.S.: A model for flagellar motility. International Review of Cytology 173, 1–72 (1997)

    Article  Google Scholar 

  17. Machin, K.D.: Wave propagation along flagella. Journal of Experimental Biology 35, 796–806 (1958)

    Google Scholar 

  18. Machin, K.D.: The control and synchronization of flagellar movement. Proceedings of the Royal Society of London B 62, 88–104 (1963)

    Article  Google Scholar 

  19. Murase, M., Shimizu, H.: A model of flagellar movement based on cooperative dynamics of dynein-tubulin cross-bridges. Journal of theoretical Biology 119, 409–433 (1986)

    Article  Google Scholar 

  20. von Neumann, J.: The Theory of Self-Reproducing Automata. In: Burks, A.W. (ed.). University of Illinois Press, Urbana (1966)

    Google Scholar 

  21. Okuno, M., Hiramoto, Y.: Mechanical stimulation of starfish sperm flagella. Journal of Experimental Biology 65, 401–413 (1976)

    Google Scholar 

  22. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51, 123–143 (1999)

    Article  Google Scholar 

  23. Shingyoji, C., Murakami, A., Takahashi, K.: Local reactivation of triton-extracted flagella by iontophoretic application of ATP. Nature 265, 269–270 (1977)

    Article  Google Scholar 

  24. Shingyoji, C., Gibbons, I.R., Murakami, A., Takahashi, K.: Effect of imposed head vibration on the stability and waveform of flagellar beating in sea urchin spermatozoa. Journal of Experimental Biology 156, 63–80 (1991)

    Google Scholar 

  25. Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E., Yanagida, T.: Dynein arms are oscillating force generators. Nature 393, 711–714 (1998)

    Article  Google Scholar 

  26. Sugino, K., Naitoh, Y.: Simulated cross-bridge patterns corresponding to ciliary beating in Paramecium. Nature 295, 609–611 (1982)

    Article  Google Scholar 

  27. Thomas, N., Thornhill, R.A.: The physics of biological molecular motors. Journal of Physics D: Applied Physics 31, 253–266 (1998)

    Article  Google Scholar 

  28. Wiggings, C.H., Riveline, D., Ott, A., Goldstein, R.E.: Trapping and wiggling: elastohydrodynamics of driven microfilaments. Biophysical Journal 74, 1043–1060 (1998)

    Article  Google Scholar 

  29. Yagi, T., Kamiya, R.: Novel mode of hyper-oscillation in the paralyzed axoneme of a Chlamydomonas mutant lacking the central-pair microtubulus. Cell Motility and the Cytoskeleton 31, 207–214 (1995)

    Article  Google Scholar 

  30. Yamada, A., Yamaga, T., Sakakibara, H., Nakayama, H., Oiwa, K.: Unidirectional movement of fluorescent microtubulus on rows of dynein arms of disintegrated axonemes. Journal of Cell Science 111, 93–98 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peper, F., Oiwa, K., Adachi, S., Shingyoji, C., Lee, J. (2004). Synchronization of Protein Motors Modeled by Asynchronous Cellular Automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds) Cellular Automata. ACRI 2004. Lecture Notes in Computer Science, vol 3305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30479-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30479-1_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23596-5

  • Online ISBN: 978-3-540-30479-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics