
Please do not remove this page

Generating multidimensional schemata from
relational aggregation queries
Pang, Chaoyi; Taylor, Kerry; Zhang, Xiuzhen; Cameron, Mark
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Generating-multidimensional-schemata-from-relational-aggregation/
9921857764901341/filesAndLinks?index=0

Pang, C., Taylor, K., Zhang, X., & Cameron, M. (2004). Generating multidimensional schemata from
relational aggregation queries. Web Information Systems - WISE 2004 International Conference on Web
Information Systems Engineering. https://doi.org/10.1007/b103344

Published Version: https://doi.org/10.1007/b103344

Downloaded On 2024/04/19 18:32:40 +1000
© Springer-Verlag Berlin Heidelberg 2004
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Generating-multidimensional-schemata-from-relational-aggregation/9921857764901341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Generating-multidimensional-schemata-from-relational-aggregation/9921857764901341
http://doi.org/doi:https://doi.org/10.1007/b103344
https://researchrepository.rmit.edu.au


Generating Multidimensional Schemata from
Relational Aggregation Queries

Chaoyi Pang1, Kerry Taylor1, Xiuzhen Zhang2, and Mark Cameron1

1 CSIRO ICT Centre and Preventative Health National Flagship Program, Australia
{chaoyi.pang, kerry.taylor, mark.cameron}@csiro.au

2 School of Computer Science & IT, RMIT University, Australia
zhang@cs.rmit.edu.au

Abstract. Queries on operational databases can be viewed as a form
of business rules on data warehouse schema design. We propose to use
such queries to automatically generate measures, dimensions and dimen-
sion hierarchies and their representation in a star schema. The schema
produced with our approach has good properties such as non-redundant
dimensional attributes and orthogonality among dimensions and can an-
swer many more queries than just those it was generated from.

1 Introduction

The multidimensional model has proven extremely successful in data warehouse
and On-line Analytical Processing (OLAP) applications. OLAP applications are
dominated by analytical queries: rather than retrieving detailed information from
a data repository about individual transactions, the main concern is to retrieve
summaries of data. Designing a multidimensional schema involves deciding (1)
the dimensions and attributes describing each dimension, (2) the aggregation
hierarchy for the dimensions, and (3) the measure attributes and their depen-
dent dimensions. Most current methods on schema design, such as [5], start the
design process with requirements analysis and specification, then conceptual de-
sign, logical design, and finally physical design. In contrast, we treat summary
queries over a source schema as the statement of requirements, and automatically
derive the logical design. Our rationale is that, when collecting requirements for
designing data warehouses, stakeholders can more easily formulate the knowl-
edge or analysis they are expecting as queries over existing data resources, rather
than by describing a view of the enterprise business process or research needs.

Our motivation for researching this problem is stimulated by the following
observations in practice:

– Designing a multidimensional schema is difficult. Complex business processes
make it hard to achieve an accurate overall picture of an enterprise to un-
derstand data analysis needs. As an alternative to the phase of requirement
collection and business rules analysis employed in data warehouse design, we
use the schemas and analytical queries of conventional databases as a proxy

E72418
Typewritten Text

E72418
Typewritten Text
Citation: Pang, C, Taylor, K, Zhang, X and Cameron, M 2004, 'Generating multidimensional schemata from relational aggregation queries', in X. Zhou et al. (ed.) Web Information Systems - WISE 2004 FifthInternational Conference on Web Information Systems Engineering, Berlin, 1 November 2004.



for a specialist designer. A significant feature of this approach is that queries
can be composed easily by business analysts and database developers with
little expertise in data warehouse design.

– The schemas and analytical queries on the conventional database are essen-
tial elements in building any data warehouse. Generally, the schemas imply
functional dependencies among attributes which suggest hierarchical struc-
tures within dimensions and can be used to eliminate unprofitable redun-
dancy. In practice, functional dependencies and referential constraints are
stored in system tables as metadata and may be readily available. Queries,
on the other hand, associate raw data in the conventional database with the
manipulated data in the data warehouse. They identify the desired applica-
tion scope.

– OLAP applications are a data driven exercise where the requirements for the
output often evolve as the data is extracted. Moreover, such applications are
characterized by the use of many similar and repeated queries. When new
demands occur, our design methodology can evolve the previously generated
schemata into new schemata by integrating the new queries interpreted from
the demands [12].

2 Our Method

We analyze the attributes from the given relational queries and the dependency
relationships among them to design a schema with good properties such as non-
redundant dimensional attributes and orthogonality among dimensions. Our de-
signed schema can answer the queries that it was generated from and has the
minimal number of dimensions for an aggregation. Furthermore, the schema can
answer many more queries other than the given ones.

In the following, we compare a hand-designed schema with an automatically
generated one for a running example. Our theoretical results can be explained
through the following observations: (i) all the dimensional attributes are rele-
vant; (ii) the dimensional hierarchies are properly described; (iii) aggregation-
dimension relationships are defined precisely; and, as a result, (iv) aggregation-
dimension relationships are non-redundant. In fact, these observations are in-
herited from the following properties: (1) the schema can answer the generating
queries; (2) the schema can answer many more additional queries; (3) the total
number of attributes in the dimensions is minimal (counting the attributes in a
hierarchy relation as one attribute); and (4) the number of dimensions for ag-
gregation is minimal. Properties (1) and (2) imply a query reuse capability of
the obtained schema. Property (3) indicates that if an attribute in a dimension
is removed then there is a query amongst the given queries which could not
be answered from the computed schema. Property (4) indicates that any two
dimensions for the same aggregation are orthogonal [9], which is a key design
criteria for an efficient data warehouse.

We need the following steps to build a multidimensional schema from a set
of queries: we first use the proposed measure dependency to represent each ag-



gregate query over a source schema; then apply the transformations to asso-
ciate the “relevant” measure dependencies together so that they can be treated
in the same cube of the multidimensional schema; and lastly apply functional
dependencies to define dimensions and dimensional hierarchies in a cube. Two
transformations are introduced: a referential transformation and a join transfor-
mation that relies on functional dependency and recognizing query equivalence.
There exist polynomial time algorithms for computing the closure of functional
dependencies and recognizing query equivalence that apply [1, 7]. By using the
dependency relations and referential constraints between attributes, we have de-
veloped a method within a cube to determine the dimensional attributes and to
group them into dimensional hierarchies.

3 Related Work

To the best of our knowledge, this is the first paper that designs data ware-
house schemata using queries on a conventional database. We are not aware of
any papers that use the dependency relationship and referential constraints to
associate queries in designing a multidimensional schema.

Our method generalizes the procedure used in OLAP products such as Cog-
nos, Business Objects and MicroStrategy, where a single query over a relational
database is used to generate a specific, single-purpose multidimensional schema.
Our idea on transformation rules for queries is different to the one used in ma-
terialized view advisors on the existing commercial products such as those from
Oracle and IBM: Their methods are based on the existing data warehouse schema
and extract views either to flood the schema or to materialize for efficient com-
putation. [11] is based on the data warehouse cube.

Recently, materialized views have been explored extensively to provide mas-
sive improvements in query processing time, especially for aggregation queries
over large databases [2–4]. These methods rely on the source database remaining
intact for complete query answering, but they supplement the database with de-
rived data to speed up query processing. This is very different from our method
in which we aim to define a new data warehouse schema, with good design
properties, against which data warehouse queries may be addressed without on-
going reference to the source data for query answering. Having designed the
data warehouse, methods for view materialization might be applied to choose a
population and maintenance strategy for the data warehouse, taking account of
space efficiency and view maintenance costs.

To ensure a good design, papers such as [8–10] propose a multidimensional
normal form for schema design. The normal form is used for reasoning about
the quality of a schema to reduce redundancy, diminish sparsity and to retain
summarizability. Sparsity relates to the dimension orthogonality, which, in turn,
can be reflected by the existence of a functional dependency. We will use some
of these concepts in our schema design.



4 Running Example

In the following, we use a running example to briefly describe our result on
schema design. Refer to [13] for the detailed illustration and algorithm.

Branch(branchNo, bstreetAddress, bCity)

LoanManager(empNo, empName, phone, branchNo)

Customer(custNo, custName, profession, streetAddress, city, state)

Account(accNo, accType, balance,aDate, custNo)

LoanContract(conNo, loantype, amount, cDate, empNo, custNo)

Table 1. A banking relational database

Account

accNo

accType

all

Balance Fact

time

customer

account

balance

Customer

custNo

custName

profession

state

city

all

LoanManager

empNo

empName

branchNo

StAddr

bCity

all

Time

date

month

year

all

Loan Fact

time

loanManager

contract

customer

amount
LoanContract

conNo

loanType

all

Dim 3: Profession

C.profession

all

Dim 6: Account

A.accType

all

Fact 2: Balance

profession

account

avg(balance)

Dim 1: CustLocation

C.city

C.state

all

Dim 2: LoanManager

L.empNo

L.empName

B.branchNo

B.bCity

all

Dim 4: LoanType

LC.loanType

all

Dim 5: Time

year

all

Fact 1: Loan

time

loanManager

profession

loanType

custLocation

sum(amount)

Fact 3: Count

loanType

count(*)

Fact 4: TotalBalance

account

sum(balance)

Fig. 1. The star schema: (1) by hand; (2) by queries.

We study the operational banking database as shown in Table 1, where the
primary keys for each relation are underlined. Some sample queries and their SQL
equivalents are given in Table 2. On one hand, we generate the warehouse schema
of Figure 1(1) manually by the data warehouse design process recommended in a
standard text [6]. We use the sample queries to indicate the application scope for
that design. On the other hand we can design the warehouse schema directly from
the queries. We therefore automatically derive the star schema of Figure 1(2) by
using our method with the queries in Table 2. By assessing the two generated
schemata, we have the following comments . First, the irrelevant dimensional
attributes in Figure 1(1) result in poor dimension hierarchies and data redun-
dancy in facts and dimensions; the automatically generated schemata does not
include the redundant attributes such as branchName, Month, accNo and cusNo
in Figure 1(1). These attributes are not referred to in any given queries and
therefore they are considered inappropriate to the application scope. Including



Q1 : The total loan in 2002. Q2 : For the types of loans with more than 10
loan contracts, the type of loan and the number
of contracts.

select sum(LC.amount)
from LoanContract LC
where LC.cDate = 2002

select LC.loantype, count(∗)
from LoanContract LC
group by LC.loantype
having count(∗) > 10

Q3 : For each loan type, and each city and state
where customers resides, the total loan amount
in 2002.

Q4 : For each type of loan and each customer
profession, list the total loan amount.

select C.city,C.state,C.loanType,
sum(LC.amount)

from LoanContract LC, Customer C
where LC.custNo = C.custNo and

LC.cDate = 2002
group by C.city,C.state,C.loanType

select LC.loanType,C.profession, sum(LC.amount)
from LoanContract LC, Customer C
where LC.custNo = C.custNo
group by LC.loanType,C.profession

Q5 : The performance (total loan amount) of
each loan manager in 2002.

Q6 : The total loan amount of each branch.

select L.empNo,L.empName,sum(LC.amount)
from LoanContract LC, LoanManager L
where LC.empNo = L.empNo and LC.cDate ≥

2002 and LC.cDate < 2003
group by L.empNo, L.empName

select B.branchNo, sum(LC.amount)
from Branch B, LoanManager L, LoanContract LC
where B.branchNo = L.branchNo and

L.empNo = LC.empNo
group by B.branchNo

Q7 : The overall performance of each customer
profession and account type.

Q8 : The total loan amount for each branch and
city

select A.accType,C.profession,avg(A.balance)
from Account A, Customer C
where A.custNo = C.custNo
group by A.accType, C.profession

select B.bCity, B.branchNo, sum(LC.amount)
from Branch B, LoanManager L,

LoanContract C
where B.branchNo = L.branchNo and

L.empNo = LC.empNo
group by B.bCity, B.branchNo

Q9 : The average balance for each customer pro-
fession.

Q10 : The total balance for each account type.

select C.profession, avg(A.balance)
from Account A, Customer C
where A.custNo = C.custNo
group by C.profession

select A.accType, sum(A.balance)
from Account A
group by A.accType

Table 2. Aggregation queries on the banking database.

many irrelevant attributes in the dimensions could cause inefficient query exe-
cution and data storage. Moreover, due to the existence of irrelevant attributes
in Figure 1(1), the dimension hierarchies of Figure 1(1) are not described prop-
erly. For example, the “Customer” dimension of Figure 1(1) is represented as
two dimensions in Figure 1(2), CustomerLocation and CustomerProfession. But
from the aggregation hierarchy, we can see that they are orthogonal, being two
disjoint aggregation paths for the Customer dimension. cusNo and custName
are not dimensional attributes in Figure 1(2). These differences mean that the
design of Figure 1(2) is more compact than that of Figure 1(1). Secondly, the
vague Aggregation-Dimension relationships of Figure 1(1) causes redundancy.
For example, Figure 1(1) describes the dependency of the Balance measure on
the Time, Customer and Account dimensions in general, leading to redundancy
in the fact table due to unrelated attributes in one dimension table. Figure 1(2)
describes this dependency more precisely: the Average of balance depends on
the Customer Profession and Account, whereas the Sum of balance depends on
the Account dimension only. Lastly, even though the queries used to generate
the schema are quite simple, the obtained schema supports more complicated



queries. For example, it can handle a query for “the best loan manager each
year”, where he is the one with the largest contract value sum.

5 Conclusion

Our future work is to improve and extend this work in several ways: to address
a wider class of queries including disjunctive queries; to merge some similar
dimension tables; to subdivide some attributes in order to create new mea-
sures; to capture multi-database dependencies; to automatically populate the
automatically-built schema from the source database; and, more importantly, to
evaluate our approach in the real world.

Acknowledgements: We would like to thank the anonymous referees for their
very helpful remarks.

References

1. C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In 6th
Int. Conference on Database Theory; LNCS 1186, pages 56–70, Delphi, Greece,
1997.

2. D. W. Cheung, B. Zhou, B. Kao, H. Lu, T. W. Lam, and H. F. Ting. Requirement-
based data cube schema design. In Proc. of the 8th Intl. Conf. on Information and
knowledge management, pages 162–169. ACM Press, 1999.

3. R. Chirkova, A. Y. Halevy, and D. Suciu. A formal perspective on the view selection
problem. The VLDB Journal, 11(3):216–237, 2002.

4. J. Goldstein and P.-Å. Larson. Optimizing queries using materialized views: a
practical, scalable solution. SIGMOD Record, 30(2):331–342, June 2001.

5. B. Husemann, J. Lechtenborger, and G. Vossen. Conceptual data warehouse mod-
eling. In Design and Management of Data Warehouses, page 6, 2000.

6. R. Kimball. The Data Warehouse Toolkit. John Wiley and Sons, 1996.
7. P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint

satisfaction. In Proc. of the 17th ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, pages 205–213. ACM Press, 1998.

8. J. Lechtenbrger and G. Vossen. Multidimensional normal forms for data warehouse
design. Information Systems, 28(5):415–434, 2003.

9. W. Lehner, J. Albrecht, and H. Wedekind. Normal forms for multidimensional
databases. In 10th Intl Conf. on Scientific and Statistical Database Management,
Proc., Capri, Italy, July 1-3, 1998, pages 63–72. IEEE Computer Society, 1998.

10. H.-J. Lenz and A. Shoshani. Summarizability in OLAP and statistical data bases.
In Statistical and Scientific Database Management, pages 132–143, 1997.

11. T. Niemi, J. Nummenmaa, and P. Thanisch. Constructing OLAP cubes based on
queries. In Proc. of the 4th ACM international workshop on Data warehousing and
OLAP, pages 9–15. ACM Press, 2001.

12. C. Pang, K. Taylor, and X. Zhang. Multidimensional schema evolution from ag-
gregation queries. CSIRO ICT Centre, Technical Report, 03(186), 2003.

13. C. Pang, K. Taylor, X. Zhang, and M. Cameron. Generating multidimensional
schema from aggregation queries. CSIRO Mathematical and Information Sciences
Technical Report, 2003.




