Skip to main content

Neurobiological Foundation for the Meaning of Information

  • Conference paper
Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

  • 91 Accesses

Abstract

Brains create meaning and express it in information. They select and pre-process the information carried by sensory stimuli as sense data, from which they construct meaning. They post-process cognitive meaning into informative commands that control the goal-directed actions that express meaning. Meaning exists in the interaction of subjects with their environments. The process of perception by which brains construct meaning from information can be explained by analyzing the neural activity in human and animal brains as subjects engage in meaningful behaviors. Measurement is followed by decomposition and modeling of the neural activity in order to deduce brain operations. Brains function hierarchically with neuronal interactions within and between three levels: microscopic of single neurons, mesoscopic of local networks forming modules, and macroscopic of the global self-organization of the cerebral hemispheres by the organic unity of neocortex. Information is carried in continuous streams of microscopic axonal pulses. Meaning is carried in mesoscopic local mean fields of dendritic currents in discontinuous frames resembling cinemas, each frame having a spatial pattern of amplitude modulation of an aperiodic carrier wave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 364–374 (1987)

    Article  MathSciNet  Google Scholar 

  2. Barham, J.: A dynamical model of the meaning of information. Biosystems 38, 235–241 (1996)

    Article  Google Scholar 

  3. Barlow, J.S.: The Electroencephalogram: Its Patterns and Origins. MIT Press, Cambridge (1993)

    Google Scholar 

  4. Barrie, J.M., Freeman, W.J., Lenhart, M.D.: Spatiotemporal analysis of prepyriform, visual, auditory and somesthetic surface EEG in trained rabbits. J. Neurophysiol. 76, 520–539 (1996)

    Google Scholar 

  5. Destexhe, A.: Modeling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J. Physiol.-Paris 94, 91–410 (2000)

    Google Scholar 

  6. Edelstein-Keshet, L., Watmough, J., Grunbaum, D.: Do traveling band solutions describe cohesive swarms? An investigation for migratory locusts. J. Math. Biol. 171, 515–549 (1998)

    Article  MathSciNet  Google Scholar 

  7. Freeman, W.J.: Mass Action in the Nervous System. Academic Press, New York (1975)

    Google Scholar 

  8. Freeman, W.J.: Tutorial in Neurobiology: From Single Neurons to Brain Chaos. Int. J. Bifurc. Chaos 2, 451–482 (1992)

    Article  MATH  Google Scholar 

  9. Freeman, W.J.: Neurodynamics. An Exploration of Mesoscopic Brain Dynamics. Springer, London (2000)

    Google Scholar 

  10. Freeman, W.: A neurobiological theory of meaning in perception. Part 1. Information and meaning in nonconvergent and nonlocal brain dynamics. Int. J. Bifurc. Chaos 13, 2493–2511 (2003a)

    Google Scholar 

  11. Freeman, W.: A neurobiological theory of meaning in perception. Part 2. Spatial patterns of phase in gamma EEG from primary sensory cortices measured by nonlinear wavelets. Intern J Bifurc. Chaos 13, 2513–2535 (2003b)

    Google Scholar 

  12. Freeman, W.: Origin, structure and role of background EEG activity. Part 1. Analytic amplitude. Clin. Neurophysiol 115, 2077–2088 (2004a)

    Google Scholar 

  13. Freeman, W.: Origin, structure and role of background EEG activity. Part 2. Analytic phase. Clin. Neurophysiol 115, 2089–2107 (2004)

    Google Scholar 

  14. Freeman, W.J., Baird, B.: Relation of olfactory EEG to behavior: Spatial analysis. Behav. Neurosci. 101, 393–408 (1987)

    Article  Google Scholar 

  15. Freeman, W.J., Barrie, J.M.: Analysis of spatial patterns of phase in neocortical gamma EEG in rabbit. J. Neurophysiol 84, 1266–1278 (2000)

    Google Scholar 

  16. Freeman, W.J., Burke, B.C., Holmes, M.D.: 248-272. Human Brain Mapping 19(4), 248–272 (2003)

    Article  Google Scholar 

  17. Freeman, W.J., Burke, B.C., Holmes, M.D., Vanhatalo, S.: Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 114, 1055–1060 (2003)

    Article  Google Scholar 

  18. Freeman, W.J., Grajski, K.A.: Relation of olfactory EEG to behavior: Factor analysis. Behav. Neurosci. 101, 766–777 (1987)

    Article  Google Scholar 

  19. Freeman, W.J., Rogers, L.J.: Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEG. J. Neurophysiol. 87, 937–945 (2002)

    Google Scholar 

  20. Freeman, W.J., Rogers, L.J., Holmes, M.D., Silbergeld, D.L.: Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J. Neurosci. 95, 111–121 (2000)

    Google Scholar 

  21. Gibson, J.J.: The Ecological Approach to Visual Perception. Haughton Mifflin, Boston (1979)

    Google Scholar 

  22. Hecht, E., Zajac, A.: Optics, pp. 38–42. Addison-Wesley, Reading (1974)

    Google Scholar 

  23. Hwa, R.C., Ferree, T.: Scaling properties of fluctuations in the human electroencephalogram. Physical Rev. E 66, 21901 (2002)

    Article  Google Scholar 

  24. Kozma, R., Freeman, W.J.: Chaotic Resonance: Methods and applications for robust classification of noisy and variable patterns. Int. J. Bifurc. Chaos 10, 2307–2322 (2001)

    Google Scholar 

  25. Kozma, R., Freeman, W.J., Erdí, P.: The KIV model - Nonlinear spatiotemporal dynamics of the primordial vertebrate forebrain. Neurocomputing 52, 819–826 (2003)

    Article  Google Scholar 

  26. Merleau-Ponty, M.: Phenomenology of Perception (C Smith, Trans.). Humanities Press, New York (1945/1962)

    Google Scholar 

  27. Piaget, J.: The Child’s Conception of Physical Causality. Harcourt, Brace (1930)

    Google Scholar 

  28. Principe, J.C., Tavares, V.G., Harris, J.G., Freeman, W.J.: Design and implementation of a biologically realistic olfactory cortex in analog VLSI. Proc. IEEE 89, 1030–1051 (2001)

    Article  Google Scholar 

  29. Robinson, P.A., Wright, J.J., Rennie, C.J.: Synchronous oscillations in the cerebral cortex. Phys. Rev. E 57, 4578–4588 (1998)

    Article  Google Scholar 

  30. Robinson, P.A., Loxley, P.N., O’Connor, S.C., Rennie, C.J.: Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Physi- cal Rev. E 6304, 41909 (2001)

    Article  Google Scholar 

  31. Srinivasan, R., Nunez, P.L., Silberstein, R.B.: Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans. Biomed Engin 45, 814–826 (1998)

    Article  Google Scholar 

  32. Steriade, M.: Corticothalamic resonance, states of vigilance and mentation. Neuro- sci. 101, 243–276 (2000)

    Google Scholar 

  33. Taylor, J.G.: Neural networks for consciousness. Neural Networks 10, 1207–1225 (1997)

    Article  MATH  Google Scholar 

  34. Tsuda, I.: Toward an interpretation of dynamics neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24, 793–847 (2001)

    Article  Google Scholar 

  35. Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Trans. Circuits Syst. 31, 6–20 (2003)

    Article  Google Scholar 

  36. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small world’ networks. Nature 394, 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freeman, W.J. (2004). Neurobiological Foundation for the Meaning of Information. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics