Skip to main content

On Correcting the Unevenness of Angle Distributions Arising from Integer Ratios Lying in Restricted Portions of the Farey Plane

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3322))

Abstract

In 2D discrete projective transforms, projection angles correspond to lines linking pixels at integer multiples of the x and y image grid spacing. To make the projection angle set non-redundant, the integer ratios are chosen from the set of relatively prime fractions given by the Farey sequence. To sample objects uniformly, the set of projection angles should be uniformly distributed. The unevenness function measures the deviation of an angle distribution from a uniformly increasing sequence of angles. The allowed integer multiples are restricted by the size of the discrete image array or by functional limits imposed on the range of x and y increments for a particular transform. This paper outlines a method to compensate the unevenness function for the geometric effects of different restrictions on the ranges of integers selected to form these ratios. This geometric correction enables a direct comparison to be made of the effective uniformity of an angle set formed over selected portions of the Farey Plane. This result has direct application in comparing the smoothness of digital angle sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beylkin, G.: Discrete radon transform. IEEE Transactions on Acoustics, Speech, & Signal Processing 35, 162–172 (1987)

    Article  MathSciNet  Google Scholar 

  2. Matus, F., Flusser, J.: Image representation via a finite Radon transform. IEEE Transactions on Pattern Analysis & Machine Intelligence 15, 996–1006 (1993)

    Article  Google Scholar 

  3. Guedon, J., Normand, N.: The Mojette transform: applications in image analysis and coding. In: The International Society for Optical Engineering. SPIE-Int. Soc. Opt. Eng., USA, vol. 3024, pp. 873–884 (1997)

    Google Scholar 

  4. Svalbe, I., Kingston, A.: Farey sequences and discrete Radon transform projection angles. Electronic Notes in Discrete Mathematics, vol. 12. Elsevier, Amsterdam (2003)

    Google Scholar 

  5. Hardy, G., Wright, E.: An introduction to the theory of numbers, 4th edn. Clarendon Press, Oxford (1960)

    MATH  Google Scholar 

  6. Acketa, D., Zunic, J.: On the number of linear partitions of the (m, n)-grid. Information Processing Letters 38, 163–168 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Svalbe, I., van der Spek, D.: Reconstruction of tomographic images using analog projections and the digital Radon transform. Linear Algebra and Its Applications 339, 125–145 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kingston, A., Svalbe, I.: Adaptive discrete Radon transforms for grayscale images. Electronic Notes in Discrete Mathematics, vol. 12. Elsevier, Amsterdam (2003)

    Google Scholar 

  9. Boca, F., Cobeli, C., Zaharescu, A.: Distribution of lattice points visible from the origin. Commun. Math. Phys. 213, 433–470 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hsung, T., Lun, D., Siu, W.: The discrete periodic Radon transform. IEEE Transactions on Signal Processing 44, 2651–2657 (1996)

    Article  Google Scholar 

  11. Lun, D., Hsung, T., Shen, T.: Orthogonal discrete periodic Radon transform. Part I: theory and realization. Signal Processing 83, 941–955 (2003)

    MATH  Google Scholar 

  12. Kingston, A.: Orthogonal discrete Radon transform over p n. Signal Processing (November 2003) (submitted)

    Google Scholar 

  13. Kingston, A., Svalbe, I.: A discrete Radon transform for square arrays of arbitrary size. Submitted to DGCI 2005 (2004)

    Google Scholar 

  14. Augustin, V., Boca, F., Cobeli, C., Zaharescu, A.: The h-spacing distribution between Farey points. Math. Proc. Cambridge Phil. Soc. 131, 23–38 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Boca, F., Zaharescu, A.: The correlations of Farey fractions (2004), http://arxiv.org/ps/math.NT/0404114 (preprint)

  16. Apostol, T.: Introduction to analytic number theory. Springer, New York (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Svalbe, I., Kingston, A. (2004). On Correcting the Unevenness of Angle Distributions Arising from Integer Ratios Lying in Restricted Portions of the Farey Plane. In: Klette, R., Žunić, J. (eds) Combinatorial Image Analysis. IWCIA 2004. Lecture Notes in Computer Science, vol 3322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30503-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30503-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23942-0

  • Online ISBN: 978-3-540-30503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics