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Abstract. The realization of the Semantic Web vision, in which compatel logic has a promi-
nent role, has stimulated a lot of research on combiningsraihel ontologies, which are formulated
in different formalisms, into a framework that is more usdéu describing semantic content. In
particular, combining logic programming with the Web Oot} Language (OWL), which is a
standard based on description logics, emerged as an imp@sae for linking the Rules and Ontol-
ogy Layers of the Semantic Web. Non-monotonic descriptigicl programs (odI-programg were
introduced for such a combination, in which a p@ir, P) of a description logic knowledge base
L and a set of rule®’ with negation as failure is given a model-based semantaisgéneralizes
the answer set semantics of logic programs. In this paperege@nsider dl-programs and present
a well-founded semantics for them as an analog for the otlaém semantics of logic programs. It
generalizes the canonical definition of the well-foundeahaeatics based on unfounded sets, and,
as we show, lifts many of the well-known properties from agedy logic programs to dl-programs.
Among these properties: our semantics amounts to a partidehapproximating the answer set
semantics, which yields for positive and stratified dl-pesgs a total model coinciding with the
answer set semantics; it has polynomial data complexityigeal the access to the description logic
knowledge base is polynomial; under suitable restrictignisas lower complexity and even first-
order rewritability is achievable. The results add to ppegievidence that dl-programs are a versatile
and robust combination approach, which moreover is impigaide using legacy engines.
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1 Introduction

During the last years, thBemantic WeliBerners-Lee et al. 2001; Fensel et al. 2002] has been gaining
momentum as a backbone for future information systems. A layered architéetsibeen conceived to ma-
terialize this vision, with the World Wide Web Consortium (W3C) being a steearagefbehind. This vision
comprises low-level syntactic data levels to high-level semantic layers fiehwbmputational logic plays a
prominent role. The W3C devotes particular efforts to develop recommestdadards, which should ease
interoperability of intrinsically distributed applications. Important such stedsdare, e.g, the Resource De-
scription Framework (RDF) for the Data Layer of the architecture and tsle @htology Language (OWL),
which is based on Description Logics, for the Ontology Layer;Ruge Interchange Format (RIFNork-

ing Group currently aims at a standard exchange format for rules atules Rayer rather than a common
semantics, given the plethora of existing languages and types of rules.

It has been realized that rule bases and ontologies, formulated in diffarguages, need to be com-
bined in order to have, on the one hand, the expressive capabilitiesdimteded to model certain scenarios,
and on the other hand to make interoperability of knowledge bases in diffargyuages possible. However,
due to an impedance mismatch between rule and ontology formalisms, whicle &alldéferent underlying
principles, such a combination is non-trivial. Many proposals have beele nth [Drabent et al. 2009;
Eiter et al. 2008; Motik et al. 2006; Rosati 2006; Lukasiewicz 2007]raferences therein, which also give
taxonomies to distinguish different types of combinations and discussriedal technical issues.

Roughly, there arbomogeneous combinatignghere the rule and the ontology predicates are not dis-
tinguished in the integrated framework, ameterogeneous combinatignghere the rule and the ontology
predicates are distinguished; among the lakb&se couplingsin which the rule bodies may contain queries
to the ontology, antight integrationsin which the integrated language has a semantics that defines models
of hybrid knowledge bases by referring to the semantics of the origifelanguage and to the FOL models
of the ontology [Drabent et al. 2009].

An advanced approach of loose coupling description logic programsgor dl-programg [Eiter et al.
2004;2008], which are of the forfiB = (L, P), whereL is a knowledge base in a description logic, @d
is a finite set of description logic rules (dk-rules). Such dl-rules are similar to usual rules in logic programs
with negation as failure, but may also contaireries toL in their bodies which are given by special atoms
(on which possibly default negation may apply). For example, a rule

cand (X, P) < paperArea(P, A), DL[Referee|(X), DL|expert](X, A)

may express thak' is a candidate reviewer for a paper if the paper is in areal, and X is known to be
a referee and an expert for arda Here, the latter two are queries to the description logic knowledge base
L, which has a concefiRefereeand roleexpertin its signature. For the evaluation, the precise definition
of Refereeand expertwithin L is fully transparent, and only the logical contents at the level of inference
counts. Thus, dl-programs fully support encapsulation and privhdy mote indeed that, in many cases,
parts of L should be (or are) not accessible. For examplé, ¢ontains an ontology about risk assessment
in credit assignment, or if. is accessible only via web through a querying service, it must be assuated th
only extensional and/or external reasoning services are availatdedessing..

Another important feature of dl-rules is that queried.talso allow for specifying an input fron®?, and
thus for aflow of information fromP to L, besides the flow of information froth to P, given by any query
to L. Hence, dI-programs allow for building rules on top of ontologies, but @tssome extent) building
ontologies on top of rules. This is achieved by dynamic update operatortgytinwhich the extensional part
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of L can be modified for subjunctive querying. For example, the rule
paperArea(P, A) «— DL[keyword ¥ kw; inArea](P, A)

intuitively says that papeP is in areaA, if P is in A according to the description logic knowledge base
L, where the extensional part of tkeywordrole in L (which is known to influencénAred) is augmented

by the facts of a binary predicakev from the program. In this way, additional knowledge (gained in the
program) can be supplied tb before querying. Using this mechanism, also more involved relationships
between concepts and/or roleslircan be defined and exploited.

Eiter et al. [2004; 2008] faithfully extended the answer set semanticdoji@keand Lifschitz 1991]
for ordinary normal programs, which is one of the most widely used sensaiaticnonmonotonic logic
programs, to dl-programs. More precisely, they defined the notiomgeak and strong answer setsf
dl-programs, which coincide with usual answer sets in the case of oydioamal programs. The descrip-
tion logic knowledge bases in dl-programs are specified in the well-knoweriggon logicsSHZF (D)
andSHOZIN (D) which underly OWL Lite and OWL DL [Horrocks and Patel-Schneider 20@drrocks
et al. 2003], respectively, but may be easily adapted to description limgibe upcoming OWL2 standard
[Cuenca Grau et al. 2008]. The resulting formalism is very expressiddacilitates advanced applications
like closed-world reasoning, default logic, non-deterministic model geioeretc.

However, under a data-oriented perspective, similar as in deductigbatses, also theell-founded se-
mantics[van Gelder et al. 1991] is of great importance for the Web. It is, beglike answer set semantics,
the most widely used semantics for nonmonotonic logic programs. Differently the answer set seman-
tics, the well-founded semantics remains agnostic in the presence of cogfiiddnrmation and leaves truth
values undefined, rather than to reason by cases in different worldsie other hand, it assigns the truth
valuefalseto a maximal set of atoms that cannot become true during the evaluation ofragiegram.
The well-founded semantics has several attractive features, of whaamalst important are perhaps that:
it extends the perfect model semantics of stratified programs and it hasopuii time complexity (mea-
sured by the data size), while the answer set semantics is intractable;,ieffezdent implementations are
available, of which XSBis widely known. The well-founded semantics assigns a coherent mearutlg to
logic programs, while some programs may have no answer sets: moreasexr,skeptical approximation
of the answer set semantics, in the sense that every well-foundedjcense of a given ordinary normal
programpP is contained in every answer setBf For the Web context, the significance of the well-founded
semantics is evidenced by the fact that several reasoners in this a@aitaidr handling nonmonotonic
negation, includingFlora-2 (which builds on XSB) and OntoBrokéthat are based on F-Logic, and IRIS
and MINS? which target the WSML-Rule language [de Bruijn et al. 2006].

Motivated by these observations, in this paper, we consider the issue wkthfounded semantics for
dl-programs. Such a semantics should fulfill some desired propertiestaligtwe expect that it faithfully
generalizes the well-founded semantics of ordinary logic programs; tlagipitoximates the answer set
semantics of dl-programs, in particular, in the case where negation is dafehere strong answer sets
are unique); furthermore, for any underlying description logic with apafyial data complexity, the data
complexity of dl-programs under the well-founded semantics should be goighas well, or even lower,
depending on the structure of the rules and the description logic knowhedge

'htt p: / / xsb. sour cef or ge. net /

2http://flora.sourceforge. net/

ht t p: / / www. ont opr i se. de/ en/ hore/ pr oduct s/ ont obr oker /
“http://iris-reasoner.org/, http://tools.sti-innsbruck.at/mns/
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The semantics proposed in this paper has the above and several otegcibeproperties. Our main
contributions can be summarized as follows:

e We define the well-founded semantics for normal dl-programs by genapahan Gelderet al.s
[1991] fixpoint characterization of the well-founded semantics for @gimormal programs based
on greatest unfounded setg/hile such a characterization adheres to the intuitive definition of well-
founded semantics, technical issues require careful thought forrtipepextension to hybrid rule
languages that incorporate description logics. Our proposal is thedéfitition of well-founded
semantics for such a language that is directly based on the intuitive notianfafnded set; other
related hybrid languages with well-founded semantics [Drabent et ar; 20trr et al. 2007] allow
either only limited interaction between the rule and the ontology part, or areeddfin alternating
fixpoints giving the semantics a more technical flavor (see Section 9). It isrteng to point out
that the dI-programs under the well-founded semantics consideredreer®dularly defined and not
restricted to a specific underlying description logic; they are easily adaptibe description logics
of the upcoming OWL 2 proposal.

e We then prove some appealing semantic properties of the well-founded teesrfan dl-programs.
In particular, it generalizes the well-founded semantics for ordinarynabprograms. Moreover,
for general dI-programs, the well-founded semantics is a partial mod&foapositive (resp., strat-
ified) dI-programs, it is a total model and the canonical least (resp., Vterigi@st) model of these
dl-programs. Furthermore, we also show that the well-founded semarigcatés abbreviations for
dl-atoms.

e Generalizing a result by Baral and Subrahmanian [1993], we then staivthe well-founded seman-
tics for dl-programs can be characterized in terms of the least and thtegriigpoint of an operator
725, which is defined using a generalized Gelfond-Lifschitz transform girdgrams relative to an
interpretation.

e We also show that, similarly as for ordinary normal programs, the well-fedregmantics for dI-
programs approximates the strong answer set semantics for dl-prograatss, everywell-founded
ground atom is true in every answer set, and evafpundedyround atom is false in every answer set.
Hence, every well-founded ground atom and no unfounded grotomd i3 a cautious (resp., brave)
consequence of a dl-program under the strong answer set semaatitgermore, we prove that when
the well-founded semantics of a dl-program is total, then it is the only stros\gearset.

e As for computation, we show how the well-founded semantics of dl-progrgfsan be computed
by finite sequences of finite fixpoint iterations, using the opergtgrand the immediate consequence
operatorT'xp of positive dl-programg(B. We also report on an implementation of the well-founded
semantics, which is based on these ideas.

e We then give a characterization of the combined complexity of the well-falisdenantics for dlI-
programs, over bot8’HZF (D) andSHOZN (D). Like for ordinary normal programs, it is lower
or equal to the complexity under the answer set semanticS##.7 (D). More precisely, relative to
program complexity [Dantsin et al. 2001], literal inference under the feeitded semantics for dlI-
programs oveSHZF (D) is EXP-complete, while cautious literal inference under the strong answer

Shtt p: / / www. w3. or g/ TR/ 2008/ WD- owl 2- prof i | es- 20081202/
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set semantics for dl-programs o&HZ F (D) is complete for co-NEXP [Eiter et al. 2004]. However,
the problem is PFXP-complete under both the well-founded and the answer set semantics for dl-
programs oveSHOZN (D) [Eiter et al. 2008]. Intuitively, the latter is explained by the fact that
in case of very expressive description logics, the power of non+détesm in the rules ofP can be
emulated by the description logic part.

e We also characterize the data complexity of literal inference from dl-progrunder the well-founded
semantics, which does not increase much compared to the data complexigrpigswering in the
underlying description logics: For dl-programs over b6#Z 7 (D) andSHOZN (D), the problem
is PNP-complete under data complexity.

e We then delineate several data tractable cases. In detail, we show thatWki&équeries in a dl-
program can be evaluated in polynomial time (e.g., for certain dl-queriedHwe-SHZ O [Hustadt
et al. 2005] as underlying description logic), then reasoning fromatiams under the well-founded
semantics is complete for P under data complexity, and thus has the same dd&itpapreasoning
from ordinary normal programs under the well-founded semantics. &untire, when the evaluation
of dl-queries in a dl-program is first-order rewritable (e.g., for cert&iguegries oveDL-Lite [Cal-
vanese et al. 2007] as underlying description logic), and the dl-progradditionally acyclic, then
reasoning from dl-programs under the well-founded semantics is alsorfitsr rewritable, and thus
can be done in bGSPACE under data complexity. Hence, in the latter case, dl-programs under the
well-founded semantics can be efficiently evaluated by means of commeQialeressive rela-
tional database systems.

The rest of this paper is organized as follows. In Section 2, we revisiediasic concepts of nonmono-
tonic logic programs and description logics. Section 3 recalls dl-prograchshair answer set semantics
as defined in [Eiter et al. 2008]. In Section 4, we introduce the well-fedrekmantics for dl-programs,
and in Section 5, we analyze its semantic properties. Sections 6 and 7 camtgitegity characterizations
and data tractable cases, respectively, while Section 8 briefly repoatpaiotype implementation. After
a discussion of related work in Section 9, we give in Section 10 a brief suynamalan outlook on future
research issues. Note that detailed proofs of all results in the body pler are given in Appendices
A-D.

2 Preliminaries

In this section, we recall normal programs under the well-founded sermaascwell as the expressive
description logicsSHZF (D) andSHOZN (D).
2.1 Normal Programs

We now recall the syntax of normal programs and their well-founded straan

2.1.1 Syntax

As for the syntax of normal programs, we assume a function-free fiderowvocabularyd = (P,C), con-
sisting of two nonempty finite setsandP of constant and predicate symbols, respectively, and & st
variables. We adopt the convention that variables start with an upedettes, while constant and predicate
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symbols start with a lowercase letter.té&rmis either a variable fromt’ or a constant symbol frork. A
classical literal(or literal) [ is an atormu or a negated atoma. A negation-as-failur§NAF) literal is an
atoma or a default-negated atonvt a. A normal rule(or rule) r is of the form

a<+by,...,bg,notbgi1,...,notby,, m=>k=0, (1)

wherea,by,...,b,, are atoms. We refer te as theheadof r, denotedH (), while the conjunction
bi,...,bg,notbxi1,...,notby,, is the body of r; its positive (resp., negativg part isby,...,b; (resp.,
not bxi1, ..., notby). We defineB(r) = B*(r) U B~ (r), whereB*(r) = {b1,...,b} and B~ (r) =
{bk+1,---,bm}. We sayr is afactiff m = 0. A normal program(or progran) P is a finite set of rules. We
say P is positiveiff no rule in P contains default-negated atoms.

Example 2.1 AllvariablesX in X and constant symbotsn ® are termssupplied(cpu, S) andvendor(V)
are atoms. An example rule is = avoid(V) « wvendor(V), not rebate(V'), which may encode that
vendors without rebate are avoided. Théh(r) = avoid(V'), BT (r) = {vendor(V)}, and B~ (r) =
{rebate(V)}.

2.1.2 Well-Founded Semantics

The well-founded semantics of normal prograidias many different equivalent definitions [van Gelder
etal. 1991; Baral and Subrahmanian 1993]. We recall here the sed ba unfounded sets, via the operators
Up,Tp, ande.

Let P be a programGround termsatoms literals, etc., are defined as usual. We denoteHiyp the
Herbrand basef P, that is, the set of all ground atoms with predicate and constant symbuoisHr@f P
contains no constant symbol, then choose an arbitrary one®prnd byground(P) the set of all ground
instances of rules i’ (relative toHB p).

For literalsl = a (resp.,l = —a), we use-.[ to denote—a (resp.,a), and for sets of literal§, we define
-.8 = {=.l|leS} and St = {a€S|ais an aton}. We useLitp = HBp U —.HBp to denote the
set of all ground literals with predicate and constant symbols fflamA set of ground literalsS C Litp
is consisteniff S N —.S=0. A (three-valued) interpretationelative to P is any consistent set of ground
literalsI C Litp.

AsetU C HBp is anunfounded seif P relative tol C Litp, if for everya € U and every € ground(P)
with H(r) =a, either (i)—be I U-.U for some atomb € B*(r), or (ii) be I for some atonmbe B~ (r).
There exists the greatest unfounded sd? oélative tol, denoted/p(I). Intuitively, if I is compatible with
P, then all atoms i/ p(I) can be safely switched to false and the resulting interpretation is still compatible
with P.

The two operator§’» andWp on consistenf C Litp are then defined by:

o Tp(I)={H(r) | reground(P), BN (r)U—-.B~(r)CI};
o Wp(I)=Tp(I)U—Up(I).

The operatoi¥p is monotonic, and thus has a least fixpoint, dendted? »),° which is thewell-founded
semanticof P, denotedWFS(P). A ground atonu € HBp is well-foundedresp.,unfoundedirelative to

®As usual, for a generic operatdt, we defineT®(A) = A and T”l(A) = T(T'(A)) for every integeri > 0. If T is
monotonic, ther” has a least fixpoint, denotéfh (T), andifp(T) = T (0) = U, o TH(0).
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P, if a (resp.,~a) is in lfp(Wp). Intuitively, starting withl = (), rules are applied to obtain new positive and
negated facts (vidp (1) and—.Up(I), respectively). This process is repeated until no longer possible.

The unfounded set of a partial interpretatibimtuitively collects all those atoms that cannot become
true when extendindg with further information. An atond is unfounded iff there is no rule within its
head and with a body that can be made true. For example, an atom notiagpeany head is clearly
unfounded. One crucial point in the definition of unfounded set is #isity of rule bodies can be testified
by unfounded atoms belonging to the same unfounded set, giving a notiselfe$upportedness”.

Example 2.2 Consider the ground prograf= {p < not q; q <« p; p+« notr}. ForI =(, we have that
Tp(I)=0 andUp(I)={r}: p cannot be unfounded because of the first rule and condition (ii), and
henceg cannot be unfounded because of the second rule and condition (i), Wh (/) ={-r}. Since
Tp({—-r})={p} andUp({—r})={r}, itthen follows thatVp({—r}) = {p, ~r}. AsTp({p, r}) ={p, ¢}
andUp({p, —r}) ={r}, it then followsWp({p, -r}) ={p, ¢, —r}. Thus,ifp(Wp)={p,q,—r}. Thatis,r

is unfounded relative t@, and the other atoms are well-founded.

2.2 Description Logics

In this section, we recall the syntax and the semantics of the expressieai®n Logics (DLs)SHZ F (D)
andSHOIN (D), which provide the logical underpinning of the Web ontology language4 Q\f¢ and
OWL DL, respectively (see [Horrocks and Patel-Schneider 2004rddks et al. 2003] for further details
and background). While we focus here on these DLs, dI-programisebased on many other DLs such as
those of the upcoming OWL 2 proposal, with little adaptation (see also Footnote 7)

Intuitively, DLs model a domain of interest in terms of concepts and roleghaiepresent classes of
individuals and binary relations on classes of individuals, respectivelpL knowledge base encodes in
particular subset relationships between classes of individuals, sete#inships between binary relations
on classes of individuals, the membership of individuals to classes, andehmership of pairs of indi-
viduals to binary relations on classes. Other important ingredier$4## (D) (resp..SHOZN (D)) are
datatypes (resp., datatypes and individuals) in concept expressions.

2.2.1 Syntax

We first describe the syntax SfHOZN (D), which has the following datatypes and elementary ingredients.
We assume a s@& of elementary datatypesnd a selV of data values A datatype theonD = (AP, .P)
consists of alatatype(or concret¢ domainAP and a mapping® that assigns to every elementary datatype
a subset ofAP and to every data value an element®®. The mapping® is extended to all datatypes
by {vy,...}P={vP,...}. Let¥ = (A UR4 URp,IUV) be a vocabulary, wherd, R, Rp, andl
are pairwise disjoint (denumerable) setatiimic conceptsabstract rolesdatatype(or concreté roles and
individuals respectively. We denote @y, the set of inverse®~ of all Re R 4.

Roles and concepts are defined as follows.roke is an element oR4UR; URp. Conceptsare
inductively defined as follows. Every atomic concép& A is a concept. 1by, 0o, . .. are individuals from
I, then{o1,09,...} is a concept (calledneOj. If C' and D are concepts, then al§¢’ M D), (C' L D),
and —C' are concepts (calledonjunction disjunction andnegation respectively). IfC is a concept,R
is an abstract role frolR 4 UR, andn is a nonnegative integer, thet?.C, VR.C, >nR, and<nR
are concepts (calleeists value atleast andatmost restrictionrespectively). IfD is a datatypel/ is a
datatype role fronR p, andn is a nonnegative integer, thett/.D, VU.D, >nU, and<nU are concepts
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(calleddatatype existsvalug atleast andatmost restrictionrespectively). We usé and_L to abbreviate
the concepts’ LU ~C' andC 1M —C, respectively, and we eliminate parentheses as usual.

We next define axioms and knowledge bases as follows.a¥iamis an expression of one of the
following forms:

1. CC D, calledconcept inclusion axionwhereC' and D are concepts;

2. RC S, calledrole inclusion axiomwhere eithe?, S € R 4 or R, S € Rp;
3. Trans(R), calledtransitivity axiom whereR € R 4;

4. C(a), calledconcept membership axionvhereC' is a concept and €1;

5. R(a,b) (resp.,U(a,v)), calledrole membership axionwhereR € R4 (resp.,U € Rp) anda,bel
(resp.,a €T andv is a data value); and

6. a=b (resp.,a#0b), or =(a,b) (resp., #(a,b)), called equality (resp.,inequality axiom where
a,bel.

We also usel’ = G to abbreviate the two concept or role inclusion axiomM&E G andGC F. A
(description logi¢ knowledge basé is a finite set of axioms.

For an abstract rol& € R 4, we definelnv(R) = R~ andInv(R ™) = R. Let thetransitive and reflexive
closure ofC on abstract roleselative to L, denotedC*, be defined as follows. For two abstract roles
R andS in L, let SC* R relative to L iff either (a) S=R, (b) SCRe L, (c) Inv(S)CInv(R) € L, or
(d) some abstract rol@ exists such thab C* Q and@Q C* R relative to L. An abstract roleR is simple
relative to L iff, for each abstract rol&s such thatS C* R relative to L, it holds that (i) Trans(S) ¢ L
and (ii) Trans(Inv(S)) & L. For decidability, number restrictions ih are restricted to simple abstract
roles [Horrocks et al. 1999]. Observe thatStOZN (D), concept and role membership axioms can also
be expressed through concept inclusion axioms. The knowledge thaidi&lual « is an instance of
the conceptC' can be expressed by the concept inclusion ax{ferhC C, while the knowledge that the
pair (a, b) (resp.,(a,v)) is an instance of the rol& (resp.,U) can be expressed Hy:} C 3R.{b} (resp.,
{a} C3UAv}).

The syntax ofSHZF (D) is the one ofSHOZN (D), but without the oneOf constructor and with the
atleast and atmost constructors limitedtand1.

The following example introduces a DL knowledge base for a producbdaég which is also used in
some subsequent examples.

Example 2.3 (Product Database)A small computer store obtains its hardware from several vendors. It
uses the following DL knowledge badg, which contains information about the product range that is
provided by each vendor and about possible rebate conditions (wmagtere that choosing two or more
parts from the same seller causes a discount). For some parts, a sholpeady be contracted as supplier.

> 1 supplier C Shop; T C Vsupplier.Part, > 2 supplier C Discount;
Shop(s1); Shop(sz); Shop(ss);

Part(harddisk); Part(cpu); Part(case);

provides(s1, cpu); provides(sy, case); provides(se, harddisk);
provides(sa, cpu); provides(ss, harddisk); provides(ss, case);
supplier(ss, case); case # cpu; case # harddisk; cpu # harddisk.
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Here, the first two axioms determirfhop and Part as domain and range of the propestypplier, re-
spectively, while the third axiom constitutes the concBptcount by putting a cardinality constraint on
supplier.

2.2.2 Semantics

We now define the semantics8HZF (D) andSHOZN (D) in terms of general first-order interpretations,
as usual, and we also recall some important reasoning problems in DLs.

An interpretationZ = (AZ, -7) with respect to a datatype thedly= (AP, -P) consists of a nonempty
(abstrac) domainAZ disjoint from AP, and a mapping’ that assigns to each atomic concépe A a
subset ofAZ, to each individuab € I an element ofAZ, to each abstract rolB € R 4 a subset ofAZ x AZ,
and to each datatype rolé € Rp a subset oA x AP. The mapping? is extended to all concepts and
roles as usual (wheegS denotes the cardinality of a s&j:

o ()T ={(a,b)|(b,a) € R7);

o {01,...,0n}f={o%,...,0L};

e (CND)I=0TnD% (CuD)t=c*uD? and(-C)* = AT\ 7,
. HRC) ={rcA?|3y: (z,y) e RT Ay CT};

VR.C)T = {ze AT | Vy: (z,y) € RT — yc CT};

o (>nR ) ={ze A’ |#{y| (z,y) €RT}) > n};
o (SnR)? ={xeA? | #({y| (x,y) € RT}) <n};
e 3U.D)t ={xec AT |Jy: (z,y) eUL Aye DP};
e (VU.D) ={xeAl|Vy: (z,y) eUT — ye DP};

(
(
(
(
(BU
(
(

. >nU) ={ze A [ #{y | (x,y) €UT}) = n};

o (<nU)* ={zeA” |#{y | (z,y) €UT}) <n}.

The satisfactionof a DL axiom F in the interpretatiorf = (AZ,.7) with respect taD = (AP, .P),
denotedZ |= F, is defined as follows: (L =CLCD iff CtCD?; (2) T  RCS iff RT CS%; (3)
T |=Trans(R) iff R? is transitive; (4)Z =C(a) iff o € C%; (5) T |= R(a,b) iff (af,b%) € RT (resp.,
Tl=Ul(a,v)iff (af,vP)cU?); and (6)T =a=0biff o’ =" (resp..I |=a#biff o #b?). The interpreta-
tion Z satisfiegshe axiomF", or Z is amodelof F iff Z = F'. The interpretatio satisfiesa DL knowledge
baseL, or Z is amodelof L, denotedZ = L, iff Z = F for all F'€ L. We say thatl. is satisfiable(resp.,
unsatisfiablgiff L has a (resp., no) model. An axiomis alogical consequencef L, denoted = F, iff
every model of. satisfies”. A negated axiom-F' is alogical consequencef L, denoted. = —F, iff every
model of L does not satisfy-.

Some important reasoning problems related to DL knowledge bases the following: (1) decide
whether a giverl is satisfiable; (2) giverd and a concept’, decide whethel [~ C' C L; (3) givenL and
two concepts” andD, decide whetheL = C C D; (4) givenL, an individuak € I, and a concepf’, decide
whetherL = C(a); (5) givenL, two individualsa, b € I (resp., an individuak € I and a data value), and
an abstract rol& € R 4 (resp., a datatype rolé € Rp), decide whethef. = R(a,b) (resp.,L = U(a,v)),
and (6) givenL and two individuals:, b € I, decide whetheE = a = b or whetherL = a # b.

Here, (1) is a special case of (2), sinkés satisfiable iffL. [~ T C L. Furthermore, (2) and (3) can be
reduced to each other, sinée=C M —-DC L iff L=CLC D. Finally, in SHOZN (D), since concept and
role membership axioms can also be expressed through concept inclygiors gsee above), (4) and (5)
are special cases of (3).
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Example 2.4 (Product Database cont’d)Consider agair; of Example 2.3. We observe that, for exam-
ple, Discount = Shop is not a logical consequence &f. Furthermore> 2 provides(ss) is a logical
consequence df;, while Discount(ss) is not.

3 Description Logic Programs

In this section, we recatlescription logic programéor simplyd|-programg under the answer set semantics
from [Eiter et al. 2004;2008], which combine DLs (under the genersal-firder semantics) and normal
programs under the answer set semantics. They consist of a DL krgmvietbel and a finite set of
generalized rules (calledl-rules) P. Such rules are similar to usual rules in logic programs with negation
as failure, but may also contadjueries toL in their bodies, possibly default negated. In such a query, it is
asked whether a certain DL axiom or its negation logically follows flonn [Eiter et al. 2004;2008], we
considered dI-programs that may also contain classical negation aneagsisarily monotonic queriesto
Here, we consider only the case where classical negation is abseall gndries tol, are monotonic. The
former is in line with the traditional well-founded semantics in the ordinary calsiée the latter makes the
development of a well-founded semantics for dl-programs simpler, puttirfig¢he on the premier fragment
of dl-programs. Indeed, most atoms with queried.tare in fact monotonic (naturally, a dl-program may
still contain NAF-literals). Furthermore, non-monotonic queries tmay be naturally emulated by atoms
with monotonic queries under well-founded semantics (cf. Section 5).

3.1 Syntax

We now define the syntax of dl-programs. As in Section 2.1, we assumectofufree first-order vo-
cabulary® = (P, C), consisting of two nonempty finite sefsandP of constant and predicate symbols,
respectively, and a sétf of variables. Atermis either a constant symbol froéhor a variable fromY'. As in
Section 2.2, we assume a description logic vocabulasy(A UR4 URp, IU V), whereA, R4, Rp, I,
andV are pairwise disjoint (denumerable) sets of atomic concepts, abstragtdatatype roles, individu-
als, and data values, respectively. We assumeAhaR. 4 U R p is disjoint fromP, while Ip C C CTUV,
wherelp is the set of all constant symbols appearing’in

We define dl-queries and dl-atoms, which are used in rule bodies to exqpreses to the DL knowledge
baseL, as follows. Adl-queryQ(t) is either

(a) aconcept inclusion axioffi or its negation-F'; or

(b) of the formsC/(¢) or =C(t), whereC'is a concept, andis a term; or

(c) of the formsR(t1,t2) or ~R(t1,t2), whereR is arole, and; andt, are terms; or
(d) of the forms=(t1,t2) or #(t1,t2), wheret; andt, are terms.

Note here that is the empty argument list in (a§ =t in (b), andt = (¢1,¢2) in (c) and (d), and terms are
defined as above. dl-atomhas the form

DL[S10p1p1,...,Smopmpm;Q](t), m>o7 (2)

where eachs; is either a concept, a role, or a special symbel{=,+#}; op, € {&, U}; p; is a unary
predicate symbol, if; is a concept, and a binary predicate symbol, otherwise(d is a dl-query. We
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call pi, ..., pn itsinput predicate symbals$ntuitively, op, = & (resp.,op; = UJ) increases; (resp.,—5;) by
the extension op;. A dl-rule r is of the form (1), where any,, . . ., b,, € B(r) may be a dl-atom. All-pro-
gram KB = (L, P) consists of a DL knowledge badeand a finite set of dl-rule®. We saykKB = (L, P)
is positiveiff P is positive.

Example 3.1 (Product Database cont’d)Consider the dl-programiB, = (L1, P1), with L; as in Exam-
ple 2.3 andP; given as follows, choosing vendors for needed parts relative tolppessbates:

(1) wendor(ss); wendor(s1); wvendor(ss);

(2) needed(cpu); mneeded(harddisk); needed(case);

() avoid(V) < vendor(V'), not rebate(V);

(4) rebate(V) — vendor(V'), DL[supplier W buy _cand; Discount](V');

(5) buy-cand(V, P) «— vendor(V'), not avoid(V'), D L[provides](V, P), needed(P),
not exclude(P);

(6) exclude(P) «— buy_cand(Vy, P), buy_cand(Va, P), Vi # Va;

(7) exclude(P) «— DL[supplier|(V, P), needed(P);

(8) supplied(V, P) < DL[supplier & buy_cand; supplier|(V, P), needed(P).

Rules (3)—(5) choose a possible vendbuy(_cand) for each needed part, taking into account that the se-
lection might affect the rebate condition (by feeding the possible vendiitoal;, where the discount is
determined). Rules (6) and (7) assure that each hardware pargktiamly once, considering that for some
parts a supplier might already be chosen. Rule (8) eventually summaripesaibasing results.

3.2 Answer Set Semantics

We now define the answer set semantics of dI-programs and summarizefitssemantic properties. We
first define (Herbrand) interpretations and the satisfaction of dl-progin interpretations. The latter hinges
on defining the truth of ground dl-atoms in interpretations. In the sequekBet (L, P) be a dI-program
over the vocabularg = (P, C).

TheHerbrand basef P, denotedHB p, is the set of all ground atoms with (a) predicate symbolB in
that occur inP and (b) constant symbols ¢h An interpretation/ relative to P is any subset of/B p. Such
an I is amodelof a ground atom or dl-atom (or [ satisfiess) underLZ, denoted! =, a, if the following
holds:

° ifaeHBp,thenI):Laiff acl;

e if aisaground dl-atonDL[\; Q|(c), where = Siop; p1,- .., Smop,,pm, thenl =p aiff L(I; \) |
Q(c), whereL(I;\) = LU Ui~ Ai(I) and, forl < i < m,

_ [ {Si(e)[pi(e)el}, if op;=;
AdD) _{ {=Si(e)[pi(e) €I}, if op;=0.

We say! is amodelof a ground dl-ruler iff I |=; H(r) wheneverl =1, B(r), that is, I =1, a for all
a€ BT (r)and I} a for all a€ B~ (r). We sayl is amodelof a dl-programKB = (L, P), denoted
I = KB, iff I =g r for all r € ground(P). We sayKB is satisfiable(resp.,unsatisfiablg iff it has some
(resp., no) model.
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Observe that the above satisfaction of dl-atarmsHerbrand interpretationsalso involves negated con-
cept inclusion axioms:(C C D), negated concept membership axion(s(a), and negated role member-
ship axioms-R(a, b) and—U (a,v). For this reason, we slightly extend the standard syntax and semantics
of SHZF(D) andSHOIN (D) by also allowing such negated axiomd.he notions of satisfaction, sat-
isfiability, and entailment are naturally extended to handle such negated axiopexticular, a first-order
interpretation = (AZ,.7) satisfies—~(C C D) (resp.,~C(a), —R(a,b), =U(a,v)) iff C* ¢ D* (resp.,
at ¢ CT, (a®,b) ¢ RZ, (af,vP) ¢ U?). Entailment (for dl-atoms) in the slight extensions9#ZF (D)
andSHOZIN (D) can then be reduced to entailmentSZ F (D) andSHOZN (D) [Eiter et al. 2008],
respectively.

A ground dl-atonu is monotonicrelative toKB = (L, P) iff 1 CI' C HBp implies that if/ =1, a then
I' =1 a. In this paper, we focus on monotonic ground dl-atoms relative to a dimogwhich seem to be
most natural), but one can also define non-monotonic ones (see [Eiter2€04;2008] and Section 9 for
further discussion).

Like ordinary positive programs, every positive dl-progrd® is satisfiable and has a unique least
model, denoted/ kg, which naturally characterizes its semantics.

The strong answer set semantic$ general dl-programs is then defined by a reduction to the least
model semantics of positive ones as follows, using a generalized travafon that removes all default-
negated atoms in dl-rules. For dl-prograd® = (L, P), the strong dI-transformof P relative toZ and
an interpretatiod C HBp, denoteds P/, is the set of all dl-rules obtained frogmound(P) by (i) deleting
every dl-ruler such that/ =1, a for somea € B~ (r), and (ii) deleting from each remaining dl-rutethe
negative body. Notice thatP] generalizes the Gelfond-Lifschitz reduet [Gelfond and Lifschitz 1991].
Let KB denote the dl-prograniL, sPi). Since KB! is positive, it has a unique least model. skong
answer sefor simplyanswer sgtof KB is an interpretatiod C HB p that coincides with the unique least
model of KB,

Example 3.2 (Product Database cont’d)The dl-programkK B = (L1, P;) of Example 3.1 has the follow-
ing three strong answer sets (only relevant atoms are shown):

{supplied(ss, case); supplied(sz, cpu); supplied(sq, harddisk); rebate(ss); ... };
{supplied(ss, case); supplied(ss, harddisk); rebate(ss); ... };
{supplied(ss, case); ... }.

Since the supplies; was already fixed for the pattise, two possibilities for a discount remainepate(ss2)
or rebate(ss); s; is not offering the needed pdrtrddisk, and the shop will not give a discount only for the
part cpu).

We finally summarize some semantic properties. The strong answer set senwdndieprograms
KB = (L, P) without dl-atoms coincides with the ordinary answer set semantid? [@elfond and Lif-
schitz 1991]. Moreover, strong answer sets of a general dl-pro@f& are also minimal models ok B.
Finally, positive and stratified dl-programs have exactly one strong arsatiewhich coincides with their
canonical minimal model. Herestratified dl-programsare composed of hierarchic layers of positive dlI-
programs that are linked via default negation [Eiter et al. 2004;2008].

" Actually, OWL 2 follows a similar pattern, allowing for negative property nbemship assertions, dit t p: / / ww. w3.
or g/ TR/ 2008/ WD- owl 2- qui ck- r ef erence- 20081202/ . Negative role membership axioms can also be easily emulated
using qualified role expressions, cf. [Eiter et al. 2008]; for DLs with lichiéxpressivenessj can be simply restricted to concepts.
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4 \Well-Founded Semantics

In this section, we define the well-founded semantics for dl-programs.oteisiby generalizing the well-
founded semantics for ordinary normal programs. More specificall\gemeralize the definition based on
unfounded sets as given in Section 2.

We first define the notion of an unfounded set for dl-prograkiis= (L, P). This is not that easy
technically: first, truth and falsity of dl-atoms dependiorbesidesP. Second, establishing definite falsity
of a positive classical atomin a rule body is as easy as checking thatppears in the current interpretation.
Instead, for proving that a positive dl-atom is definitely false, it is neogs® consider a more general
sufficient condition, which accounts for any possible further expansighe current interpretation. These
considerations lead to the following notion of unfounded set for dl-Enog:

Definition 4.1 (Unfounded Set)Let I C Litp be consistent. A sd C HBp is anunfounded setf KB
relative tol iff the following holds:

(x) for everya € U and everyreground(P) with H(r)=a, either (i)—be I U—-.U for some ordinary
atomb e B*(r), or (i) b € I for some ordinary atorhe B~ (r), or (iii) for some dl-atonb € B* (r),
it holds thatS*}~ b for every consistent C Litp with TU—-.U C S, or (iv) for some dl-atom
be B~ (r), [Tk=Lb.

What is new here are conditions (iii) and (iv). Intuitively, (iv) says that b is for sure false, regardless
of how [ is further expanded, while (iii) says thawill never become true, if we expandin a way such
that all unfounded atoms are kept false. The following examples illustraitimept of an unfounded set
for dl-programs.

Example 4.2 ConsiderKBy = (La, P»), whereLs = {S T C'} and P, is as follows:
pla) < DL[SwWq;C](a);  qla) < pla);  7(a) < notg(a), not s(a).

Here,S; = {p(a),q(a)} is an unfounded set di B relative tol = (), sincep(a) is unfounded due to (iii),
while ¢(a) is unfounded due to (i). The st = {s(a)} is trivially an unfounded set ok B, relative toI,
since no rule defining(a) exists.

Relative tol ={q(a)}, Si is not an unfounded set @fB- (for p(a), the condition fails) bubs is. The
setSs ={r(a)} is another unfounded set &fB relative tol.

Example 4.3 Consider a variank B3 = (L2, Ps) of the dl-programK B, = (L2, P>) of Example 4.2, where
Ps is obtained fromP, by negating the dl-literal ir%,. Then,S; = {p(a), ¢(a)} is not an unfounded set
of KBj relative tol = () (condition (iv) fails forp(a)), but Sy = {s(a)} is. Relative tol = {¢(a)}, however,
both S; andS; as well asSs = {r(a)} are unfounded sets &Bs;.

Example 4.4 Among the unfounded sets &B; = (L, P;) in Example 3.1 relative tdy =10, there is
{buy_cand(sy, harddisk), buy_cand (s, case), buy_cand(ss, cpu)} due to (iii), since the dl-atom in rule
(5) of P, will never evaluate to true for these pairs. It reflects the intuition that theegiprovides narrows
the choice for buying candidates.

The following lemma shows that the set of unfounded set& Bfrelative to[ is closed under union,
which implies thatk B has a greatest unfounded set relativé.to
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Lemma 4.5 Let KB = (L, P) be a dl-program, and lef C Litp be consistent. Then, the set of unfounded
sets ofKB relative to! is closed under union.

Based on the above result th&l3 has a greatest unfounded set relativd tave now generalize the
operatorsl'p, Up, andWp to dl-programs as follows.

Definition 4.6 (Ixg, Uk, WkB) The operatordig, Uxg, andWip on all consistenf C Litp are as fol-
lows:

e a € Txp(I) iff a € HBp and some: € ground(P) exists such that (alf (r) =a, (b) I =, b for
allb € B*(r), (c) —b € I for all ordinary atoms$ € B~ (r), and (d)S* [~ b for each consistent
S C Litp with I C S, for all dl-atomsb € B~ (r);

e Ukp(I) is the greatest unfounded set/B relative tol; and

° WKB(I) :TKB(I) U —\.UKB(I).
Note thatTkp (1) NUkp(I) =0, and thusV kg (1) is indeed well-defined. The following result shows
that the three operators are all monotonic.

Lemma 4.7 Let KB be a dl-program. Theri'xg, Uxg, andW kg are monotonic.

Thus, in particularVkp has a least fixpoint, denotéfp(Wgkp). The well-founded semantics of dI-
programs can thus be defined as follows.

Definition 4.8 (Well-founded Semantics)Let KB = (L, P) be a dl-program. Theell-founded semantics
of KB, denotedWFS(KB), is defined asfp(Wxg). An atoma € HBp is well-foundedresp.,unfoundedl
relative toKB iff a (resp.,~a) belongs toWFS(KB).

The following examples illustrate the well-founded semantics of dl-programs.

Example 4.9 ConsiderKB, of Example 4.2. Fody =), we haveTxp,(lo) =0 andUgp, (Io) = {p(a),
q(a),s(a)}. Hence,Wkg,(Ip) ={-p(a),q(a),~s(a)} (=I). In the next iterationTxp, (1) ={r(a)}
andUgp, ={p(a),q(a),s(a)}. Thus,Wgp,(I1) = {-p(a), =q(a),r(a),~s(a)} (=I2). Sincel, is total
andWgp, is monotonic, it followsiWkg, (I2) = I and hencdVES(KBs2) = {—p(a), ~q(a),r(a), ~s(a)}.
Accordingly,r(a) is well-founded and all other atoms are unfounded relativE ®. Note thatK B, has
the unique answer sét={r(a)}.

Example 4.10 Now considerK B3 of Example 4.3. Foidy=(), we haveTkg,(Iy) =0 andUkg,(ly) =
{s(a)}. Hence Wkp, (Io) ={—s(a)} (=I1). In the next iteration, we havExp, (1) =0 andUkp,(I1) =
{s(a)}. ThenWgkp,(I1) =1, and WFS(KB3) = {—s(a)}; atoms(a) is unfounded relative t&B3. Note
that KB3 has no answer set.

Example 4.11 Consider agairUxg, (I =0) of Example 4.4. ThenWkg, (Iy) consists of-Ugg, (1)

and all facts of;. This input to the first iteration along with (iii) applied to rule (8) adds theseplied
atoms taUkp, (I1) that correspond to the (negatéd) _cand atoms ofUxz, (Iy). Then,Tkxp, (I1) contains
exclude(case) which forces additionaluy _cand atoms intaU kg, (I2), regarding (i) and rule (5). The same
unfounded set thereby includesbate(s; ), stemming from rule (4). As a consequeneepid(s;) is in
Tkg, (I3). Eventually, the finalWFS(KB;) is not able to make any positive assumption about choosing a
new vendor §uy_cand), butitis clear about; being definitely not able to contribute to a discount situation,
since a supplier forase is already chosen ifv;, ands; offers only a single further part.
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5 Semantic Properties

In this section, we explore the semantic properties of the well-founded sestor di-programs, and their
relationship to the strong answer set semantics. An immediate result is thaséreatively extends the
well-founded semantics for ordinary normal programs.

Theorem 5.1 Let KB = (L, P) be a dl-program without dl-atoms. Then, the well-founded semantiE®of
coincides with the well-founded semanticgof

The next result shows that the well-founded semantics of a dl-progfBra (L, P) is a partial model
of KB. Here, a consistent C Litp is apartial modelof KB iff some consistent/ C Litp exists such
that (i)  C J, (ii) J* is a model ofKB, and (iii) J is total, that is,J* U (—=.J)" = HBp. Intuitively, the
three-valued can be extended to a (two-valued) modet HBp of KB.

Theorem 5.2 Let KB be a dI-program. ThenlWFS(KB) is a partial model ofKB.

Importantly, the well-founded semantics for dl-programs can be chaizedean terms of the least and
the greatest fixpoint of a monotonic operaigr, similar as the well-founded semantics for ordinary normal
programs [Baral and Subrahmanian 1993]. We then use this charatimrito derive further properties of
the well-founded semantics for dl-programs.

Definition 5.3 For a dl-progrankB = (L, P), let the operatotyxz onI C HBp be
YrB(I) = Mypr,
which is the least model of the positive dl-prograiB’ = (L, sP}).

The next result shows thatxp is anti-monotonic, like its counterpart for ordinary normal programs
[Baral and Subrahmanian 1993]. Note that this result holds only if altatha in P are monotonic.

Proposition 5.4 Let KB = (L, P) be a dl-program. Thenygp is anti-monotonic.

Hence, the operators; (1) =vxp(vxgs(I)), for all I C HBp, is monotonic and thus has a least and a
greatest fixpoint, denotelfip (%) and gfp(v%5), respectively. We can use these fixpoints to characterize
the well-founded semantics &fB.

Theorem 5.5 Let KB = (L, P) be a dl-program. Then, an atome HBp is well-founded(resp., un-
founded relative to KB iff a € Ifp(v%.5) (resp..a & gfp(v%5))-

Example 5.6 Consider again the dl-prografiB; of Example 3.1. The sdfp(ﬁ@l) contains the atoms
avoid(s1) and supplied(ss, case), while gfp(ﬁ(Bl) does not contaimebate(s;). Thus, WFS(KB;) con-
tains the literalsavoid(si), supplied(ss, case), and —rebate(sy), corresponding to the result of Exam-
ple 4.11 (and, moreover, to the intersection of all answer sek&33f).

The next theorem shows that the well-founded semantics for dl-progaam®ximates their strong
answer set semantics. That is, every well-founded ground atom is treeeity answer set, and every
unfounded ground atom is false in every answer set.
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Theorem 5.7 Let KB = (L, P) be a dl-program. Then, every strong answer sekdf includes all atoms
a € HB p that are well-founded relative t& B and no atomu € HB p that is unfounded relative t&B.

A ground atomu is acautious(resp.,brave consequence under the strong answer set semaottias
dl-programKB iff a is true in every (resp., some) strong answer sdt Bf Hence, under the strong answer
set semantics, every well-founded and no unfounded ground atonaistiaus (resp., brave) consequence
of KB.

Corollary 5.8 Let KB = (L, P) be a dl-program. Then, under the strong answer set semanticy, eedr
founded atonw € HB p relative to KB is a cautiougresp., bravg consequence of B, and no unfounded
atoma € HBp relative toKB is a cautiougresp., bravg consequence of a satisfialhés.

If the well-founded semantics of a dI-progralfB=(L, P) is total, that is, contains eitheror —a for
everya € HBp, then it specifies the only strong answer sek@f.

Theorem 5.9 Let KB = (L, P) be a dl-program. If every atom € HBp is either well-founded or un-
founded relative ta{B, then the set of all well-founded atomg HBp relative to KB is the only strong
answer set oK B.

Like in the case of ordinary normal programs, the well-founded semarigsositive and stratified
dl-programs is total and coincides with their least model semantics and iteledisemodel semantics,
respectively. This result can be elegantly proved using the charatteriof the well-founded semantics
given in terms of the %, operator.

Theorem 5.10 Let KB = (L, P) be a dl-program. IfKB is positive(resp., stratifiedl, then(a) WES(KB)
is a total model, that isWFS(KB)" U (-~.WFS(KB))" = HBp, and(b) WFS(KB) N HBp is the least
model(resp., the iterative least modeif KB, which coincides with the unique strong answer sek 6f.

Example 5.11 The dl-programiK B4 in Example 4.2 is stratified (intuitively, the recursion through negation
is acyclic) whileKB3 in Example 4.3 is not. The result computed in Example 4.9 verifies the conditions of
Theorem 5.10.

We finally show that we can limit ourselves to dI-programglirguery form where dl-atoms equate
designated predicates. Formally, a dl-progrAd = (L, P) is in dl-query form if eachr € P involving a
dl-atom is of the formu < b, whereb is a dl-atom. Any dl-progrankB = (L, P) can be transformed into
a dl-programkB% = (L, P%) in dl-query form. HereP% is obtained fromP by replacing every dl-atom
a(t) = DL[A; Q](t) by p,.(t), and by adding the dl-rulg,(X) < a(X) to P, wherep,, is a new predicate
symbol, andX is a list of variables corresponding toInformally, p, is an abbreviation fod.

The following result now shows tha@ B and KB are equivalent under the well-founded semantics.
Intuitively, this means that the well-founded semantics tolerates abbreviatitims sense that they do not
change the semantics of a dI-program. This normal form is particularlylugefthe computation of the
well-founded semantics, as it allows to eliminate dl-atoms from arbitrary rukksocamove them to special
rules. Another good property is that the transformation to normal forisepves stratification.

Theorem 5.12 Let KB = (L, P) be a dl-program. ThedVFS(KB) = WFS(KB¥) N Litp .
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Table 1: Complexity of literal entailment from dl-prograii® = (L, P) under the well-founded semantics.

| Lin SHTF(D) Lin SHOIN(D)
General Complexity EXP-complete  BEXP_complete
Data Complexity PNP_complete PP -complete

We close this section with a brief comment on dl-programs with nonmonotonic ulisgfiiter et al.
2008]. The latter also have the form (2), byt; may ben, wheresS;A p; increases-S; by thecomplement
of p;. This is equivalent toS; Up;, given thatp, is the complement op;, which is expressible with a
rule p;(X) « not DL[S] U p;; S/](X), whereS! is a fresh concept resp. role name, provided that the DL
knowledge base is satisfiable. In this way, any dl-progféh= (L, P) with satisfiableL can be rewritten
to the premier fragment that we consider here; for unsatisfiaptae rewriting is also usable (though
may not be the complement pf).

6 Computation and Complexity

In this section, we show how the well-founded semantics of dl-progr&iiscan be computed by finite
sequences of finite fixpoint iterations, using the operatgs and the immediate consequence operator
Txp of positive dl-programd(B. We also analyze the general and the data complexity of reasoning from
dl-programs under the well-founded semantics. Our complexity resultarpactly summarized in Ta-

ble 1. In detail, deciding literal entailment from a dl-progrdt® = (L, P) with L in SHZF (D) (resp.,
SHOIN (D)) under the well-founded semantics is complete for EXP (resp**P) in general, and com-
plete for P'* (for both DLs) under data complexity.NB-complete forSHZF (D) under data complexity

(for SHOZN (D), the same is believed). In fact, th&'Pupper bound for data complexity extends to all
description logicsC for which literal inference =, a is decidable in polynomial time with an NP oracle
under data complexity.

6.1 Fixpoint Iteration

The well-founded semantics of dl-prograii®? can be computed by two finite fixpoint iterations, via the
operatorykpg, using in turn finite fixpoint iterations for computing the least models of posiiymograms,
via their immediate consequence operator.

More concretely, for any positive dl-progra&iB = (L, P), the least model oB, denotedM g,
coincides with the least fixpoint of the immediate consequence opéraipfEiter et al. 2004], which is
defined as follows for every C HB p:

Tgp(l) ={H(r)|re€ground(P), I = ¢forall € B(r)}.

