THE UNIVERSITY OF

WARWICK

Original citation:

Dimovski, A. and Lazic, Ranko (2004) CSP representation of game semantics for
second-order idealized Algol. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). CS-RR-400

Permanent WRAP url:
http://wrap.warwick.ac.uk/61315

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61315
mailto:publications@warwick.ac.uk

CSP Representation of Game Semantics for
Second-order Idealized Algol

Aleksandar Dimovski and Ranko Lazié

Department of Computer Science
University of Warwick
Coventry CV4 7AL, UK

{aleks,lazic}@dcs.warwick.ac.uk

Abstract. We show how game semantics of an interesting fragment
of Idealised Algol can be represented compositionally by CSP processes.
This enables observational equivalence and a range of properties of terms-
in-context (i.e. open program fragments) to be checked using the FDR
tool. We have built a prototype compiler which implements the repre-
sentation, and initial experimental results are positive.

1 Introduction

Context. One of the main breakthroughs in theoretical computer science in the
past decade has been the development of game semantics (e.g. [10,1]). Types
are modelled by games between Player (i.e. term) and Opponent (i.e. context
or environment), and terms are modelled by strategies. This has produced the
first accurate (i.e. fully abstract and fully complete) models for a variety of
programming languages and logical systems.

It has recently been shown that, for several interesting programming lan-
guage fragments, game semantics yields algorithms for software model checking.
The focus has been on Idealised Algol (TA) [13] with active expressions. IA is
similar to Core ML. It is a compact programming language which combines the
fundamental features of imperative languages with a full higher-order procedure
mechanism. For example, simple forms of classes and objects may be encoded in
IA.

For second-order recursion-free A with iteration and finite data types, [7]
shows that game semantics can be represented by regular expressions, so that
observational equivalence between any two terms can be decided by equality
of regular languages. For third order and without iteration, it was established
in [12] that game semantics can be represented by deterministic pushdown au-
tomata, which makes observational equivalence decidable by equality of deter-
ministic context-free languages. Classes of properties other than observational
equivalence can also be checked algorithmically, such as language containment
or Hoare triples (e.g. [2,8]).

" We acknowledge support by the EPSRC (GR/S52759/01). The first author was also
supported by the Intel Corporation.

In recent years, software model checking has become an active research area,
and powerful tools have been built (e.g. [4]). Compared with other approaches to
software model checking, the approach based on game semantics has a number
of advantages [3]:

— there is a model for any term-in-context, which enables verification of pro-
gram fragments which contain free variable and procedure names;

— game semantics is compositional, which facilitates verifying a term to be
broken down into verifying its subterms;

— terms are modelled by how they interact with their environments, and details
of their internal state during computations are not recorded, which results
in small models.

Our contribution. In this paper, we show how game semantics of second-order
recursion-free TA with iteration and finite data types can be represented in the
CSP process algebra. For any term-in-context, we compositionally define a CSP
process whose terminated traces are exactly all the complete plays of the strategy
for the term. Observational equivalence between two terms can then be decided
by checking two traces refinements between CSP processes.

Compared with the representation by regular expressions (or automata) [7],
the CSP representation brings several benefits:

— CSP operators preserve traces refinement (e.g. [16]), which means that a
CSP process representing a term can be optimised and abstracted composi-
tionally at the syntactic level (e.g. using process algebraic laws), and its set
of terminated traces will be preserved or enlarged;

— the ProBE and FDR tools [6] can be used to explore CSP processes visually,
to check traces refinements automatically, and to debug interactively when
traces refinements do not hold;

— compositional state-space reduction algorithms in FDR [15] enable smaller
models to be generated before or during refinement checking;

— composition of strategies, which is used in game semantics to obtain the
strategy for a term from strategies for its subterms, is represented in CSP
by renaming, parallel composition and hiding operators, and FDR is highly
optimised for verification of such networks of processes;

— parameterised terms (as a simple example, a program which reverses an
array of values of an arbitrary data type a) can be interpreted by single
parameterised processes, which can then be verified e.g. using techniques
from the infinite-state model checking literature.

We have implemented a prototype compiler which, given any IA term-in-
context, outputs a CSP process representing its game semantics. We report some
initial experimental results, which show that for model generation, FDR outper-
forms the tool based on the representation by regular expressions [9].

Organisation In the next section, we present the fragment of IA we are ad-
dressing. Section 3 contains brief introductions to game semantics, CSP and

FDR. In section 4, we define the CSP representation of game semantics for the
TA fragment. Correctness of the CSP model, and decidability of observational
equivalence by traces refinement, are shown in section 5. We present the experi-
mental results in section 6. Finally, in section 7, we conclude and discuss future
work.

2 The programming language

Idealized Algol [13] is a functional-imperative language with usual imperative
features as iteration, branching, assignment, sequential composition, combined
with a function mechanism based on a typed call-by-name lambda calculus. We
consider only the recursion-free second-order fragment of this language. We will
only work with finite data sets.

The language has basic data types 7, which are a finite subset of the integers
and the booleans. The phrase types of the language are expressions, commands
and variables, plus first-order function types.

T u= int | bool
o == exp[r] | comm | var|7]
0 =0 | oxXox--0—>0

Terms are introduced using type judgements of the form:
't M:0, where I' = {11 : 01, - ,tx : O}

For the sake of simplicity, we assume that terms are S-normal, so there is no A
abstractions, and also function application is restricted to free identifiers. The
terms of the language and their typing rules are given in Table 1.

For type exp[int], the finitary fragment contains constants n belonging to
a finite subset of the set of integers, and for type exp[bool] there are constants
true and false. For type comm, there are basic commands skip, to do nothing,
and diverge which causes a program to enter an unresponsive state similar to
that caused by an infinite loop. The other commands are assignment to vari-
ables, V := E, conditional operation, if B then C else C’I, and while loop,
while B do C. Also, we have sequential composition of commands C g C' as
well as sequential composition of a command with an expression or a variable.
There are also term formers for dereferencing variables, !V, application of first-
order free identifiers to arguments (Mg --- My, and local variable declaration
new([7] ¢ in C. Finally, we have a function definition let constructor.

3 Background

3.1 Game semantics

We give an informal overview of game semantics and we illustrate it with some
examples. A more complete introduction can be found in [2].

Table 1. Terms and typing rules

I' + true : exp[bool]
I'F skip : comm

T,.:0F.:0

I'F Ey : explint] I'F By : explint]

't n: explint]

I'+ diverge : comm

I'HV :var[r]
I'FV : explr]

I't E: : explint] I'F Es : explint]

I'+ Ey + E» : explint]

I'+ Ey = E» : explbool]

I' - By : explbool] It Bs : explbool]
I' B1 and Bs : exp[bool]

I'V:var[r] ' E : exp[r] I'tC:comm I'FM:o
I'FV:=F:comm I'-CgM:o
I'B:explbooll] 'EMy:0 I'My:o0 I'FB:egplbooll] I'F C:comm
I't of B then My else My : o I' - while B do C : comm
I'ty:oyx--xop—a I'tM, :o; I'v:var[r] F C: comm
'k oM, Ms,...,My) : © I'F new[r] ¢ in C : comm
Ii:ogx- - Xop, >0 FM:0 Ii:o1,...,tp:0nFN:o'
I'Flette(t1:01,...,tk:0,) = NinM:0

I'+ B : exp[bool]
I'+ not B : exp[bool]

As the name suggests, game semantics models computation as a certain kind
of game, with two participants, called Player(P) and Opponent(O). P represents
the term (program), while O represents the environment, i.e. the context in
which the term is used. A play between O and P consists of a sequence of moves,
governed by rules. For example, O and P need to take turn and every move needs
to be justified by a preceding move. The moves are of two kinds, questions and
answers.

To every type in the language corresponds a game — the set of all possi-
ble plays (sequences of moves). A term is represented as a set of all complete
plays in the appropriate game, more precisely as a strategy for that game — a
predetermined way for P to respond to O’s moves.

For example, in the game for the type ezp[r], there is an initial move ¢ and
corresponding to it a single response to return its value. So a complete play for
a constant - ¢ : exp[r] is:

O: ¢ (opponent asks for value)
P: ¢ (player answers to the question)

Consider a more complex example ¢ : exp[int] — exp[int] F (2) : exp[int],
where the identifier ¢ is some non-locally defined function.
A play for this term begins with O asking for the value of the result expression
by playing the question move ¢, and P replies asking for the returned value of
the non-local function ¢, move ¢*. In this situation, the function ¢+ may need to
evaluate its argument, represented by O’s move ¢*! — what is the value of the

first argument to ¢. P will respond with answer 2‘*. Here, O could repeat the
question ¢! to represent the function which evaluates its argument more than
once. In the end, when O plays the move n* — the value returned from ¢, P will
copy this value and answer to the first question with n.
A sample complete play for this term, when the function ¢ evaluates only once
its argument, is:

O: ¢ (asks for result value)

P: ¢* (P asks for value returned from function ¢)

0: ¢"! (O questions what is the first argument to ¢)

P: 2! (P answers: 2)

O: n* (O supplies the value returned from ¢)

P: n (P gives the answer to the first question)

In the game for commands, there is an initial move run to initiate a com-
mand, and a single response done to signal termination of the command. Thus
the only complete play for the command F skip : comm is:

O: run (start executing)
P: done (terminate command)

Variables are represented as objects with 2 methods: the “read method”
for dereferencing, represented by an initial move read, to which a response
could be any element of 7, and the “write method”, for assignment, repre-
sented by an initial move write(z) for any element z of 7, to which there is
only one possible response ok. For example, a complete play for the command
v:wvar[t] kv :=lv+1: comm is:

D run
P: read, (what is the value of v)
O: 2 (O supplies the value 2)

P: write(3), (write 3 into v)

O: ok, (the assignment is complete)

P: done
In these plays O is not constrained to play a good variable for v, i.e. if in some
next move P is trying to read the value of the variable v, O could answer with
any value, not only with 3 as one would expect. But in case when the variable
v is local, v is guaranteed to exhibit “good variable” behaviour and all moves
pertaining to v are not an observable part of the term behaviour, i.e. are hidden.

o

3.2 CSP

CSP (Communicating Sequential Processes) is a language for modelling inter-
acting components. Each component is specified through its behaviour which is
given as a process. This section only introduces the CSP notation and the ideas
used in this paper. For a fuller introduction to the language the reader is referred
to [16].

CSP processes are defined in terms of the events that they can perform. The
set of all possible events is denoted Y. Events may be atomic in structure or
may consist of a number of distinct components. For example, an event write.1

consists of two parts: a channel name write, and a data value 1. If N is a set of
values that can be communicated down the channel write, then write.N will be
the set of events {write.n | n € N}. Given a channel ¢, we can define the set of
all events that can arise on the channel ¢, by {| ¢ |} = {c.w € X}.
We use the following collection of process operators:
P :=p | STOP | SKIP | RUNgy |?2:A — P | up.P | P, O P,
| Pl{b}Pz | Plupg | P\A | P[a/b] | P18P2

where A represents a set of events, P a process expression and p is a process
name (or identifier).

The process STOP performs no actions and never communicates. It is useful
for providing a simple model of a deadlocked system. SKIP is a process that
successfully terminates causing the special event v' (v is not in X). RUNy4 can
always communicate any event of set A desired by the environment. A choice
process, 7z : A — P, can perform any event from set A and then behaves
as P. For example, RUN4 =7z : A — RUNy. Process pp.P, where P is any
process involving p, represents recursion. It can return to its initial state and in
that way communicate forever. The process P; O Ps can behave either as P; or
as P, its possible communications are those of P; and those of P>. Conditional
choice process P; €< b } P, means the same as if b then P else @, and has
the obvious meaning as in all programming languages. Process P; ,|¢|1 P, runs

Py and P, in parallel, making them synchronise on events in A and allowing all
others events freely. The parallel combination terminates successfully when both
component processes do it. This is known as distributed termination. Process
P\ A, behaves as P except that events from A become invisible events 7 (7 is
not in X). The renaming operator [] is used to rename some events of a given
process. We will only use injective renaming and notation P[a/b] to mean that
the event or channel b in P is replaced by a, and all others remain the same.
Sequential composition Py § Ps runs P; until it terminates successfully producing
the special event v, and then runs Ps.

CSP processes can be given semantics by sets of their traces. A trace is a
finite sequence of events. A sequence tr is a trace of a process P if there is some
execution of P in which exactly that sequence of events is performed. Examples
of traces include () (the empty trace, which is possible for any process) and
{@1, a2) which is a possible trace of RUNgy, if a1,a2 € A. The set traces(P) is
the set of all possible traces of process P.

Useful operators on traces are concatenation, s ¢ which constructs a trace
from a pair of traces s and ¢ by simply putting them together in this order, and
restriction, if A is a set of events then the trace ¢r [A is the trace tr restricted
to events in the set A.

Using traces sets, we can define traces refinement. A process Ps is a traces
refinement of another, Py, if all the possible sequences of communications which
P, can do are also possible for P;. Or more formally:

P, Cr Py & traces(P2) C traces(P;) (1)

CSP processes can also be described by transition systems or state machines.
The transition system of a process is a directed graph showing the states which
the process can go through and the events from X U {v/, 7} that it can perform
to get from one to another state. The successful termination v* is always the last
event and leads to an end state 2.

The FDR tool [6] is a refinement checker for CSP processes. It contains several
procedures for compositional state-space reduction. Namely, before generating a
transition system for a composite process, transition systems of its component
processes can be reduced, while preserving semantics of the composite process.
FDR is also optimised for checking refinements by processes which consist of
a number of component processes composed by operators such as renaming,
parallel composition and hiding.

4 CSP representation of game semantics

With each type 6, we associate a set of possible events - alphabet Ay. The
alphabet of a type contains events q € Q called questions, which are appended
to channel with name @, and for each question q, there is a set of events a € Ay

called answers, which are appended to channel with name A.
Aint =40, , Npnaz — 1}, Apoor = {true, false}
Qezp[r] = {Q}7 Azzp[.,—] = -A'r
Qcomm = {run}, Ag’g’rnnm = {done}
Quar(r] = {read, write.z | z € A}, Af}fl‘;?r] =A,, Ajj’::fj]ﬁ” = {ok}
qu x-—xop—oo =14 | 4 € deao <j <k},
AL xoimoo =17 | @€ AR }for 0<j <k

As = Q.Qp U A Ugyeq, A9

A CSP representation is provided for typed terms-in-context I' - M : 4, and
it maps game semantics of each term to a process [I' + M : 6] “*". This process
is defined over an alphabet Ar 5.9, defined as:

Ago =240 ={z.00 | @ € Ag}

Ar = Uz:GEF Aq:

Areme = Ar U Ay

4.1 Expressions

[T+ v:exp[r]]°F = Q.¢ » A.v — SKIP, v € A, is a constant

[T+ not B : exp[bool]] *F =

[T+ B : exp[bool]] “°C[Q1/ Q, A1/ A1 o ||A)
(Q.q = Qi.q = A120 = Apoor — A.(not b) — SKIP) \ {| Q1, A, |}

8

[T+ E e By : exp[r]] ¥ =
[+ By - esplr]F1Q1/Q, Ar/A] |l
{1@1,A1]}

(ITF B : exp[r]] “F[Q2/ Q, A2/ A] o I |
(Qug— Q1.q = A17vl: A, = Qa.q — 1212?112 A >

A.(vl e v2) = SKIP) \ {| @2, A2 [}) \ {| Q1, A: [}
[Ite: ezp[T]]]CSP =Q.q—=>1Q.q— 1A% : A, - Av— SKIP, 1€’

Any constant v : exp[r] is represented by a process which communicates
the events a question ¢ (what is the value of this expression), an answer v —
the value of that constant, and then terminates successfully. The process that
represents any arithmetic-logic operator e is defined in a compositional way,
by parallel combination of the processes that represents both operands and a
process that gets the operands values by synchronisation on the corresponding
channels and returns the expected answer (v1 e v2). All events that participate
in synchronisation are hidden. Arithmetic operators over a finite set of integers
are interpreted as modulo some maximum value. The last process represents a
free identifier ¢ of type ezp[r] in an obvious way.

4.2 Commands

[T+ skip : comm]“°F = Q.run — A.done — SKIP
[T+ diverge : comm]“*" = STOP

[T+ CygCs: comm] ¥ =
[TF Gz comm] F[Qu/Q, A/A] ||
osp {1 @1, A1}
(IT'F Cy : comm] ™" [Q2/ Q, Aa/ A] o ||A X
2,412
(Q.run — Qr.run — Aj.done — Qz.run — As.done — A.done — SKIP)

VAl @, 42 1) \ {] @1, 4r [}

'+ CsE: ea:p[T]]]CSP =
[+ C: comm]]CSP[Ql/Q,Al/A] I
csp {1Q1,A1]}
(ITFE: eaplr]] 7 [@1/Q, A1/ A] o ||A)
(Q.9 = Qr.run — Aj.done — @Qz.q — Ag?v : A, — A.v — SKIP)

VAl @42 1)\ {] @1, 41 [}

[+ if Bthen Cy else Cs : comm] CSP _
[+ B: exp[bool]]]CSP[Qo/Q,AO/A] I

{1Qo, 40}
((ITF €1 : comm]“®F[Qi/Q, A1/ A] O (A.done — SKIP)) ||
{lQ1,41,A]}
(([[F F Gy : comm] T [Qa/Q, A2/ A) O (A.done — SKIP)) I
{|Q2,A2,A|}

(Q.run = Qo.q¢ = Ao?v : Apoor = (Q1.7un — A;.done — A.done — SKIP
£ v 3 Qo.run — As.done — A.done — SKIP))

I Qo Ao D)\ @1 Ar [\ Qo, 4o 1}

[T+ while B do C : comm]“** =
pp'.([B : comm]“*F[Qi/Q, A1/ Al s p') O (A.done — SKIP)) |
{lQ1,A1,A[}
(pp".(LC : comm] “*F[Q2/ Q, A2/ Al 3 p"") O (A.done — SKIP)) I
{1@2,42,Al}

(Q.run — up.(Ql.q = A170 : Apoor = (Qo.run — As.done —» p L v F
A-done = SKIP))) \ {| @2, A2 [}) \ {| @, A1 [}

[Ite: comm]]csp = Q.run = 1.Q.run — 1.A.done — A.done — SKIP, € I'

The command skip is represented by the corresponding question and an-
swer events for commands followed by v* event. The command diverge is repre-
sented by the deadlocked process STOP, which matches with its game semantics,
namely there is not any complete play for diverge. Composition of commands
is represented as parallel combination of the commands processes and a process
which starts this composition with @).run event, then by synchronisation exe-
cutes the first and the second command, and in the end terminates successfully
hiding all synchronisation events. Composition of a command with an expres-
sion and branching are represented in analogues way. Slightly more complicated
is representation of loop, where we have parallel combination of three recur-
sive processes. The first two can run the guard and the body process zero or
more times, and the third one executes the body process and unwind as long
as the value synchronised with the guard process is true. In the moment when
this value will be false, the all three processes terminate successfully. The last
process represents a free identifier ¢ of type command.

4.3 Variables

[T+ V:var[]]9°F =
pp.((Q.read - V.Q.read - V. A% : A, - Aw — p) O
(Q.write?v : A, — V.Q.writev — V.A.ok — A.ok — p) O
SKIP)

The term V of type var|[7], is represented as external choice between a process
for reading a value from the variable and a process for writing a value into it.

10

epresentations of assignment command and de-referencing of a variable are:
R ; f assi d and de-ref i f iabl
[Fr+v:=M: comm]]CSP =
[+ M: exp[T]]]CSP[Ql/Q;Al/A] |
osp {1Q1,A1}
(IT+ V : var[r]] °[Q2/ Q, A2/ A] {|Q”A X
2,412
(Q.run — Q1.q = A17v : A — Qo write.v — As.0k
— A.done — SKIP) \ {| @2, 42 |}) \ {| @1, 41 |}
[FFV o eap[r]] 0 =
[T+ V :oar[r]]“°F[Qi/ Q, A1/ A] o IIA X
1,41
(Q.g = Qr.read — A17v: Ay —» A.w — SKIP) \ {| Q1,41 |}

4.4 Local variables

The semantics of a local variable block consist of two operations, imposing the
good variable behaviour on the local variable and removing all references to the
variable, as it becomes invisible outside its binding scope. The first condition is
accomplished with synchronising the process that represents the local-variable
block with a process Uj.yar[r],a, initialised with ai,¢ = 0 or apoor = false and
defined as:
Uz:va'r‘[‘r],v:‘r = ($.Q.T€dd — z.Alv — Uz:va'r‘[‘r],v:‘r) O

(2.Q.write?v' : 7 = 1.A.0k = Up.yarir],onr) O

(A.done — SKIP)

The second condition is realised very easily, just by hiding all events that
arise on the channel with the local-variable name. So, the CSP representation of
the local-variable block is:

[T+ newlr] z in M : comm]“*" =

(IIF - M : comm]]CSP (||A|} Um:var[T],aT) \ {| z |}

4.5 Application and functions

Application (M ... My), where ¢ is a free identifier, is represented by a process
that communicates the usual question and answer events for the return type of
the function on the channel 1.0, and runs zero or more times any processes of the
function arguments. Arguments events are appended on the channels comprised
of the function name followed by the index of that argument.

[TFo(My... M) : 0] = Q?2q: Q, = 1.0.Q.q —

“L'<(Dj=1,k(ﬂf F M; ;]9 ol (90705 > Qs Aras Ay

—1j.Aa— D)\{ Q4 |}) O SKIP) 5 1.0.A% : AY - A.a — SKIP

11

Finally, we need to give CSP representation of the let construct.
[t let o(t1 :01,.. 5tk 2 o) = N in M:a)]]CSP =
(IFF M : o] ||
b {lel}
[FN:o'T°P10.Q/Q,01/u,. .. ek i, 0.0.AJA)) \ {] ¢ |}
CSP process of let construct is simply the CSP process of M, where a sub-
process that represents call to a function (M, - -- , M},) is synchronised with the
process [I'+ N : o' O5P with appropriately renamed events.

5 Correctness and decidability

Our first result is that, for any term, the set of all terminated traces of its CSP in-

terpretation is isomorphic to the language of its regular language interpretation,
as defined in [7].

Theorem 1. For any term I' = M : 6, we have:

[
,CR(FFM:Q) = ,CCSP(F}—M:G) (2)
where

LR(TFM:0)=L([T+M:0]%) (defined in [7)) (3)
Losp(TF M :0) = {tr | tr™(v) € traces([I' + M : 6]“°")} 4)

and ¢ is defined by:
o((a1,- .-, ar)) = ¢(ar) - ... - p(ax)

(
¢(z.Q.m) = m” ¢(

Proof. The proof of this Theorem is by induction on the typing rules defined in
Table 1.

Consider the basic term I' F v : exp[7], where v is a constant. It holds that:
Lr(I'F v : exp[r]) = {g- v}, and
traces([I"F v : eap[r]] ") = {{Q.0),(Q.q, A-v),(Q.q, A.v, v)}.

So, Losp(IF o+ eaplr]) = {(Quq, A-0)} = {q- v} = La(T F v: eaplr]).

The proofs for the other base terms, commands skip and diverge go in a
similar manner.

Consider a term I' F not B : exp[bool], assuming that the claim holds for its
immediate constituents i.e. Lr(I" + B : exp[bool]) = Losp (I + B : exp[bool]).
Lr(I'Fmnot B) =3 ca, ¢ Ry g-v=>ca, ¢ Rp-(notv)=

= ¢-wg - (notv), where wg = ¢-wp-v € Lg(I"+ B)
From inductive hypotheses, for each word wg € Lg(I" + B), there is a successful
trace trg € Losp(I F B), such that:
trg = (Q.q) trg (A.w) = ¢ - wy - v = wp, where the value of v is the same on
the both sides. Now, from the definition of [I" not B] o5 P, parallel operator

12

and hiding, we have:
Lecsp(I'F not B) =

{{Q.¢)trg (A.(not v)) | trg = (Q.¢) trg (A.v) € Losp(I'F B)} =
{g-wg-(notv) | wp=gq-wg-ve€Lr(I'FB)} =Lx(I't+ notB)

Analogously, we can prove the claim for arithmetic/logic operator terms and
equality terms.

For a term I' F while B do C : comm, we have:
Lr(I'+ while B do C) = run - Rypile B do ¢ - done =
run - (R&e . Ro)* - RI¥™ . done =

run - w9 - done if ¢ - wY - false € Lg(B)°

run - wy - wo - wy - done if ¢ - wy - false € Lr(B)', q- w% - true € Lr(B)°
B B B B

run - w% - ... we - wh - done if ¢ - w? - false € Lr(B)", q - wh - true € Lr(B)*

where, we represents a word from Lg(C) and Lg(B)™ is a regular language that
represents the guard B after n—times executing of command C. From the defi-
nition of [I" + while B do (7 USP and operators that appear there, follows:
EC’SP(F F while B do C) =
(Q.runYtr%(A.done) if (Q.q) tr%(A.false) € Lcsp(B)°
(Q.runY tr% tro " trg(A.done) if (Q.q) try(A.false) € Losp(B)!
(Q.q) try(A.true) € Losp(B)°

(Q.runytr%™. . Ttro tri(A.done) if (Q.q) tr¥(A.false) € Losp(B)™
(Q.qY triA.true) € Losp(B)t,i < n
where, trC represents a trace from Lcsp(C) and Lcsp(B)™ is a set of traces of
the guard B after n—times unwinding the recursion p.

From inductive hypotheses, we have Lgr(C) = Lcsp(C) and Lz(B)? =
Losp(B)?, but it also holds that Lg(B)™ = Lcsp(B)™ because they are ob-
tained in the same manner, after n—times executing the command C, which is
isomorphic in both representations. So, follows that for any loop, no matter how
many times it will be unwind, we will get a trace in £ggp(while B do C) that is
isomorphic to a word in Lg(while B do C). This implies that these two sets are
isomorphic.

The proofs for other commands are similar.

The definitions of local-variable block and application are analogous in both
representations.

Regular-language representation of let construct

I'bleti(ty:01,...5t:0) =NinM : o

in [7] is based on an environment » which maps identifiers to regular languages,
w: domI’ = Ry, ie.

Mlete(r : 01y ik : OF) =N'mM:a]]R =
IM :o]%ule = [N : o' ultn = [0 : on]s o yie = [o : k]]

()

13

The corresponding definition of functions without using environments is:

et o (ey 01,06 :08) = Nin M : 0] =
[M = o] *[[NV 01" [| M5 05 1o [- 09] [(©)
Q@ (Cigjcr Do @ | M; 205 |y v*9) 'aL]

where q- | Mj : 0 |, -v is a word with answer v from [M; : o;]".

Suppose w € Lr(lett (11 : 01,...,tk : 08) = Nin M : o).

If w represents a complete play of construct let without calls to the function
t, then w is a word from Lz(M) and from inductive hypotheses Lgr(M) =
Lcsp(M), follows that there exists a trace tr € Lr(lett (11 : 01, Lk 2 Of) =
N in M : o) that is isomorphic to w.

If w represents a let construct with a call to the function ¢, then to prove
that there exists an isomorphic successful trace ¢r in the let process, it will be
enough to prove that subword w* which represents call to ¢ is isomorphic with a
corresponding subtrace tr* in tr.

From the definition (6), we have:

w' = w[| Mj: 05|, /a9 -v9], wN € Lr(N), a | Mj:0j|, v € Lr(M;)
From the CSP representation of the let construct, we have:

trt = tTN[tT;’/Q.j.Q.q, 1.j.A0)], trV € Losp(N), (Q.q)AtTJ?’A(A.U) € Losp(M;)
Since ER(N) = ﬁC’SP(N) and ER(]WJ) = EC’SP(Mj) for j = 1,...,k, it holds
that w™ = trV and | M; : 0; [, tr?, for j = 1,...,k, and this implies w* = tr*.
O

Two terms M and N in type context I' and of type 8 are observationally
equivalent, written I' M =y N, iff for any term-with-hole C[—] such that
both C[M] and C[N] are closed terms of type comm, C[M] converges iff C[N]
converges. It was proved in [1] that this coincides to equality of sets of complete
plays of the strategies for M and N, i.e. that the games model is fully abstract.
(Operational semantics of TA, and a definition of convergence for terms of type
comm in particular, can be found in the same paper.)

For the TA fragment treated in this paper, it was shown in [7] that obser-
vational equivalence coincides with equality of regular language interpretations.
By Theorem 1, we have that observational equivalence corresponds to two traces
refinements:

Corollary 1 (Observational equivalence).

IF-M=yN &[[+M:6]°" 0RUNs Cr [[FN:o]%" A

[C+N:6]°" 0 RUNs Cr [T+ M : 0] @)

Proof.
M= N GrqrrMm:o]® = c(U'F N: 6]
@ Losp(TFM:0) = Losp(TF N : 6)

@Wrvr m:6]%" 0 RUNs Cr [T+ N:6]%7 A
[T+N:0)°" 0 RUNg Cr [T+ M : 6]

14

where (i) is shown in [7], and (ii) holds by Theorem 1. We will prove (iii) by
proving the following two equivalences:

Losp(M :60) C Losp(N:60) < [N:6]°" 0 RUNy Ty [M : 6]
Losp(N:0) C Losp(M :8) < [M:6]°°F 0 RUNg Cr [N : 6]

For the first equivalence, suppose Lcsp(I'F M :0) C Losp(I'F N :0) ().
If there is some trace in [I" - M]|°" that finishes successfully with event (v')
then from assumption (x), this trace is also in [[I"'F N : 6] “SP " All other traces
in [+ M]“*" that do not finish with (v'), are certainly in traces set of RUN.
So, traces([I' - M]“*") C traces([I' F N]°°F) U traces(RUNyx) which implies
that the first direction holds.

Conversely, suppose [I'+ N : §]“°” 0 RUNs Cp [I'F M : 0]°F (xx).
Let tr € Losp(I'F M : 6), which means that ¢ (v') € traces([I'F M : 9]]CSP).
This trace ¢ {v') is not certainly in traces(RUNy) because v’ ¢ X, so it must
tr(v') € traces([I"+ N : 6] “SPy ie. tr € Losp(I'F N : 6), which implies that
ﬁcsp(r FM: 9) g EC’SP(F FN: 9)

The proof for the other equivalence is analogous. O

Refinement checking in FDR terminates for finite-state processes, i.e. those
whose transition systems are finite. Our next result confirms that this is the
case for the processes interpreting the TA terms. As a corollary, we have that
observational equivalence is decidable using FDR.

Theorem 2. For any term I' - M : 0, the CSP process [I' + M : 0]°°F is
finite state.

Proof. This follows by induction on typing rules, using the fact that a process can
have infinitely many states only if it uses either a choice operator 7z : A — P,
where A is an infinite set and P varying with z, or certain kinds of recursion.
Consider the loop process, in particular the third process in the parallel
composition, which is recursive,
Q-run = pup.(Q1-g = A17v : Apoor —
(Q2.run — Ay.done — p £ v » A.done — SKIP))
It is easy to check that this process is finite state, only with exploring the all
possible states that could be reached from initial one. The transition system of
this process is shown on Figure 1.
In the same manner, we can also show that the other recursive processes used
in representation of some terms, are finite state. O

Corollary 2 (Decidability). Observational equivalence between terms of second-
order recursion-free IA with iteration and finite data types is decidable by two
traces refinements between finite-state CSP processes. O

15

Fig.1. A transition system

5.1 Example equivalences

We now consider several example equivalences and prove them using the CSP
model.

Example 1. I' F while true do C = omm diverge.

We prove the first traces refinement of the equivalence (7), i.e.
[+ while true do C : comm]“°F O RUNs Ty [I'F diverge : comm] " (x)
Since [I" + diverge : comm]“*" = STOP, and the process STOP traces refines
any other process, it implies that () holds.

The second traces refinement is:
[T+ diverge : comm]“*" O RUNy, Cq [+ while true do C : comm]|“F (xx)
We have:
traces([I" b while true do C : comm]

= {(},(Q.run), (Q.run)tr', (Q.run) tr, (Q.run) trtr',... |
(Q.runy tr(A.doneY (V') € traces([I" F C]“°F), tr' < tr}

Since there is not any sequence with successful termination in the traces set of
[T+ while true do C : comm]]““F, all sequences from this traces set will be also
in the traces set of RUNx process, so (x*) holds too. O

cSPy

Ezample 2. C : comm F new[r]z in C: comm Zcomm C:comm.
This simple equivalence reflects the fact that a non-locally defined command
cannot modify a local variable [7].

[C : comm b new[r]z in C : comm]“°" =
[C: comm,z : var[r] F C : comm]“*Y || (Q.run = U(z,a.)\{|z |} =
|Q, A
(Q.run — C.Q.run — C.A.done — A.done — SKIP) || (Q.run — U(z,a,))
[Q,A|
Iz} =
Q.run = C.Q.run — C.A.done — A.done — SKIP =

[C : comm + C : comm]“*"

The CSP processes that represent both sides are equal, so their traces sets
are equal too. This implies that both traces refinements (7) hold. O

16

Ezxample 3.

M : comm — comm F

new([int] x in

z:=0gM(z:= 1) = comm M (diverge)
if 'z = 1 then diverge else skip

This example captures the intuition that changes to the state are irreversible
[7].
We proceed evaluations in a bottom-up fashion.
[M : comm — comm,z : var[int] - M (v := 1) : comm]
(Q.run — M.0.Q.run — p L.(([z := 1197 | (M1.Q.run — Q.run —
|Q,4]

osP

A.done - M.1.A.done — L)\{] Q, A |})E|’SKIP) s M.0.A.done —
A.done — SKIP =
Q.run - M.0.Q.run — pL.((M.l.Q.run — z.Q.write.1 — z.A.ok —

M.1.A.done — L) O SKIP) 3 M.0.A.done — A.done — SKIP

[z : var[int] b if 1z = 1 then diverge else skip : comm] ¥ =

Q.run = z.Q.read — . A% : Aipy > (STOP & v =1 $ A.done — SKIP)
Using these two processes, for the left-hand side process we have:
[[LHS]]CSP _
(Q.run = z.Q.wrire.0 - z.A.0k - M.0.Q.run —
pL.((M.1.Q.run — z.Q.write.1 — z.A.ok — M.1.A.done — L) O SKIP)s3
M.0.A.done — z.Q.read — £.A%v : Ajpy = (STOP 4 v =1} A.done —

SKIP)) | |L | (Q.run = U(z,0))\{| = |}
Q’ ’z
If we only consider traces with successful termination for this process,

Losp(LHS) = {{Q.run, M.0.Q.run, M.0.A.done, A.done)}

For the right-hand side process, it holds that:

[M : comm — comm + M(diverge) : comm]“*F =

Q.run = M.0.Q.read — p L.(STOP O SKIP) 3 M.0.A.done — A.done — SKIP
So, Lesp(LHS) = Lesp(RHS), and according to Corollary 1, these two terms
are equivalent. O

5.2 Property verification

Suppose ¢ is any property of terms with type context I' and type 6 such that
the set of all behaviours which satisfy ¢ is a regular language £(¢) over Ar U Ay.
A finite-state CSP process whose set of terminated traces equals £(¢) can then
be constructed. Thus, we can verify whether a term I' F M : 6 satisfies ¢ by
checking the traces refinement:

P, O RUNy Ty [+ M :6]%°" (8)

Ezample 4. Consider a term z : var[r],c : comm + M : comm. We want to
check the property “a value is written into z before ¢ is called”. A CSP process

17

which interprets this property is:

P¢ = up- ((?e : Acomm U Aw:var[r]\{\z.Q.write\} - p) U (z'Q'wMte?v A =
,upl-(?e : Acomm U -Aa::var[‘r] - pl) 0 (c.Q.run —
,up”.(?e t Arv Micomm — p") O SKIP))) o

6 Experimental results

We have implemented a compiler from TA terms-in-context into CSP processes
which represent their game semantics. The input to the compiler is code, with
some simple type annotations to indicate what finite sets of integers will be used
to model integer variables.

Here, we discuss the modelling of a sorting program, report the results from
our tool and compare them with the tool based on regular expressions [9]. We will
analyse the bubble-sort algorithm, whose implementation is given in Figure 2.
The code includes a meta variable n, representing array size, which will be
replaced by several different values. The integers stored in the array are of type
int%3, i.e. 3 distinct values 0, 1 and 2, and the type of index i is int%n+1, i.e. one
more than the size of the array. The program first copies the input array z[] into
alocal array a[], which is then sorted and copied back into z[]. The array being
effectively sorted, a[], is not visible from the outside of the program because it is
locally defined, and only reads and writes of the non-local array z[] are seen in
the model. The transition system of final (compressed) model process for n = 2
is shown in Figure 3. It illustrates the dynamic behaviour of the program, where
the left-side half of the model reads all possible combinations of values from z[],
while the right-side half writes out the same values, but in sorted order.

Table 2 contains the experimental results for model generation. We ran FDR
on a Research Machines Xeon with 2GB RAM. The results from the tool based
on regular expressions were obtained on a SunBlade 100 with 2GB RAM [9].
We list the execution time, the size of the largest generated state machine dur-
ing model generation, and the size of the final compressed model. In the CSP
approach, the process output by our compiler was input into FDR, which was
instructed to generate a transition system for it by applying a number of com-
positional state-space reduction algorithms. The results confirm that both ap-
proaches give isomorphic models, where the CSP models have an extra state due
to representing termination by a v* event.

We expect FDR to perform even better in property verification. For checking
refinement by a composite process, FDR does not need to generate an explicit
model of it, but only models of its component processes. A model of the compos-

ite process is then generated on-the-fly, and its size is not limited by available
RAM, but by disk size.

18

var int%s c[n); +
new int%3 a[n] in
new int%n+1 1 N
while (i < n) {ali]:=2[d]; i:=0i+1; }
new boolean flag := true in
while(flag){
1= 0;
flag := false;
while (i < n—1) {
if (a[i] > als +1]) {
flag = true;
new nt%3 temp in
temp = alil;
afi] == a[i + 1];
afi + 1] := temp; }

i:=1+1; }}
1 :=0;
while (1 < n) {z[i] :==a[i]; i:=31+1; }
: comm

Fig. 2. Implementation of bubble-sort algorithm

Fig. 3. A transition system of the model for n=2

Adone

19

Table 2. Experimental results for minimal model generation

n CSP Regular expressions
Time (min)Max. states|Model states|Time (min)|Max. states|Model states
5 6 1775 164 5 3 376 163
10 20 18 752 949 10 64 776 948
15 50 115 125 2 859 120 352 448 2 858
20 110 378 099 6 394 240 1 153 240 6 393
30 750 5 204 232 20 339 failed

7 Conclusion

We presented a compositional representation of game semantics of an interesting
fragment of Idealised Algol by CSP processes. This enables observational equiva-
lence and a range of properties of terms-in-context (i.e. open program fragments)
to be checked using the FDR tool.

We also reported initial experimental results using our prototype compiler
and FDR. They show that, for minimal model generation, the CSP approach
outperforms the approach based on regular expressions.

As future work, we plan to compare how the two approaches perform on a
range of equivalence and property checking problems.

We also intend to extend the compiler so that parameterised IA terms (such
as parametrically polymorphic programs) are translated to single parameterised
CSP processes. Such processes could then be analysed by techniques which com-
bine CSP and data specification formalisms (e.g. [5,14]) or by algorithms based
on data independence [11].

References

1. S.Abramsky and G.McCusker. Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions. In P.W.O’Hearn and
R.D.Tennent, editors, Algol-like languages. Birkhaiiser, 1997.

2. S.Abramsky. Algorithmic game semantics: A tutorial introduction. Lecture notes,
Marktoberdorf International Summer School 2001, 2001.

3. S.Abramsky, D.Ghica, A.Murawski and C.-H.L.Ong. Applying Game Semantics
to Compositional Software Modeling and Verifications. In Proceedings of TACAS,
LNCS 2988, March 2004.

4. T.Ball and S.K.Rajamani, The SLAM Project: Debugging System Software via
Static Analysis. In Proceedings of POPL, January 2002.

5. A.Farias, A.Mota and A.Sampaio. Efficient CSP-Z Data Abstraction. In Proceed-
ings of IFM, LNCS 2999, April 2004.

6. Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 Manual.
2000.

7. D.Ghica and G.McCusker. The Regular-Language Semantics of Second-order Ide-
alized Algol. Theoretical Computer Science 309(1-3): 469-502, 2003.

20

10.

11.

12.

13.

14.

15.

16.

D.Ghica. A Games-Based Foundation for Compositional Software Model Checking.
PhD Thesis, Queen’s University School of Computing, Kingston, Ontario, Canada,
November 2002.

D.Ghica. Game-based Software Model Checking: Case Studies and Methodological
Considerations. Oxford University Computing Lab, Technical Report PRG-RR-03-
11, May 2003.

J.M.E.Hyland and C.-H.L.Ong. On full abstraction for PCF: I, II and III. Infor-
mation and Computation 163: 285-408, 2000.

R.Lazi¢. A Semantic Study of Data Independence with Applications to Model
Checking. DPhil thesis, Computing Laboratory, Oxford University, 1999.
C.-H.L.Ong. Observational equivalence of 3rd-order Idealised Algol is Decidable.
In Proceedings of LICS, IEEE, July 2002.

J.C.Reynolds. The essence of Algol. In Proceedings of ISAL, 345-372, Amsterdam,
Holland, 1981.

M.Roggenbach. CSP-CASL — A new Integration of Process Algebra and Algebraic
Specification. In Proceedings of AMiLP, TWLT 21, Universiteit Twente, 2003.

A W.Roscoe, P.H.B. Gardiner, M.H.Goldsmith, J.R.Hulance, D.M.Jackson and
J.B.Scattergod. Hierarchical compression for model-checking CSP or how to check
10%° dining philosophers for deadlock. In Proceedings of TACAS, LNCS 1019, May
1995.

A . W.Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

