Skip to main content

A Multi-robot Strategy for Rapidly Searching a Polygonal Environment

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3315))

Abstract

In this paper we address the problem of finding an object in a polygonal environment as quickly as possible on average, with a team of mobile robots that can sense the environment.

We show that for this problem, a trajectory that minimizes the distance traveled may not minimize the expected value of the time to find the object. We prove the problem to be NP-hard by reduction, therefore, we propose the heuristic of a utility function. We use this utility function to drive a greedy algorithm in a reduced search space that is able to explore several steps ahead without incurring too high a computational cost. We have implemented this algorithm and present simulation results for a multi-robot scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chin, W.P., Ntafos, S.: Optimum Watchman Routes. Information Processing Letters 28, 39–44 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Goodman, J.E., O’Rourke, J.: Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  3. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  4. González-Baños, H.H., Latombe, J.C.: Navigation Strategies for Exploring Indoor Environments. Int. Journal of Robotics Research 21(10/11), 829–848 (October- November 2002)

    Article  Google Scholar 

  5. Greiner, G., Hormann, K.: Efficient Clipping of Arbitrary Polygons. ACM Transactions on Graphics 17(2), 71–83 (1998)

    Article  Google Scholar 

  6. LaValle, S.M., et al.: Finding an Unpredictable Target in a Workspace with Obstacles. In: Proc. IEEE Int. Conf. on Robotics and Automation (1997)

    Google Scholar 

  7. Murrieta-Cid, R., Sarmiento, A., Hutchinson, S.A.: On the Existence of a Strategy to Maintain a Moving Target within the Sensing Range of an Observer Reacting with Delay. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2003)

    Google Scholar 

  8. Murrieta-Cid, R., Sarmiento, A., Bhattacharya, S., Hutchinson, S.A.: Maintaining Visibility of a Moving Target at a Fixed Distance: The Case of Observer Bounded Speed. In: Proc. IEEE Int. Conf. on Robotics and Automation (2004)

    Google Scholar 

  9. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  10. Rohnert, H.: Shortest Paths in the Plane with Convex Polygonal Obstacles. Information Processing Letters 23, 71–76 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists. Wiley, Chichester (1987)

    MATH  Google Scholar 

  12. Sarmiento, A., Murrieta, R., Hutchinson, S.A.: A Strategy for Searching an Object with a Mobile Robot. In: Proc. Int. Conf. on Advanced Robotics (2003)

    Google Scholar 

  13. Sarmiento, A., Murrieta, R., Hutchinson, S.A.: Planning Expected-time Optimal Paths for Searching Known Environments. In: accepted to IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2004)

    Google Scholar 

  14. Shermer, T.C.: Recent Results in Art Galleries. Proc. of the IEEE 80(9) (September 1992)

    Google Scholar 

  15. Tovar, B., LaValle, S.M., Murrieta-Cid, R.: Optimal Navigation and Object Finding without Geometric Maps or Localization. In: Proc. IEEE Int. Conf. on Robotics and Automation (2003)

    Google Scholar 

  16. Vatti, B.R.: A Generic Solution to Polygon Clipping. Communications of the ACM 35(7), 56–63 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarmiento, A., Murrieta-Cid, R., Hutchinson, S. (2004). A Multi-robot Strategy for Rapidly Searching a Polygonal Environment. In: Lemaître, C., Reyes, C.A., González, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2004. IBERAMIA 2004. Lecture Notes in Computer Science(), vol 3315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30498-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30498-2_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23806-5

  • Online ISBN: 978-3-540-30498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics