Skip to main content

How to Find a Khalimsky-Continuous Approximation of a Real-Valued Function

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3322))

Abstract

Given a real-valued continuous function defined on n-dimensional Euclidean space, we construct a Khalimsky-continuous integer-valued approximation. From a geometrical point of view, thisdigitization takes a hypersurface that is the graph of a function and produces a digital hypersurface—the graph of the digitized function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, P.: Diskrete Räume. Mat. Sb. 2(44), 501–519 (1937)

    Google Scholar 

  2. Andrès, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 1-3(65), 92–111 (2003)

    Google Scholar 

  3. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1), 25–30 (1965)

    Article  Google Scholar 

  4. Chen, L., Cooley, D.H., Zhang, J.: The equivalence between two definitions of digital surfaces. Inform. Sci. 115(1-4), 201–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graphical Models and Image Processing 57(6), 453–461 (1995)

    Article  Google Scholar 

  6. Couprie, M., Bertrand, G., Kenmochi, Y.: Discretization in 2D and 3D orders. Graphical Models 65(1-3), 77–91 (2003)

    Article  MATH  Google Scholar 

  7. Herman, G.T.: Geometry of digital spaces. In: Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (1998)

    Google Scholar 

  8. Kaufman, A.: Efficient algorithms for 3D scan-conversion of parametric curves, surfaces and volumes. Computer Graphics 21(4), 171–179 (1987)

    Article  MathSciNet  Google Scholar 

  9. Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topology Appl. 36(1), 1–17 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kim, C.E.: Three-dimensional digital planes. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6(5), 639–645 (1984)

    Google Scholar 

  11. Kiselman, C.O.: Digital geometry and mathematical morphology. Lecture notes. Uppsala University (2002), Available at www.math.uu.se/~kiselman

  12. Kong, T.Y.: The Khalimsky topologies are precisely those simply connected topologies on ℤn whose connected sets include all 2n-connected sets but no (3n− 1)-disconnected sets. Theoret. Comput. Sci. 305(1-3), 221–235 (2003)

    Google Scholar 

  13. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Comput. Vision Graph. Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  14. Kong, T.Y., Kopperman, R., Meyer, P.R.: A topological approach to digital topology. Amer. Math. Monthly 98(10), 901–917 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Melin, E.: Digital straight lines in the Khalimsky plane. To appear in Mathematica Scandinavica (2003a)

    Google Scholar 

  16. Melin, E.: Extension of continuous functions in digital spaces with the Khalimsky topology. U.U.D.M. Report 2003:29. Uppsala University (2003b), Available at www.math.uu.se/~melin

  17. Melin, E.: Continuous extension in topological digital spaces. U.U.D.M. Report 2004:2. Uppsala University (2004)

    Google Scholar 

  18. Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images. Inform. and Control 51(3), 227–247 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Reveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Ph.D. thesis. Université Louis Pasteur, Strasbourg (1991)

    Google Scholar 

  20. Ronse, C., Tajine, M.: Discretization in Hausdorff space. J. Math. Imaging Vision 12(3), 219–242 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rosenfeld, A.: Digital straight line segments. IEEE Trans. Computers  C-23(12), 1264–1269 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rosenfeld, A., Kong, T.Y., Wu, A.Y.: Digital surfaces. CVGIP: Graph. Models Image Process. 53(4), 305–312 (1991)

    Article  MATH  Google Scholar 

  23. Tajine, M., Ronse, C.: Topological properties of Hausdorff discretization, and comparison to other discretization schemes. Theoret. Comput. Sci. 283(1), 243–268 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melin, E. (2004). How to Find a Khalimsky-Continuous Approximation of a Real-Valued Function. In: Klette, R., Žunić, J. (eds) Combinatorial Image Analysis. IWCIA 2004. Lecture Notes in Computer Science, vol 3322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30503-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30503-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23942-0

  • Online ISBN: 978-3-540-30503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics