arXiv:1204.4982v1 [cs.FL] 23 Apr 2012

Enumerating regular expressions and their languages

Hermann Grubef, Jonathan Leg Jeffrey Shallit

U Institut fur Informatik, Justus-Liebig-Universitat Gien
Arndtstrasse 2
D-35392 Giessen, Germany

2 Department of Mathematics, Stanford University
Building 380, Sloan Hall
Stanford, CA 94305, United States of America

3 School of Computer Science, University of Waterloo
Waterloo, ON N2L 3G1, Canada
emailiher mann. gruber @ nf or mat i K. uni - gi essen. de,
| | ee@mat h. st ant or d. edu,
shall1t(@s. uwaterl 0o.ca

2010 Mathematics Subject Classification: 68Q45

Key words: Finite automata, regular expressions, combifgtenumeration.

Contents

Introduction and overview
On measuring the size of a regular expression
A simple grammar for valid regular expressions
Unambiguous context-free grammars and the Chomsky-Zehijierger theorem
Solving algebraic equations using Grobner bases
Asymptotic bounds via singularity analysis
Lower bounds on enumeration of regular languages by regyfaessions
7.1 Trie representations for finite languages . e
7.2 Trie representations for some infinite regular Iangsage
8 Upper bounds on enumeration of regular languages by negxaessions
8.1 A grammar based on normalized regular expressions
8.2 A grammar based on strong star normal form
9 Exact enumerations
10 Conclusion and open problems

N

OO0
w

N o A WwN PR
RO
W
o
foc}

N

RIRIBRIL]

http://arxiv.org/abs/1204.4982v1
hermann.gruber@informatik.uni-giessen.de
jlee@math.stanford.edu
shallit@cs.uwaterloo.ca

2 H. Gruber, J. Lee, J. Shallit

1 Introduction and overview

Regular expressions have been studied for almost fifty ygatsmany interesting and
challenging problems about them remain unsolved. By a aegxpression, we mean a
string over the alphabét U {+,x,(,),e, 0} that represents a regular language. For
example (0 + 10) x (1 +) represents the language of all strings oj@r 1} that do not
contain two consecutive’s.

We would like to enumerate both (i) valid regular expressiand (ii) the distinct
languages they represent. Observe that these are tweediffenumeration tasks: on the
one hand, every regular expression represents exactlyeguéar language. On the other
hand, simple examples, such as the expresgiasb)+ and(b x ax)*, show that there is
no one-to-one correspondence between regular languadesguiar expressions.

We are in a similar situation if we use descriptors other tiegular expressions, such
as deterministic or nondeterministic finite automata. altgh enumeration of automata
has a long history, until recently little attention was paicenumerating the distinct lan-
guages accepted. Instead authors concentrated on eninpéhat automata themselves
according to various criteria (e.g., acyclic, nonisomacphtrongly connected, initially
connected, ...).

Here is a brief survey of known results on automata. VysgdisB] raised the ques-
tion of enumerating strongly connected finite automata irobscure technical report
(but we have not been able to obtain a copy). Harary [16] enat®eé the number of
“functional digraphs” (which are essentially unary detaristic automata with no distin-
guished initial or final states) according to their cyclaisture; also see Read [45] and
[37]. Harary also mentioned the problem of enumeratingrdgtastic finite automata
over a binary alphabet as an open problem in a 1960 surveyesf ppoblems in enumer-
ation [17, pp. 75,87], and later in a similar 1964 survey [18insburg[[13, p. 18] asked
for the number of nonisomorphic automata with outputostates with given input and
output alphabet size.

Harrison [20] 211] developed exact formulas for the numbeutédmata with specified
size of the input alphabet, output alphabet, and numberatést Similar results were
found by Korshunovi[27]. However, in their model, the auttendo not have a distin-
guished initial state or set of final states. Using the sameéain®adke[[43] enumerated
the number of strongly connected automata, but his solutias very complicated and
not particularly useful. Harary and Palmer|[19] found veoynplicated formulas in the
same model, but including an initial state and any numbenel tates.

Harrison [20] 211] gave asymptotic estimates for the numbautomata in his model,
but his formulas contained some errors that were later ctatdeby Korshunov[[28].
For example, the number of nonisomorphic unary automata wistates (and no dis-
tinguished initial or final states) is asymptoticaﬂym)—%r—" wherec = 0.80 and
T = 0.34.

Much work on enumeration of automata was done in the formgreStnion. For
example, Liskovetd [35] studied the number of initially oented automata and gave
both a recurrence formula and an asymptotic formula for thedso see Robinson [46].
Korshunov([[29] counted the number of minimal automata, B84 §ave asymptotic esti-
mates for the number of initially connected automata. Thpd@e survey by Korshunov
[31], which unfortunately seems to never have been traeglmtto English, gives these

Enumerating regular expressions 3

and many other results. More recently, Bassino and Nidalb{thd that the number of
nonisomorphic initially connected deterministic autoanaith n. states is closely related
to the Stirling numbers of the second kind.

Shallit and Breitbart observed that the number of finite mnata can be applied to
give bounds on the “automaticity” of languages and fundipt€]. Pomerance, Robson,
and Shallit[[42] gave an upper bound on the number of distinaty languages accepted
by unary NFA's withn states. Domaratzki, Kisman, and Shallit considered thebaurof
distinct languages accepted by finite automata witttates([9]. They showed, for exam-
ple, that the number of distinct languages accepted by Uimaty automata with states
is 2" (n —a+0(n27"/2)), wherea = 1.3827. (A weaker result was previously obtained
by Nicaud [40].) Domaratzki [€,17] gave bounds on the numidenmimal DFA's ac-
cepting finite languages, which were improved by LiskoV86.[Also see[[B]. For more
details about enumeration of automata and languages, sseitey of Domaratzki [8].

2 On measuring the size of a regular expression

Although, as we have seen, there has been much work for owsed&8 on enumerating
automata and the languages they represent, the analoginlerpifor regular expressions
does not seem to have been studied before 2004 [33]. We defifrg to be the number
of distinct languages specified by regular expressionszefrsiover ak-letter alphabet.
The “size” of a regular expression can be defined in seveifakrdnt waysI[[11]:

e Ordinary length total number of symbols, including parenthedes, etc., counted
with multiplicity.
— (04 10) % (1 + ¢) has ordinary length 12
— Mentioned, for example, in[1, p. 396, [25].
e Reverse polish lengtmumber of symbols in a reverse polish equivalent, inclgdin
a symbole for concatenation. Equivalently, number of nodes in a syire for
the expression.

— (0+10) % (1 +) in reverse polish would be10 e + xc +
— This has reverse polish length
— Mentioned in[[52]
e Alphabetic width number of symbols fronx, counted with multiplicity, not in-
cludinge, (), parentheses, operators
— (0 + 10) * (1 +) has alphabetic width
— Mentioned in[[39, 10, 34]

Each size measure seems to have its own advantages andatitaghs. The ordi-
nary length appears to be the most direct way to measurezb@fa regular expression.
Here we can employ the usual priority rules, borrowed froitnaretic, for saving paren-
theses and omitting the operator. This favors the catenation operataver the union
operator+. For instance, the expressi¢ne b) + (c e d) can be written more briefly as
ab + cd, which has ordinary length, whereas there is no corresponding way to simplify
the expressiolfa + b)(c + d), which is twice as long. The other two measures are more

4 H. Gruber, J. Lee, J. Shallit

robust in this respect. In particular, reverse polish langta faithful measure for the
amount of memory required to store the parse tree of a regytaession, and alphabetic
width is often used in proofs of upper and lower bounds, com[28]. A drawback of
alphabetic width is that it may be far from the “real” size ofigen regular expression.
As an example, the expressif(a + () * 0 + €)= has alphabetic width.

However, these three measures are all essentially idgntjcs a constant multiplica-
tive factor. We say “essentially” because one can alwayfcéatly inflate the ordinary
length of a regular expression by adding arbitrarily manytiplicative factors ofz, ad-
ditive factors off}, etc. In order to avoid such trivialities, we define what itans for a
regular expression to be collapsible, as follows:

Definition 2.1. Let E be a regular expression over the alphabeand letL(F) be the
language specified bl. We sayF is collapsibleif any of the following conditions hold:
(1) E contains the symbdl and|E| > 1;
(2) E contains a subexpression of the fofid: or GF whereL(F') = {¢};
(3) E contains a subexpression of the foff+ G or G + F whereL(F) = {¢} and
e € L(Q).
Otherwise, if none of the conditions holH,is said to beuncollapsible

Definition 2.2. If £ is an uncollapsible regular expression such that

(1) FE contains no superfluous parentheses; and
(2) E contains no subexpression of the foffi*.

then we say” is irreducible

Note that a minimal regular expression f8ris uncollapsible and irreducible, but the
converse does not necessarily hold.[In [11] the followireptlem is proved (cfl[25]).

Theorem 2.1. Let E be a regular expression ovél. Let|E| denote its ordinary length,
let |[rpn(E)| denote its reverse polish length, and |etph(FE)| denote the number of
alphabetic symbols contained i. Then we have

(a) [alph(E)| < |E];

(b) If Eis irreducible andalph(E)| > 1, then|E| < 11 - |alph(E)| — 4;

(©) [rpn(E)| < 2-[E| - 1;

(d) [E] <2 |rpn(E)| - 1;

(e) lalph(E)| < 3(|rpn(£)| +1);

(f) If Eisirreducible andalph(E)| > 1, then|rpn(E)| < 7 - |alph(E)| — 2.

3 A simple grammar for valid regular expressions

As we have seen, if we want to enumerate regular expressioag®, we first have to
agree upon a notion of expression size. But even then thémestains some ambiguity
about the definition of a valid regular expression. For eXangnes the empty expression,
that is, a string of length zero, constitute a valid regulgression? How about) or

Enumerating regular expressions 5

ax* ? The first two, for example, generate errors in the softwackg@ge Grail version 2.5
[44]. surprisingly, very few textbooks, if any, define valefjular expressions properly or
formally. For example, using the definition given in Mar{B8[p. 86], the expressidro

is not valid, since it is not fully parenthesized. (To be faiter the definition it is implied
that parentheses can be omitted in some cases, but no foefivdtidn of when this can
be done is given.) Probably the best way to define valid reg®pressions is with a
grammar. We now present an unambiguous grammar for all kedjidlar expressions:

S — Ei|E.|G
E, - E.+F|F+F
F — E.|G

E. — E.G|GG

G — E.|C|P

C — 0lela (aeX)
E, G *

P — (9)

This grammar can be proved unambiguous by induction on tte i the regular
expression generated. The meaning of the variables islas/fol

S generates all regular expressions
E, generates all unparenthesized expressions where theksttor wast
FE, generates all unparenthesized expressions where thepsitor was (implicit
concatenation)
E, generates all unparenthesized expressions where theplasttor was« (Kleene
closure)
C' generates all unparenthesized expressions where thereoast operator (i.e., the
constants)
P generates all parenthesized expressions

Here by “parenthesized" we mean there is at least one pamadb&ing parentheses.
Note this grammar allows * x, but disallows(). Once we have an unambiguous gram-
mar, we can use a powerful tool — the Chomsky-Schiitzenbtrgerem — to enumerate
the number of expressions of size

4 Unambiguous context-free grammars and the
Chomsky-Schiitzenberger theorem

Our principal tool for enumerating the number of strings eridthn generated by an
unambiguous context-free grammar is the Chomsky-Schiiergertheoren [4]. To state
the theorem, we first recall some basic notions about grasirirese can be found in any
introductory textbook on formal language theory, such d%.[2

6 H. Gruber, J. Lee, J. Shallit

A context-free grammais a quadruple of the forry = (V. X, P, S), whereV is a
nonempty finite set of variablex,is a nonempty finite set called théhabet P is a finite
subset of” x (V U X)* called theproductionsandS € V is a distinguished variable
called thestart variable The elements ok are often called terminals. A production
(A,) is typically written A — ~. A sentential forms an element ofV U X)*. Given a
sentential formwAS, whereA € V anda, 8 € (V' U X)*, we can apply the production
A — ~ to get a new sentential fornay 3. In this case we writee A5 — ay3. We write
=—* for the reflexive, transitive closure ef=; that is, we writeaw =—* 3 if we can
get froma to 5 by 0 or more applications o=>-. The language generated by a context-
free grammar is the set of all strings of terminals obtaime@ or more derivation steps
from S, the start variable. Formally,(G) = {x € ¥* : S =* z}. Alanguage is
said to becontext-fredf it is generated by some context-free grammar. Given aeseiat
form « derivable from a variabldl, we can form garse tre€for « as follows: the root is
labeledA. Every node labeled with a variahighas subtrees with roots labeled, from left
to right, with the elements of, whereB — ~ is a production. A grammar is said to be
unambiguous for eachx € L(G) there is exactly one parse tree fgrotherwise itis said
to beambiguous It is known that not every context-free language has an biguous
grammar.

Now we turn to formal power series; for more information, ,stee example[[51].
A formal power series over a commutative ridgin an indeterminate: is an infinite
sequence of coefficientao, a1, as, . . .) chosen fromR, and usually writteruy + a1z +
asz? + ---. The set of all such formal power series is denaoifr]]. The set of all
formal power series is itself a commutative ring, with agiditdefined term-by-term,
and multiplication defined by the usual Cauchy product adevid: if f = ag + a1x +
asx® 4+ --- andg = by + bix + bax® + -, thenfg = co + c1x + cax® + - - -, where
Cn = Zi+j:n a;b;. Exponentiation of formal series is defined, as usual, il
multiplication, so thatf? = ff, for example. A formal power serigf is said to be
algebraic(over R(x)) if there exist a finite number of polynomials with coefficiein R,
ro(x),r1(x),...,r(x) such that

ro(x) +r(x)f+ -+ ra(x)f" =0.

The simplest nontrivial examples of algebraic formal sedre theational functions
which are quotients of polynomialgz)/q(x). Here is a less trivial example. The gener-
ating function of the Catalan numbers

2n
flx) = Z @x""ﬂ =+ 2 +22° + bt + 142 4+ 422% + 13227 4 - -+ |
n=0 n+ 1
is well known [49] to satisfyf (z) = +(1—+/1 — 4z), and hence we hav€ — f+z = 0.
Thusf(x) is an algebraic (even quadratic!) formal series.
Now that we have the preliminaries, we can state the Chorskyizenberger theo-
rem:

Theorem 4.1. If L is a context-free language having an unambiguous gramnrat, a
an = |[L NX"|, then}_ - anx™ is a formal power series iZ[[z]] that is algebraic

overQ(x).

Enumerating regular expressions 7

Furthermore, the equation of which the formal power sesesrioot can be deduced
as follows: first, we carry out the following replacements:

e Every terminal is replaced by a variahte

e Every occurrence of is replaced by the integér

e Every occurrence ofs is replaced by=

e Every occurrence dfis replaced by
By doing so, we get a system of algebraic equations, calledabmmutative image” of
the grammar, which can then be solved to find a defining equé#tiothe power series.
Oddly enough, Chomsky and Schiitzenberger did not actuadlyige a proof of their the-

orem. A proof is given by Kuich and Salom&a[32] and, morem#dgeby Panholzer [41].
Let's look at a simple example. Consider the unambiguousgrar

S = MI|U
M — OMIM |e
U — 0S|0M1U

which represents strings of “if-then-else” clauses. Thes grammar has the following
commutative image:

S = M+U (4.1)
M = 2°M*+1 (4.2)
U Sz + 2> MU (4.3)

This system of equations has the following power seriegisols:

M = 1+4+22+22* +52% + 1428 + 4220 + ...
U = z+2%+32% +42* + 102° + 152% + 3527 + 562% + - - -
S = 14z+22%+323+62* +102° +202% + 352" + - -

By the Chomsky-Schiitzenberger theorem, each variabkfisatan algebraic equa-
tion overQ(z). We can solve the system above to find the equatiofi fais follows: first,
we solve [[4B) to gel/ = 52—, and substitute back ifi(3.1) to gét= M + %

1—x2M "
Multiplying through byl — 22 M givesS — 22 M S = M — 22 M? + Sz, which, by [4.2),
is equivalent taS — 22MS = 1 + Sz. Solving for S, we getS = m Now

(whateverM andz are) we have
(1—2°M —2)* =2°(1 = M + 2°M?) — 222 — 1) — 2z — 1)(1 — 2°M — 2),
sowe gets—2 = —x(2r — 1) — (22 — 1)S~! and hence
r(2x —1)S*+ (22 —1)S+1=0.

This is an equation fof.

8 H. Gruber, J. Lee, J. Shallit
5 Solving algebraic equations using Grobner bases

Before introducing the notion of Grébner bases, we desaiimee of the relevant math-
ematical notions from the field afommutative algebraThe exposition here is impres-
sionistic; readers familiar with algebraic geometry wigiMe no difficulty reformulating
it in more formalized terms. For readers seeking for a mooeaigh introduction into
the topic, there are accessible textbooks at the undergrathvel, such as|[5]; a standard
graduate level textbook is [22].

We recall that dield & is a commutative ring with the additional property that mult
plicative inverses exist. That is, for any non-zere k, there exists an elemebtsuch
thatab = ba = 1; more informally, one can “divide by”. Familiar examples of fields are
the rational number®, the real numberR, and the complex numbefs On the other
hand, the commutative rirg of integers is not a field, and the smallest field containing it
is Q.

For our application to the asymptotic enumeration of reglalaguages, we are inter-
ested in the commutative ring of formal power sef#k|]. This is not a field, but rather
only a ring — note, for example, that the eleméntdoes not have a multiplicative in-
verse. For the purposes of our algebraic framework it is eni@nt to work with the field
k = Q((x)) of formal Laurent series ové). A formal Laurent series is defined similarly
to a formal power series, with the difference that finitelynpaegative exponents are
allowed; an example is

The following discussion holds for any fiekd but for intuition, the reader may prefer to
think of k = R.

Given any fieldk and indeterminate¥’;, Xs, ..., X, there are two important ob-
jects:

¢ then-dimensional vector spad®& = k™ overk, with coordinatesy; (1 < i < n);
and

e the ringk[X1, Xs,. .., X,] of (multivariate) polynomials ovek in n indetermi-
nates.

For instance, taking = Q((x)), the polynomialSz + 2 MU — U, which we used in the
previous section in Equatioh(4.3), is member of the #@ng, M, U]. The corresponding
vector spacéV has coordinateS, M, andU. Notice thatr is not a coordinate dfl’, but
an artifact originating from the way the members:cdre defined.

Given any collection of polynomial® in R, we can define theiwanishing sel/ (F)
to be the set of common solutionsliii; thatis, all point§z1, zo, ..., z,) € W such that

f(l'l,l'Q,...,mN):O fOfa”fGJ:.

As an example, leb’ = R3, with coordinatesX, Y, Z. Then, the vanishing set of the set
of polynomialsF = {X,Y + 3,Z + Y — 2} is the single point given byX,Y, 7Z) =
(0, —3,5); the vanishing set of the single polynomial- X2 — Y2 is an upward-opening
paraboloid.

Theideal (F) generated by a collectio of polynomials is the set of alR-linear

Enumerating regular expressions 9

combinations ofF; that is, all polynomials of the form
pr-fitp2-fot--+pe- fo Wherep; € R, f; € Fforalli.

Observe that the vanishing sets of a collection of polyntsrdad their generated ideal
are equalV (F) = V((F)).
A term orderingon R is a total order on the set of monomials (disregarding coeffi-
cients) of R satisfying
e multiplicativity— if u, v, w are any monomials i®, thenu < v implieswu < wv;
¢ well-ordering— if F is a collection of monomials, thef has a smallest element
under<.

Once a term ordering has been defined, one can then define tiba nbthe leading
term of a polynomial, similar to the univariate case. For examptee defines theure
lexicographic orderon k[X,Y, Z] given by Z < Y < X to be the ordering where
Xoybtze < Xdyezf if and only if (a,b,¢) < (d,e, f) lexicographically. With this
ordering, an example of a polynomial with its monomials icr@asing order is

X34+ XY + X227 +Y 4+ 1;

its leading termis X3 = X3Y°Z° and itstrailing termsare XY, X227, Y and1.

Given an ideall, a Grobner basis5 for I is a set of polynomialg, go, . . . , g Such
that the ideal generated by the leading terms ofg¢this precisely the initial ideal of ,
defined to be the set of leading terms of polynomialk it can be shown thd? generates
1. Furthermore, we say th#tis areduced Grébner basi§

¢ the coefficient of each leading termfhis 1;
¢ the leading terms of are aminimalset of generators for the initial ideal & and
¢ no trailing terms of3 appear in the initial ideal of.

Once a term order has been chosen, reduced Grobner basesgare INote that in gen-
eral, there are many term orderings for a polynomial fityghe computational difficulty
of a computation involving Grobner bases is often highlyséiare to the choice of term
ordering used.

Having established these preliminaries, we turn our atienb solving a system
of equations given by the commutative image of a context r@@nmar. Suppose we
have a context-free grammar in the non-termin®&lévy, N»,..., N,,. For each non-
terminal N, let fy also denote the generating function enumerating the lajggan-
erated byN. Takingk to be the field of formal Laurent serié}((x)), the Chomsky-
Schitzenberger theorem impli¢s € k for every non-terminalV. Furthermore, by
taking the commutative image of the context-free grammarmbitain a sequence of poly-
nomialsps, pn,, - - - , PN, » Where for every non-termind¥’, the polynomial relatiom
is the commutative image of the derivation rule fér Note that every such polynomial
is in the polynomial ringZ[x]) [S, N1, Na, ..., Ny,].

It follows from the definitions that for every non-terminsl

pN(valevaza"'aan) = Oa

that is, the(n + 1)-tuple (fs, fn,, fno, - -, fn,,) IS @ zero of the polynomialy. Since
this holds for every non-termin&l, we can equivalently say thefs, fn,, fny, - -5 fN,)
is in the vanishing sét (1), wherel is generated by the polynomials, pn,, pn,, - - -, PN,, -

10 H. Gruber, J. Lee, J. Shallit

Our aim is to determine an algebraic equation satisfied bpdeer series’s. To do
this, we find a Grébner basigfor I, using arelimination orderingon the indeterminate
S. The defining property of any such term ordering is that theanaials involving only
the indeterminat& are strictly smaller than the other monomials; namely,étiogolving
at least one ofVy, Ns, ..., N,,. By the Chomsky-Schitzenberger theorem and the prop-
erties of Grobner bases, the smallest polynomia B will be a univariate polynomial
in the indeterminat&. Sincep € I, and(fs, fn,, fNa, - - -, [,) iS in the vanishing set
V(I), we see thap(fs) = 0; thatis,p = 0 is an algebraic equation satisfied Biy. (Note
that in previous sections, we simply uS¢o denotefs.)

As an example, we use Maple 13 to compute such an algebraatieqtor the exam-
ple grammar in the previous section. We give the commandlsyied by the produced
output. The commutative image of the grammar is enteredias@f bolynomials, given
by
>egs = [-S+ M+ U -M+ x*2+sM2 + 1, -U+ Stx + x*2xMU |;

eqs =[S+ M+U,~M+2*M? +1,-U + Sz + 2> MU] .

Maple provides an elimination ordering calleéxdeg; to compute a reduced Grdbner
basis using this ordering, we enter the command
> Groebner[Basis](eqs, lexdeg([M U, [S]));

14+ (-14+22)S+ (—2+22%) 5%, 1+ (-1+2) S+ Uz, —1+ (1 —22) S + Maz].

The algebraic equation satisfied Byis the first polynomial in this set:
> algeq := A 1];

algeq :=1+ (-1 +22) S+ (—z+22%) S%.

To compute the Laurent series zeros$sing this polynomial, we solve fa$ and
expand the solutions as Laurent series in the indeterminate
> map(series, [solve(algeq, S)], X);

[(—z'—1—2-22°-32°—62"-102°4+0 (2°)), (1+2+2 2°+3 2°+6 2 +102°+0 (29))] .

Our desired power series solution is the second entry inlibeeareturned list.

6 Asymptotic bounds via singularity analysis

If L is a context-free language having an unambiguous gramndaf@n = > a,x™ is
the formal power series enumerating it, thn) is algebraic ove®(z) by Theoreni 411.
The previous section gave a procedure for computing an edgebquation satisfied by
f; that is, we are able to determine a non-trivial polynonitét, S) € Z|x, S] such that
P(z, f(z)) = 0. This section describes haingularity analysian be used to determine
the asymptotic growth rate of the coefficients We sketch some of the requisite notions
from complex analysis and provide a glimpse of the undeglyireory; more details can
be found in Flajolet and Sedgewick [12].

Enumerating regular expressions 11

The usefulness in considering complex analysis is thatdhadl power serieg(x),
defined purely combinatorially, can be viewed as a functiefingd on an appropriate
open subset of the complex pla@ie Such a function is calledolomorphicor (complex)
analytig this reinterpretation of (x) allows us to apply theorems from complex analysis
in order to derive bounds on the asymptotic growth rate ofithfar tighter than what we
could do with purely combinatorial reasoning.

Indeed, assume thdtis an infinite context-free language — then there exists b rea
numberd < R < 1 called theradius of convergenc®r f(z). The defining properties of
R are that:

e if 2 is a complex number with:| < R, then the infinite sunag + a1z + az2? +

aszz® + --- converges; and

e if 2 is a complex number withz| > R, then the infinite sunag + a1z + azz? +

asz® + - - - diverges.
We note that the definition says nothing about the convemyef ;2 when|z| = R.
Thus, definingl to be the open ball of complex numbersatisfying|z| < R, we can
reinterpretf as amnalytic function orV. The connection between the asymptotic growth
of the coefficients:,, and the numbeR is given by two theorems.

Theorem 6.1(Hadamard).Given any power series? is given by the explicit formula:
1

B hmsupn—ﬂ)o |a’71|1/n .

The defining properties dfm sup state that

e foranye > 0, the relationa,, |'/" < % + ¢ holds for sufficiently larger; and

e foranye > 0, the relationa, |/ > & — ¢ holds for infinitely manyn.

For our situation in particular, this implies that up to a ®{ponential factorg,, grows
asymptotically likel /R™. (This implies that for any > 0, we haves, € O((% +¢)")
anda, ¢ O((§ — &)™)

We note that Hadamard'’s formula appliesatoy power series, not just to generating
functions of context-free languages.

An elementary argument shows that our assumptionthiatinfinite impliesk < 1;
similarly, our assumption thdt is context-free (and thus algebraic) impligs> 0. (The
argument for showing? > 0 is harder, and is sketched here for those familiar with
complex analysis. The algebraic curve given Byz,y) = 0 determinesi branches
aroundz = 0 and the power serief(z) =), a,z™ must be associated with one such
branch. Since the exponents ffz) are non-negative integers, this must be an analytic
branch at0; hence,f(x) determines an analytic function @tand must have positive
radius of convergence.)

The second theorem describes the convergence of the pores) on the circle
given by|z| = R. A dominant singularityfor f(x) is a pointzy on this circle such that
the sum)_ a,, 2 diverges; the following result says that a positive (regllied) dominant
singularity always exists.

Theorem 6.2 (Pringsheim).Let f(z) =), a,z™ be a power series with radius of
convergencd? > 0. If the coefficients.,, are all non-negative, the® is a dominant
singularity for f ().

12 H. Gruber, J. Lee, J. Shallit

The benefit of Pringsheim’s theorem is that, for the sake tdrdg@ning R, it suffices
to examine the positive real line for the singularities'¢f) considered as function not
just as a power series. We make this more precise now, bydimting the concept of a
multi-valued function

Suppose that the power seriggr) is algebraic of degreé over Q(x) — under the
assumption thaP is irreducible, this means that the degree of the polynoiial S) <
Zlz, S] in the variableS is d, and we may write

P = ann + Qn—15n71 + Qn—25n72 +--+qo,

where eacly; is a polynomial inZ[x] andg, is non-zero. (IfP is reducible, factor it and
replace it by an appropriate irreducible factor.)

If we work in the algebraically close@uiseux series field),, -, , C((z'/™)), we obtain
d roots of P(x, S) = 0, say,g1(x), g2(x), . . ., ga(x), one of which coincides withf ().
In general, these roots will not be power series with noratieg integer coefficients, but
instead will be more generalized power series with comptefficients and (possibly
negative) fractional exponents.

Let D(x) € Z[z] be thediscriminantof P with respect to the variabl€; this is readily
computed via the formula
(_1)n(n—1)/2)

o Res(P, aSP, S).

Here,Res denotes theesultantof two polynomials, defined to be the determinant of a
matrix whose entries are given by the coefficients of the ipayials. The theoretical
importance ofD is that it satisfies the identity

D(z) = ;" V] (gi(2) — g;(2)) -

i#]
Define theexceptional seE of P to be the complex zeros d@d; note that this is a finite
set. For every point in the complement \ =, whereD does not vanish, there exist
d distinct solutionsgy to the equatiorP(z,y) = 0. Furthermore, thd distinct solutions
vary continuously witte, and a locally continuous choice of solutions locally detieres a
branch(which is locally an analytic function) of the algebraic eercut out byP(z, y) =
0; this is how amulti-valued functiorarises.

On the open sdt/, which we have defined to be the set of pointatisfying|z| < R,
one such branch is given by our initial power serfés). By Pringsheim’s theorem,
f(z) diverges atR; this shows thaf (), considered as a analytic function bip has no
analytic continuation to a function on an open set contgibinu { R}. According to the
discussion above, this shows tifamust be in the exceptional s&t

We have given a method to calculate an upper bound for thetgnaie of thea,,; in
particular, we have shown pafts) and(2) of:

D =

Theorem 6.3. Let f(z) =), a,a™ be a formal power series whetg, > 0 for eachn.
SupposeP(z, S) = 0 is a non-trivial algebraic equation satisfied kyx), and letD be
the discriminant ofP with respect taS. Then, exactly one of the positive real rodiof
D satisfies the following properties:

(1) foranye >0, a, € O((§ +&)™);

Enumerating regular expressions 13

(2) foranye >0, a, ¢ O((§ —¢)™); and
(3) if D has no zeray # R suchthatzo| = R, then forany > 0, a, € Q((%—¢)").

We remark that part3) is much more difficult to show; it is implied by the stronger
result that ifD has no zera, # R such thatzy| = R, then there exists a polynomial
such that, ~ p(n) - (%)".

Giventhelistp; < p2 < -+ < py Of positive real-valued elements&f there remains
the task of selecting which; to use to provide an upper or lower bound. The bigger
is, the better our upper bound will be; however, for this mbao be valid, we must
ensure thap; < R. For our purposes, we simply employ a boot-strapping methat
is known beforehand that, € O(n®) for somes, then we simply choose the minimal
j such thatl/p; < s; equivalently,p; > 1/s. If this is not possible, we simply pick
j = 1. Similarly, for a lower bound, we choose the maximauch thap; < 1/t ifitis
known thata,, € Q(n?). (With much more work, one can precisely identity— Flajolet
and Sedgewick [12] describe an algorithm “Algebraic CosdfictAsymptotics” that does
this.)

As an illustration, we continue the Maple example in the jines section to derive an
asymptotic upper bound for the example grammar. We firstlrfeaalgebraic equation
satisfied bys:
> al geq;

1+ (-1+22) S+ (—z+22%) 5°.
We compute the discriminari?:
> d := discrimalgeq,S);
d:=—_2x+1)(-142x) .

The real roots oD are given by:
> realroots := [fsolve(%N];

realroots := [—0.5000000000, 0.5000000000] .
Finally, an upper bound is given by taking the inverse of theltest positive real root:
> 1/ m n(op(sel ect(type, realroots, positive)));
2.000000000 .
Hencea, € O((2 + ¢)™) for anye > 0.

7 Lower bounds on enumeration of regular languages by
regular expressions
We now turn to lower bounds oRj(n). In the unary casek(= 1), we can argue as

follows: consider any subset ¢€,a,a?,...,a*~!}. Such a subset can be denoted by
a regular expression of (ordinary) length at mggt+ 1)/2. Since there ar&! distinct

14 H. Gruber, J. Lee, J. Shallit

subsets, this gives a lower bound®f(n) > 2V2"~1. Similarly, whenk > 2, there are
k™ distinct strings of lengt, so Ri(n) > k™. These naive bounds can be improved
somewhat using a grammar-based approach.
Consider a regular expression of the form
wi (e + wa(e + wa(e + ...)))

where thew; denote nonempty words. Every distinct choice of thespecifies a distinct
language. Such expressions can be generated by the grammar

S = Y|Y(E+S9)
Y - aY|a, a€X

which has the commutative image

S = Y+YSa*
Y = kxY +kx.
The solution to this system is
kx
5= 1—kx — k"’

Once again, the asymptotic behavior of the coefficients @pibwer series fof depend
on the zeros of — kx — kz®. The smallest (indeed, the only) real root is, asymptdtical
ask — oo, given by

35

5)
EfklgjL..._

+

i (5%
Z (=1 (i)k—(4i+1) _ 1 i
1 5
= 4i+1 kE Kk
The reciprocal of this series is
5i+5
s 20D ey L4 26 200 am
P 5(5i+4) N A R A k19
Fork = 1 the only real root ofl — kx — kz° is approximately754877666 and fork = 2
itis about.4756527435. Thus we have

Theorem 7.1. Ry (n) = Q(1.3247™) and Rz2(n) = ©(2.102374™).

7.1 Trie representations for finite languages

We will now improve these lower bounds. To this end, we bedth the simpler problem
of counting the number of finite languages that may be spddifjeregular expressions
without Kleene star of size. Non-empty finite languages not containingdmit a stan-
dard representation via a trie structure; an example isgig.[1(a).

The words in such a languadecorrespond to the leaf nodes of the trie farmore-
over, the concatenation of labels from the root to a leaf rgides an expression for the
word associated with that leaf node. For regular langudgasd M, we write M 'L to

Enumerating regular expressions 15

g M A

(a) Representing the finite languafi® Representing the infinite language
01(2+34+5) +67(+8) as a trie. 01* (2+34*+5) +67*(¢+8) as a starred
trie.

Figure 1. Example of a trie representation for a finite language (seé®&7.1) and
of a starred trie representation for an infinite language Gectiol 72).

denote the left quotient af by M; formally
M™'L = {v : there exists u € M such that uv € L}.

If M consists of a single word,, we also writew ! L instead of{w} 'L, andw="L
instead of(w™) L.

For notational convenience, we take our alphabet td&-be- {ag,a1,...,ar—1},
wherek > 1 denotes our alphabet size. A trie encodes the simple faotéta nonempty
finite languagel not containing: can be uniquely decomposed &s= | J, a;L;, where
L, = ai_lL, and the index runs over all symbols; € ¥ such thatl; is nonempty.
This factoring out of common prefixes resembles Horner's (ske e.g[[26, p. 486]) for
evaluating polynomials. We develop lower bounds by spéuify context-free grammar
that generates regular expressions with common prefixésréatout. In fact, the gram-
mar is designed so thatifis a regular expression generated by the grammar, then the
structure ofr mimics that of the trie folL () — nodes with a single child correspond to
concatenations, while nodes with multiple children cquoesl to concatenations with a
union, see Tablel 1.

S— Y|Z
E— Y| (Z2)|(e+9)
Y - Pfor0<i<k
Z = Py + Py +-+ Py,
where0 <ng<ny <---<ng < kfort >0
P — ai|aiEfor0<i<k

Table 1. A grammar for mimicking tries with regular expressions.

The set of regular languages represented correspondsitmaémpty finite languages
overy: not containing the empty string We briefly describe the non-terminals:

16 H. Gruber, J. Lee, J. Shallit

ordinary reverse polish alphabetic
1| Q(1.3247%) Q(1.2720") Q(2")
2 | Q(2.5676") Q(2.1532") (6.8284")
3| Q(3.6130") Q(2.7176™) Q(11.1961™)
4 | Q(4.6260™) £(3.1806™) Q(15.5307™)
5 | Q(5.6264") Q(3.5834™) Q(19.8548")
6 | Q(6.6215") Q(3.9451") Q(24.1740™)

Table 2. Lower bounds forR, (n) with respect to size measure and alphabet size.

S generates all non-empty finite languages not containing

E generates all non-empty finite languages containing at teesword other thas.

Y generates all non-empty finite languages (not contairlimghose words all begin with
the same letter. Thieor loop is executed only once.

Z generates all non-empty finite languages (not contain)nghose words do not all
begin with the same letter.

P; generates all non-empty finite languages (not contain)nghose words all begin

We remark that this grammar is unambiguous and that no retariguage is repre-
sented more than once; this should be clear from the rekdtipietween regular expres-
sions generated by the grammar and their respective tries.

(Note that it is possible to slightly optimize this grammatfie case of ordinary length
to generate expressions suchoas 00 in lieu of 0(e + 0), but as it results in marginal
improvements to the lower bound at the cost of greatly caragitig the grammar, we do
not do so here.)

Table[2 lists the lower bounds obtained through this graminahis table (and only
this table), eaclf2(k™) in the column corresponding to reverse polish notation khou
be interpreted as “nad(k™)” — observe, for instance, that all strings produced by our
grammar for a unary alphabet have odd reverse polish length.

Remark 7.2. Using the singularity analysis method explained in Sed8pthese lower
bounds were obtained by boot-strapping off the trivial bdsinf Q(k"), Q(k™/?) and
Q(k™) for the ordinary, reverse polish length and alphabetic hvidtses, respectively.

Before we generalize our approach to cover also infinitedaggs, we derive a for-
mula showing how our lower bound on alphabetic width willrie&se along with the
alphabet sizé.

To this end, we first state a version of the Lagrange impligitction theorem as a
simplification of [14, Theorem 1.2.4]. If(x) is a power series in, we write [z"] f (x)
to denote the coefficient af™ in f(z); recall that thecharacteristicof a ring R with
additive identity0 and multiplicative identityl is defined to be the smallest integesuch
thath:1 1 =0, or zero if there is no such.

Lemma 7.3. Let R be a commutative ring of characteristic zero and teka) € R[[A]]
such thaf\°]¢ is invertible. Then there exists a unique formal power sarigr) € R|[x]]

Enumerating regular expressions 17

such thaf2]w = 0 andw = x¢(w). Forn > 1,

_1

(o) =

A" (A) -

Due to the simplicity of alphabetic width, the problem of erarating regular lan-
guages in this case may be interpreted as doing so for rdoetey trees, where each
internal node is marked with one of two possible colours. Westinvestigate how our
lower bound varies witlk.

More specifically, consider a regular expressiayenerated by the grammar from the
previous section and its associated trie. Colour each n@dtiewhild labelled: black and
all other nodes white. After deleting all nodes markedall the resultant tre®(r). This
operation is reversible, and shows that we may put the esioresof alphabetic width
in correspondence with thle-ary rooted trees withy + 1 vertices where every non-root
internal node may assume one of two colours. In order to estithe latter, we first prove
a basic result. The first half of the following lemma is alsarid in [12, p. 68].

Lemma 7.4. There are% (nkfl) k-ary trees ofn nodes. Moreover, the expected number
of leaf nodes amonkrary trees ofn nodes is asymptotic td — 1/k)¥n asn — oc.

Proof. Fix k > 1. Forn > 1, let a,, denote the number df-ary rooted trees with
vertices and consider the generating series:

flz) = Z anx” .

n>1
By the recursive structure @fary trees, we have the recurrence:
fla) =t + f(a)".

Thus, by the Lagrange implicit function theorem, we have

o = [e"11@) = e =2).

n\n—1

We now calculate the number of leaf nodes among-alty rooted trees with vertices.
Let b, ., denote the number df-ary rooted trees with vertices andn leaf nodes and
¢, the number of leaf nodes among alary rooted trees with vertices. Consider the
bivariate generating series:

9(z,y) = Z b mx™y" .

n,m>=1

By the recursive structure @fary trees, we have the recurrence:

g(x,y) =yl —1+ (1 +g(z,y)").

18 H. Gruber, J. Lee, J. Shallit

The Lagrange implicit function theorem once again yields

cn = %[y"]g(xvy) .
= el e g
= %[XH] 8%(35— L4+ (1+ 15"

—_ [)\nfl](l +)\)k(nfl)

(K -1)

B n—1 '
Thus, the expected number of leaf nodes amemgpde trees is, as — oo while having
k fixed,

aw () k

n—1

e _ () (kz— 1)"’

We wish to find a bound on the expected number of subsets ofewinnternal nodes
among allk-ary rooted trees witm nodes, where a subset corresponds to those nodes
marked black. Fixt > 2. Since the map: — 2% is convex, for every > 0 and
sufficiently largen, Jensen’s inequality (e.gl, [47, Thm. 3.3]) applied to #rara above
implies the following lower bound on the number of subsets:

2(17(171/k)k75)n '
Since—(1 — 1/k)* > —1/efor k > 1, we may choose > 0 such that
~(1=1/k)* —e>—1/e.

This yields a lower bound af(!—1/€)n,
Assumingk > 2 fixed, we now estimat(énkfl). By Stirling’s formula, we have, as

(7)) = o (=))

Putting our two bounds together, we have the following lob@und on the number of
star-free regular expressions of alphabetic widtivhenn — oo while keepingk fixed:

(=))

Enumerating regular expressions 19

7.2 Trie representations for some infinite regular language

We now turn our attention to enumerating regular languagegneral; that is, we allow
for regular expressions with Kleene stars.

Our grammars for this section are based on the those fordahdree cases. Due to the
difficulty of avoiding specifying duplicate regular langies, we settle for a “small” sub-
set of regular languages. For simplicity, we only consid&irtg the Kleene star closure
of singleton alphabet symbols, and we impose some furtisénicgons.

Recall the trie representation of a star-free regular esgio@ written in our common
prefix notation. With this representation, we may mark nogiés stars while satisfying
the following conditions:

e each starred symbol must have a non-starred parent othrettt@aoot;

¢ astarred symbol may not have a sibling or an identicallwllel parent (disregard-
ing the lack of star) with its own sibling; and

¢ a starred symbol may not have an identically-labelled cfuldregarding the lack
of star).

The first condition eliminates duplicates such as
0% 11% O* 1% 0% <> O* 1x O* 11+ O ;
the second eliminates those such as
01% <» 0(e+11*) andO(1+2+1) <> 02*1
and the third eliminates those such as
0+0 + 00+ .

In this manner, we end up with starred tries such as in[Fig] Klgorithm[1 illustrates
how to recreate such a starred trie from the language it geci

Algorithm 1 STAR-TRIE(L)

Require: e ¢ L, L # ()
1: create a tre& with unlabelled root
2: forall a € ¥ suchthat='L # () do
3: append STAR-TRIE-HELR('L, a) below the root ofl"
4: end for
5. returnT’

Let T' be any starred trie satisfying the conditions above. THeepresents a regu-
lar expression, which in turn specifies a certain language.n@w show that when the
algorithm is run with that language as input, it returns tiiee’f’ by arguing that at each
step of the algorithm when a particular node (matched witgumagel. if the root andu L
otherwise) is being processed, the children are correetignistructed.

We first consider children of the root. By the original trienstruction (for finite
languages without), no such children may be labelledThus, by the first star condition,
the only children may be unstarred alphabet symbols. Tes lof Algorithm[suffices
to find all children of the root correctly.

20 H. Gruber, J. Lee, J. Shallit

Algorithm 2 STAR-TRIE-HELP(, a)

1: create a tre& with root labelleda
2: forall be X st.b=*L # (do

3 if 0T"L)N(e+(X\ {b})X*) # O foralln > 0then{need a child labelled*}
4 append a new*-node below the root df’

5 if L # b* then {b* will be an internal node}

6: forall c € ¥\ {b} such that='L # () do {determine children ot*}

7: append STAR-TRIE-HELR('L, c) below theb*-node

8 end for

o: if b€ Lthen

10: append a new-node below thé*-node

11: end if

12: end if

13: else{need a child labelled}

14: append STAR-TRIE-HELR(' L, b) below the root ofl’
15: end if

16: end for

17: if e € L and the root of" has at least one unstarred chiteén
18: append a new-node below the root df’

19: end if

20: returnT’

Now consider a non-root internal node, say labelledy the third star condition, a
starred node may not have a child labelled with the same b&itsymbol, so itz has a
child labelledb*, then

O ' LN (e 4 (2)\ {b})T*) is non-empty for alh > 0. (7.1)

Conversely, by the second condition, a starred node mayawet &in identically-labelled
parent that has as a sibling, so if[(7]1) holds, then must have a child labelled.
By the second star condition, a starred node may not haviagblso the algorithm
need not check for other children once a starred child isdourhis shows that lin@
of Algorithm[2 correctly identifies all starred children @f Assuminga has a starred
child b*, then by the third condition, liné of Algorithm[2 correctly recovers all children
of b*. All remaining children ofa have no stars, and linkt of Algorithm[2 suffices to
find all children labelled witlu € X; the special case of anchild belowa is covered by
line 17.

We give a grammar that generates expressions meeting thedéions in Tablé 3.
As before, we take our alphabet to Be= {ag, a1, ...,ar—1}. We describe the roles of
the non-terminals of the grammar in Table 3.

S generates all expressions — this corresponds to Algofilhm 1

E, E; generate expressions that may be concatenated to noedstad starred alphabet
symbols, respectively. The non-termin@l corresponds to line® and 13 while
E; corresponds to liné of Algorithm[2. These act the same &sexcept for the
introduction of parentheses to take precedence into at@mehrestriction that no
prefixes of the forna + aa* are generated, used to implement the second condition.

Enumerating regular expressions 21

S— Y |Z
E— Y|(2)|(E+Y)|(e+2)
E,— Y| (Z)|(e+Y)|(e+Z)for0<i<k
Y- Pforo<i<k
Y'— Plfor0<i<k
Y; —» Pjfor0<i,j<kandi#j
Y/ — Pifor0<i,j<kandi#j
Z— P, +P, +---+P,
where0 <ng<ni <---<ng <kfort>0
Zi— P+ P+t B,
as above, but with; # i forall0 < j <t

Pi — Q; | aiE | aia;*- | aia;ij
for0<i,j <k

P! = ai|al|aa}|aia}E;
for0 <i,j < kandi # j

Table 3. A grammar generating all regular expressions meeting adktstar condi-
tions.

Additionally, E; has the restriction that its first alphabet symbol producag not
bea; — this is used to implement the third condition.

Y, Y’ Y., Y/ generate expressions whose prefix is an alphabet symbolwAsla, these
non-terminals correspond to Algoritirh 2, and may be comsitidegenerate cases
of Z andZ;; that is, trivial unions.

The tick-mark signifies that expressions of the farat for a € ¥ are disallowed,
used to implement the second condition. The subscripsighifies that the initial
alphabet symbol may not he, used to implement the third condition.

7, Z; generate non-trivial unions of expressions beginning digtinct alphabet symbols
— Z corresponds to line of Algorithm[1l and linel3 of Algorithm[2, while Z;
corresponds to ling of Algorithm[2.

The subscripted signifies that none of initial alphabet symbols mayheused to
implement the third condition.

P,;, P! generate expressions beginning with the specified alplsgbdola;. They cor-
respond to lind of Algorithm[2.

The tick-mark signifies that expressions may not have thiixpeen”, used to im-
plement the second condition.

Since the algorithm correctly returns a trie when run on #mglage represented by
the trie, the correspondence between the algorithm and#mergar gives us the following
result.

Theorem 7.5. The grammar above is unambiguous and the generated regipaggsions
represent distinct regular languages.

22 H. Gruber, J. Lee, J. Shallit

k | ordinary reverse polish alphabetic
1 | Q(1.3247%) Q(1.2720™) Q2")

2 | Q2.7799") 0Q(2.2140M) Q(7.4140™)
3 | 02(3.9582") (2.8065™) 0(12.5367™)
4 | Q(5.0629") €(3.2860™) Q(17.6695™)
5 | Q(6.1319") Q(3.6998") 0(22.8082")
6 | Q7.1804") Q(4.0693") Q(27.9500™)

Table 4. Improved lower bounds faRy, (n) with respect to size measure and alpha-
bet size.

Table[4 lists the improved lower bounds f&y,(n). These lower bounds were ob-
tain%a singularity analysis, as explained in Sedfidnodt-strapping off the bounds in
Tabl

8 Upper bounds on enumeration of regular languages by
regular expressions

Turning our attention back to upper bounds fty(n), we develop grammars for regular
expressions such that every regular language is repredantd least one shortest regular
expression generated by the grammar, where a regular skpneof sizen is said to be
shortest if there is no expressiehof size less than with L(r) = L(r').

To this end, we consider certain “normal forms” for regulapmressions, with the
property that transforming a regular expression into ndforan never increases its size.
Again, size may refer to one of the various measures intredilbefore. With such a
normal form, it suffices to enumerate all regular expressionnormal form to obtain
improved upper bounds aRy, (n) for various measures.

8.1 A grammar based on normalized regular expressions

We begin with a simple approach, which will be further refitetdr on. As concatenation
and sum are associative, we consider them to be variadiampertaking at least ar-
guments and impose the condition that in any parse tredyaraif them are permitted to
have themselves as children. Also, by the commutativithefdum operator, we impose
the condition that the summands of each sum appear in thenfiol order: First come

all summands which are terminal symbols, then all summardshware concatenations,
and finally all starred summands. Also, we can safely omgwhexpressions of the form
s**, s 4+ ¢, (s +¢€)*, s + € + e: occurrences of these can be replaced with occurrences
of s*, s*, s*, ands + ¢, respectively. Here the latter subexpressions have sizarger

1The Maple worksheets used to derive these bounds can besadcatsthe second author’s personal home-
page vieht t p: // mat h. st anf or d. edu/ ~| | ee/ aut onat a/

http://math.stanford.edu/~jlee/automata/

Enumerating regular expressions 23

| 5S> QIA|T|C|K |

| Q— A+e|TH+e|CHe |
A— TH+Ar|C+Ac | K+ Ak

Ar— T|T+ Ar | Ac

Ac— C|CH+ Ac | Ak

AK% K|K+AK

| T— a|az]| - |ak |
C— COCO|COC

Co—» (QIA)ITIK

| K= (A)x[Tx](0)= |

Table 5. A simple unambiguous grammar for generating at least oneettoegular
expression for each regular language.

C— (Q)Cqo|(A)C4|TCr| KCk
Co— (Q)(Q)Cq[Ca
Cy— A|(A)CA|CT
CT—> T|TCT|CK
Cg — K|KOK

Table 6. Rules for concatenation over unary alphabets, which in¢hag¢ is com-
mutative.

than the former ones, and this holds for all size measuresidered. These observations
immediately lend themselves for a simple unambiguous gramsoch as the one listed
in Table[. The meaning of the variables is as follows:

S generates all regular expressions obeying the abovemeqdtitormat. Among
them,
(@ generates those expressions of the for#e,
A generates those of the fonmt s, i.e. “additions”,
T generates those which are terminal symbols,
C generates those of the fonrmg, i.e. concatenations,
Cy generates the “factors” apppearing inside concatenafwanish are themselves not
concatenations), and
K generates those of the fonrh, i.e. Kleene stars;

finally, the “summands” in expressions of tygeare subdivided into subtypesr, Ac
and Ak, used for handling summands which are terminal symbolscatenations, or
Kleene stars, respectively.

In the special case of unary alphabets, not only union, lmat encatenation (again
viewed as a variadic operator) is commutative. In this casemay impose a similar
ordering of factors as done for summands, and thus we caacephe rule withC' as
left-hand side with the rules given in Talple 6.

24 H. Gruber, J. Lee, J. Shallit

8.2 A grammar based on strong star normal form

We now refine the above approach by considering only regufanessions in strong star
normal form [15], a notion that we recall in the following.

Sincef is only needed to denote the empty set, and the needdan be substituted
by the operatoi.” = L U {¢}, an alternative syntax introduces also theperator and
instead forbids the use @fande inside non-atomic expressions. The definition of strong
star normal form is most conveniently given for this alténeasyntax.

Definition 8.1. The operators ande are defined on regular expressions. The first oper-
ator is given by:a® = a, fora € 3; (r + 5)° = r° + 5°; 7’ = r°; r*° = r°; finally,
(rs)° =rs,if e ¢ L(rs) andr® + s° otherwise. The second operator is given &Y= a,
fora € 3 (r+s)® =1 + 5% (rs)® = r*s® r** = r*°*; finally, r’* = r*,if ¢ € L(r)
andr’® = r*’ otherwise. Thestrong star normal fornof an expression is then defined
asre®.

An easy induction shows that the transformation into strstag normal form pre-
serves the described language, and that it is weakly moaatdth respect to all usual
size measures. We sketch a proof for the case of ordinaryHeng

Lemma 8.1. Letr be a regular expression without occurrences of the syrfipahd let
r* be its strong star normal form. Thend(r®) < ord(r).

Proof Sketch First of all, we may safely assume thatloes not contain any subexpres-
sions ruled out by the grammar of the previous section, saehtas; the transformation
into strong star normal form subsumes these reductionsanyw

Recall the definition of the auxiliary operatoin the definition of strong star normal
form (Definition[8.1). The proof relies on the following alai If ¢ € L(r) andL(r) #
{e}, thenord(r°) < ord(r) — 1; otherwiseprd(r°) < ord(r). This claim can be proved
by induction while excluding the casdgr) = (), {c}. The base cases are easy; the
induction step is most interesting in the case- st. If ¢ ¢ L(st), thenr® = st and
the claim holds; otherwise® = s° + t° with e € L(s) ande € L(t). We can apply the
induction hypothesis twice to deduesl(s°) + ord(¢°) < ord(s) + ord(¢) — 2, and thus
ord(s® +t°) < ord(st) — 1, as desired. Notice that, as union has lower precedence than
concatenation, this step never introduces new parenth&lsesnduction step in the other
cases is even easier. O

Since every regular language is represented by at leashontest regular expression
in strong normal form (with respect to all three consideried sneasures), it suffices to
enumerate those expressions in normal form. Our improvachgrar will be based on
the following simple observation on expressions in straagisormal form:

Lemma 8.2. If s* or s + ¢ appears as a subexpression of an expression in star normal
form, thens ¢ L(s). O

To exploit this fact, for each subexpression we need to keef bf whether it denotes
the empty word. This can of course be done with dynamic pragrang, by using rules

Enumerating regular expressions 25

| S— ST[S- |
| St QY |AT|CH|K* S—— A |T|C- |
[QT = A +e|T +e[C +¢ |

AT S Tt AL|C-+ AL
A+ AL | T+ AL | A™ = T +A;|C™ +Ag
K+ 4+ AL
Az > T | T+ A7 | A
AL — Ct ot + AL AL Az = C7|C+Ag
A — KT | KT+ AL
T~ = ail|az]| - |ak |
C-— O, C, |CCfCicy |
C+ + v+ ++ 0 0 0 0 0 0
- GGy [GC eealieteoidordon
Cq — (@Y (A | KT Co — (AT

[K* = (A)* [T [(C)* |

Table 7. A better unambiguous grammar generating at least one shoetgular
expression (in strong star normal form) for each regulaglege.

suchag € L(rs)iff e € L(r) ande € L(s). Since in addition every subexpression either
denotes the empty word or not, it is easy to extend the ab@remar to incorporate these
rules while retaining the property of being unambiguous.

Notice that most variables now come inaflavor (for example, the variablé™*) and
in ane-free flavor (for example, the variablé™). Moreover, the summands inside sums
appear in the following order, which is a refinement of the swand ordering devised
previously: First come all summands which are terminal syis\bthen all summands
which arez-free concatenations, then all concatenations wiith the denoted language,
and finally all starred summands. To illustrate this ordgrime give the most important
steps of the unique derivation for the expression- asas + (a4 + €)(as +€) + ag':

S=*A"+ AL =T +A; + AL = a1 + A7 + AL
= a1+ A+ AL = a1 + C™ + AL =" a1 + asas + AL
= a1 +asaz + CT + AL =" a1 + asaz + (a4 +€)(as +¢) + AL
= a1 +asaz + (as +¢)(as +€) + Ay = a1 + asas + (as +¢)(a5 + &) + KT
=" a1 + azaz + (a4 +€)(as +¢€) + ag
The following proposition, giving the correctness of thepihoved grammar, can be

proved by induction on the minimum required regular expoessize. Tablé8 lists the
upper bounds obtained through this gramﬁ1ar.

2The Maple worksheets used to derive these bounds can besadcaisthe second author’s personal home-
page vieht t p: // mat h. st anf or d. edu/ ~| | ee/ aut onat a/

http://math.stanford.edu/~jlee/automata/

26 H. Gruber, J. Lee, J. Shallit

Proposition 8.3. The grammar in Tablg]7 is unambiguous and, for each regular la
guage, generates at least one regular expression of mirordatary length (respectively:

reverse polish length, alphabetic width) representing it. O

k | ordinary reverse polish alphabetic

1 | O(2.5946™) 0O(2.7422")

2 | O(4.287T) O(3.9870™)

3 | O(5.4659") O(4.7229") N .

4 | 0(6.5918") O(5.3384™) O (k" - 21.5908")

5 | O(7.6870") O(5.8780™)

6 | O(8.7624™) O(6.3643")

Table 8. Summary of upper bounds ad®(n) for K = 1,2,...,6 and various size
measures. For ordinary length, we used the simple grammiaabte[3, because
the computation for the improved grammar ran out of comjiat resources. For
reverse polish length, we used the simple grammar for bapising the bounds.

k | ordinary reverse polish alphabetic

1| O(2.1793™) 0O(2.0795™) 0(10.9822™)

2 | 0O(3.8145") O(3.3494™)

3 | 0(4.9019%) O(4.0315")

4 | O(5.8234") 0O(4.6121™) O (k™ - 12.2253")
5 | 0(6.8933") O(5.1268™)

6 | O(7.9492") O(5.5939™)

Table 9. Summary of upper bounds fér = 1,2, ..,6 and various size measures
in the case of finite languages. For reverse polish lengthaetstrapped from the
values in Tablé8; for ordinary length, we bootstrapped thgeé = 2 from the

upper bound obtained fdér= 3.

9 Exact enumerations

Tabled 1D t¢ 15 give exact numbers for the number of regutgpdages representable by
a regular expression of size but not by any of size less than

We explain how these numbers were obtaﬂedsmg the upper bound grammars
described previously, a dynamic programming approach aksntto produce (in or-
der of increasing regular expression size) the regularesgions generated by each non-
terminal. To account for duplicates, each regular expoassas transformed into a DFA,

3The C++ source code of the software used to compute theseatsmdn be accessed at the second author’s
personal homepage Vig t p: / / nat h. st anf or d. edu/ ~] | ee/ aut onat a/

http://math.stanford.edu/~jlee/automata/

Enumerating regular expressions 27

minimized and relabelled via a breadth-first search to pteducanonical representation.
Using these representations as hashes, any regular @gpresstching a previous one
generated by the same non-terminal was simply ignored.

k| 1 2 3 4 k| 1 2 3 4
1| 3 4 5 6 1] 3 4 5 6
2] 1 4 9 16 2| 2 6 12 20
312 11 33 74 3 3 17 48 102
4, 3 28 117 336 4| 4 48 192 520
5/ 3 63 391 1474 5/ 5 134 760 2628
6 5 156 1350 6560 6| 9 397 3090 13482
7| 5 358 4546 28861 7112 1151 12442 68747
8| 8 888 15753 128720 8|17 3442 51044 354500
9| 9 2194 55053 578033 9|25 10527 211812 1840433
10|14 5665 196185 2624460 10|33 32731 891228
Table 10. Ordinary length, finite lan- Table 11. Ordinary length, general
guages case
k|l 1 2 3 4 k|l 1 2 3 4
1] 3 4 5 6 1 3 4 5 6
3] 2 7 15 26 2] 1 2 3 4
5(3 25 85 202 3| 2 7 15 26
7| 5 109 589 1917 4, 2 13 33 62
91 9 514 4512 20251 5(3 32 106 244
11| 14 2641 37477 231152 6| 4 90 361 920
13| 24 14354 328718 2780936 7| 6 189 1012 3133
15| 41 81325 2998039 8| 7 580 3859 13529
17| 71 475936 9(11 1347 11655 48388
191118 2854145 10|15 3978 43431 208634

Table 12. Reverse polish length, fi-

Table 13. Reverse polish length, gen-
nite languages

eral case

10 Conclusion and open problems

In this chapter, we discussed various approaches to entinteragular expressions and
the languages they represent, and we used algebraic andi@i@bls to compute upper
and lower bounds for these enumerations. Our upper and lbawgnds are not always
very close, so an obvious open problem (or class of open @ma)jlis to improve these
bounds. Other problems we did not examine here involve erating interesting sub-

classes of regular expressions. For example, in lineaessns, every alphabet symbol

28

H. Gruber, J. Lee, J. Shallit

OO~ WNPEFE O

1 2 3 4 1 2 3 4
2 2 2 2 2 2 2 2
2 4 6 8 3 6 9 12
4 24 60 112 6 56 150 288
8 182 806 2164 14 612 3232 9312

16 1652 13182 51008
32 16854 242070 1346924
64 186114 4785115

30 7923 82614 357911
72 114554 2332374
155 1768133

oOUh WNE O

Table 14. Alphabetic width, finite Table 15. Alphabetic width, general
languages case

occurs exactly once. In addition to the intrinsic interestumerating subclasses may
provide a strategy for improving the lower bounds for theagahcase.

(1]
(2]
(3]

(4]

(5]

(6]
(7]
(8]

(9]

[10]

[11]

References

A. V. Aho, J. E. Hopcroft, and J. D. UlimafThe Design and Analysis of Computer Algorithms
Addison-Wesley, 1974.

F. Bassino and C. Nicaud. Enumeration and random genaraf accessible automatahe-
oret. Comput. Sci381(1-3) (2007), 86—104.

D. Callan. A determinant of Stirling cycle numbers cauninlabeled acyclic single-source
automataDiscrete Math. & Theoret. Comput. S&0 (2008), 77-86.

N. Chomsky and M. P. Schiutzenberger. The algebraic yhebrontext-free languages. In
P. Braffort and D. Hirschberg, editoilSpmputer Programming and Formal Systems. 118—
161. North Holland, Amsterdam, 1963.

D. A. Cox, J. Little, and D. O’'Shea.ldeals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative AtgeldiJndergraduate Texts in
Mathematics. Springer-Verlag, 3rd edition, 2007.

M. Domaratzki. Improved bounds on the number of autonaateepting finite languages.
Internat. J. Found. Comp. Sd5(2004), 143-161.

M. Domaratzki. Combinatorial interpretation of a gesiézation of the Genocchi numbera.
Integer Sequences(2004), 04.3.6 (electronic).

M. Domaratzki. Enumeration of formal languageBull. European Assoc. Theor. Comput.
Sci., No. 89, (June 2006), 117-133.

M. Domaratzki, D. Kisman, and J. Shallit. On the numberdidtinct languages accepted

by finite automata witln states.J. Automata, Languages, and Combinatori¢d) (2002),
469-486.

A. Ehrenfeucht and P. Zeiger. Complexity measures égular expressions.J. Comput.
System Scil2(1976), 134-146.

K. Ellul, B. Krawetz, J. Shallit, and M.-w. Wang. Regukexpressions: new results and open
problems.J. Automata, Languages, and Combinatori€é4) (2005), 407-437.

Enumerating regular expressions 29

[12] P. Flajolet and R. Sedgewiclknalytic CombinatoricsCambridge University Press, 2009.
[13] S. GinsburgAn Introduction to Mathematical Machine Theowddison-Wesley, 1962.
[14] 1. P. Goulden and D. M. Jackso@ombinatorial EnumeratianWiley, 1983.

[15] H. Gruber and S. Gulan. Simplifying regular expressiam quantitative perspective. In A.-
H. Dediu, H. Fernau, and C. Martin-Vide, editoRroc. 4th Int'| Conf. on Language and
Automata Theory and Applications (LATANCS. Springer-Verlag, 2010. To appear.

[16] F. Harary. The number of functional digrapidath. Annaler38(1959), 203-210.

[17] F. Harary. Unsolved problems in the enumeration of gsaMagyar Tud. Akad. Math. Kutat6
Int. KbzI.5 (1960), 63-95.

[18] F. Harary. Combinatorial problems in graphical enuatien. In E. Beckenbach, editokp-
plied Combinatorial Mathematicpp. 185-217. Wiley, 1964.

[19] F.Harary and E. Palmer. Enumeration of finite automiaifarm. Control10(1967), 499-508.

[20] M. A. Harrison. A census of finite automata. Rroc. 5th Annual Symposium on Switching
Circuit Theory and Logical Desigrpp. 44—-46. IEEE Press, 1964.

[21] M. A. Harrison. A census of finite automat@anad. J. Math17 (1965), 100-113.

[22] R. Hartshorne.Algebraic geometry\Vol. 52 of Graduate Texts in MathematicsSpringer-
Verlag, 1977.

[23] Markus Holzer and Martin Kutrib. Scientific applicati® of language methods. Vol. 2 of
Mathematics, Computing, Language, and Life: Frontiers iatihmatical Linguistics and
Language Theorychapter Descriptional Complexity — An Introductory Survpp. 1-58.
World Scientific, 2010.

[24] J. E. Hopcroft and J. D. Ullmanntroduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

[25] L. llie and S. Yu. Algorithms for computing small NFAsn Proc. 27th Symposium, Mathe-
matical Foundations of Computer Science 200@. 2420 ofLNCS pp. 328-340. Springer-
Verlag, 2002.

[26] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumericgbhms
Addison-Wesley, 3rd edition edition, 1997.

[27] A.D.Korshunov. On asymptotic estimates of the numbdinite automataDiskretnyi Analiz
, No. 6, (1966), 35-50. In Russian.

[28] A. D. Korshunov. Asymptotic estimates of the number ofté automata.Kibernetika3(2)
(1967), 12-19. In Russian. English translatiorCybernetics3 (2) (1967), 9-14.

[29] A. D. Korshunov. A survey of certain trends in automdtadry. Diskretnyi Analiz, No. 25,
(1974), 19-55, 62. In Russian.

[30] A. D. Korshunov. The number of automata and boundedtgrdgined functions. Hereditary
properties of automatdokl. Akad. Nauk SSSR1(1975), 1264-1267. In Russian. English
translation inSoviet Math. Doklad{6 (1975), 515-518.

[31] A. D. Korshunov. Enumeration of finite automatBroblemy Kibernetiki No. 34, (1978),
5-82, 272. In Russian.

[32] W. Kuich and A. SalomaaSemirings, Automata, Language3pringer-Verlag, 1985.

[33] J. Lee and J. Shallit. Enumerating regular expressimastheir languages. In M. Domaratzki,
A. Okhatin, K. Salomaa, and S. Yu, editofBroc. 9th Int'l Conf. on Implementation and
Application of Automata (CIAAMol. 3317 ofLNCS pp. 2-22, 2005.

30

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

H. Gruber, J. Lee, J. Shallit

E. Leiss. Constructing a finite automaton for a giverutagexpressionSIGACT New42(3)
(Fall 1980), 81-87.

V. A. Liskovets. The number of connected initial autdeaibernetika5(3) (1969), 16—-19.
In Russian. English translation @ybernetics (1969), 259—-262.

V. A. Liskovets. Exact enumeration of acyclic deteristit automata. Disc. Appl. Math.
154(3) (2006), 537-551.

E. M. Livshits. Asymptotic formula for the number of eles of isomorphic autonomous
automata withn states.Ukrainskii Matematicheskii Zhurndl6 (1964), 245-246. In Russian.

J. C. Martin. Introduction to Languages and the Theory of ComputatibttGraw-Hill, 3rd
edition, 2003.

R. McNaughton and H. Yamada. Regular expressions atd graphs for automatdRE
Trans. Electron. CompuEC-9 (1960), 39-47.

C. Nicaud. Average state complexity of operations oaryrautomata. In M. Kutylowski,
L. Pacholski, and T. Wierzbicki, editor®roc. 24th Symposium, Mathematical Foundations
of Computer Science 19990l. 1672 ofLNCS pp. 231-240. Springer-Verlag, 1999.

A. Panholzer. Grébner bases and the defining polynoafialcontext-free grammar generat-
ing function. J. Automata, Languages, and Combinatori€52005), 79-97.

C. Pomerance, J. M. Robson, and J. Shallit. AutomatititDescriptional complexity in the
unary caseTheoret. Comput. Sc180(1997), 181-201.

C. E. Radke. Enumeration of strongly connected sedgiemtachines. Inform. Control 8
(1965), 377-389.

D. Raymond and D. WoodGrail: a C++ library for automata and expressiods.Symbolic
Comput.17(1994), 341-350.

R. C. Read. A note on the number of functional digrapkth. Annalenl43(1961), 109—
110.

R. W. Robinson. Counting strongly connected finite audta. In Y. Alavi, G. Chartrand,
L. Lesniak, D. R. Lick, and C. E. Wall, editor§raph Theory with Applications to Algorithms
and Computer Sciencpp. 671-685. Wiley, 1985.

W. Rudin. Real and Complex Analysi®dMcGraw-Hill, 1966.

J. Shallitand Y. Breitbart. Automaticity I: Properief a measure of descriptional complexity.
J. Comput. System S&i3 (1996), 10-25.

R. P. StanleyEnumerative Combinatoric80l. 62 of Cambridge Studies in Advanced Math-
ematics Cambridge University Press, 1999.

V. A. Vyssotsky. A counting problem for finite automat@echnical report, Bell Telephone
Laboratories, May 1959.

H. Wilf. GeneratingfunctionologyA. K. Peters, 2006.

D. Ziadi. Regular expression for a language without gmypord. Theoret. Comput. Scl63
(1996), 309-315.

Enumerating regular expressions 31

Abstract. In this chapter we discuss the problem of enumerating distegular expressions by
size and the regular languages they represent. We disctisss/aotions of the size of a regular
expression that appear in the literature and their advastagd disadvantages. We consider a
formal definition of regular expressions using a contegefgrammar.

We then show how to enumerate strings generated by an unaousigontext-free grammar
using the Chomsky-Schiitzenberger theorem. This theorlawsabne to construct an algebraic
equation whose power series expansion provides the entiamer&lassical tools from complex
analysis, such as singularity analysis, can then be usegt¢ondine the asymptotic behavior of the
enumeration.

We use these algebraic and analytic methods to obtain astimpstimates on the number of
regular expressions of size A single regular language can often be described by sexegalar
expressions, and we estimate the number of distinct largudgnoted by regular expressions of
sizen. We also give asymptotic estimates for these quantitiestHedfirst few values, we provide
exact enumeration results.

	1 Introduction and overview
	2 On measuring the size of a regular expression
	3 A simple grammar for valid regular expressions
	4 Unambiguous context-free grammars and the Chomsky-Schützenberger theorem
	5 Solving algebraic equations using Gröbner bases
	6 Asymptotic bounds via singularity analysis
	7 Lower bounds on enumeration of regular languages by regular expressions
	7.1 Trie representations for finite languages
	7.2 Trie representations for some infinite regular languages

	8 Upper bounds on enumeration of regular languages by regular expressions
	8.1 A grammar based on normalized regular expressions
	8.2 A grammar based on strong star normal form

	9 Exact enumerations
	10 Conclusion and open problems