To compute the well-founded semantics of a normal dl-progkéBn= (L, P), that is, WEFS(KB) =
Ifp(v%5) U—(HBp — gfp(v%5)), we compute the least and the greatest fixpointagf as the limits of the
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two fixpoint iterations

p(Vip) = Uso = Uiz Ui, WhereUy = 0, andU; 1 = ~v;5(U;), fori >0, and
afp(v%5) = Oso = Nz Os, WhereOy = HBp, andOyy1 = v(0;), fori >0,

respectively, which are both reached withiiB p| many steps. Recall that the operatgfs is defined
by vkp(I) = Mypr (with KB' = (L, sP})), for all I C HBp. As argued above) . coincides with
lifp(Typr), forall I C HBp. To computeygg (1), for all I C HBp, we thus compute the least fixpoint of
Typ1 as the limit of the fixpoint iteration

Ufp(Tgpr) = Seo = U Si, whereSy = 0, andS; 41 = Typi(S:), fori >0,

which is also reached withif B p| many steps.

6.2 General Complexity

We recall that for a given ordinary normal program, computing the welhfied model needs exponential
time in general (measured in the program size [Dantsin et al. 2001]), laodeasoning from the well-
founded model has exponential time complexity. Furthermore, evaluatinguaddl-atoma of the form
(2) for KB = (L, P) given an interpretatiod, of its input predicatep = pi,...,p,, (that is, deciding
whether! =, a holds for eacl that coincides op with 1)) is complete for EXP (resp., co-NEXP) férin
SHIF (D) (resp..SHOIN (D)) [Eiter et al. 2004], where EXP (resp., NEXP) denotes exponen&ap(r
nondeterministic exponential) time; this is inherited from the complexity of decidimgtlver a knowledge
base inSHZF (D) (resp..SHOZN (D)) is satisfiable [Tobies 2001; Horrocks and Patel-Schneider 2004].
The following result shows that computing the well-founded semantics ofpaodfram KB = (L, P)
over SHZF (D) can be done in exponential time, and that reasoning from such progrades the well-
founded semantics is EXP-complete; hardness holds evenivissgmpty orP contains only one rule. That
is, the complexity of the well-founded semantics for such programs doésaretise over the one of ordi-
nary normal programs. The membership part follows from the aboveifikpbaracterization of the well-
founded semantics of dl-programs and the EXP-membership of dedidinga for L in SHZF (D), while
the hardness part follows from the EXP-hardness of reasoningtfrenwell-founded semantics of ordinary
normal programs as well as the EXP-hardness of deciding knowledgeshéisfiability inSHZF (D).

Theorem 6.1 Given a vocabulary® and a dl-programKB = (L, P) with L in SHZF (D), computing
WFS(KB) is feasible in exponential time. Furthermore, given additionally a litéralLit p, deciding
whetherl € WFS(KB) holds isEXP-complete. Hardness holds even in the cases wheré {gempty or
(b) P contains only one rule.

For dl-programs ove§ HOZN (D), the computation of the well-founded semantics and reasoning from
it is expected to be more complex than for dl-programs &/KZ F (D), since already evaluating a single
dl-atom is co-NEXP-hard. Computing the well-founded semantics can be doa similar manner as in
the case ofSHZF (D), in exponential time using an oracle for evaluating dl-atoms; to this end, an NP
oracle is sufficient. As for the reasoning problem, this means that decidiether! ¢ WES(KB) holds
is in EXPYP. A more precise account reveals the following strict characterizatioreafdmplexity, show-
ing that reasoning from dl-programi$B = (L, P) over SHOZN (D) under the well-founded semantics
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is complete for BPEXP which is intuitively strictly contained in EXI’ 2 and hardness holds even when
P is stratified. The membership part follows from the above fixpoint chaiaaten of the well-founded
semantics of dl-programs and the co-NEXP-membership of decidiag a for L in SHOZN (D), using

a census technique, which essentially allows to evaluate all dl-atoms in &dwgmalynomial time with an
oracle for NEXP, while the hardness part follows from tR&"P"-hardness of strong answer set existence
for stratified dI-programs [Eiter et al. 2004].

Theorem 6.2 Given a vocabulary®, a dI-program KB = (L, P) with L in SHOZN (D), and a literal
| € Lit p, deciding whether € WFS(KB) holds isPN*XF-complete. Hardness holds even in the case where
P is stratified.

The results in Theorems 6.1 and 6.2 also show that, like for ordinary nommgigms, inference under
the well-founded semantics is computationally less complex than under therasetweemantics for dl-
programs(L, P) with L from SHZF (D), as cautious reasoning from the strong answer sets such a dl-
programs is complete for co-NEXP; with from SHOZN (D), the complexity is the same. [Eiter et al.
2004,2008].

Analog complexity results for literal inference under the well-founded sgicsgcan be derived fok
from other DLs; for the upcoming OWL2 proposal, an adjusted prooheiofem 6.2 shows that the problem
is in PPNEXP (and presumably also complete for this class), and for the OWL2 profileQELand RL, an
adjusted proof of Theorem 6.1 that it is EXP-complete. This is becauséintgé =, o for L in the DL
SROIQ underlying OWL2 is co-2NEXP-complete, as follows from [Kazakov J0@8&d for L in EL, QL,
and RL is polynomial?

6.3 Data Complexity

We now explore the data complexity of reasoning from dl-progré&fs= (L, P) under the well-founded
semantics. Here, only the constant symbols in the vocabdlatlye concept and role membership axioms
in L, and the facts inP may vary, while the rest o®, L, and P is fixed. The following result, which
follows from the above fixpoint characterization of the well-founded s#its of dl-programs, shows that
the data complexity of dl-programs does not increase much compared toglod guery answering in the
description logic wherd is from1°

Proposition 6.3 Given a vocabulary®, a dl-program KB = (L, P) with L from a description logicC
for which deciding/ =; a has data complexity in clas§, and a literal [ € Litp, deciding whether
1€ WFS(KB) holds is inP® under data complexity.

Exploiting this, we derive that for botf = SHZF(D) andL = SHOZN (D) the problem is PF-

complete under data complexity; hardness holds even Wthenn ALE and P is stratified. Indeed, unsat-
isfiability and instance checking ifHOZN (D) (andSROZQ(D)) are in co-NP under data complexity
(which follows from results in [Pratt-Hartmann 2008]); the hardnessipahown by a generic reduction

8In EXPYT, a NEXP oracle can be emulated, and computation trees with branching qerttulated) oracle answers can
have double exponentially many paths and exponential depth; intuitivedyné the correct computation path in such a tree needs
exponentially many NEXP oracle calls. StiBXF = EXPN? is possible, e.g., if NEXE- EXP andNP = P.

°As follows fromht t p: / / www. W3. or g/ TR/ 2008/ WD- owl 2- prof i | es- 20081202/ .

ONote that a slightly modified construction can be used to derive the datalexitypof deciding consistency and of cau-
tious/brave reasoning under strong/weak answer sets.
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from Turing machines, exploiting the co-NP-hardness proof for instahecking inALE by Donini et
al. [1994].

Theorem 6.4 Given a vocabularyp, a dl-programKB = (L, P) with L in SHZF (D) and a literall € Litp,
deciding whethet € WFS(KB) holds isPNP-complete under data complexity. Hardness holds even in the
case where (iL is in ALE and (ii) P is stratified.

7 Data Tractability

We now delineate special cases where reasoning from dI-prograres tinedwell-founded semantics can
be done in polynomial time and indGSPACE in the data complexity.

7.1 Polynomial Case

We first focus on the case where the evaluation of all dl-atoms in a dlqmmogan be done in polynomial
time. In this case, reasoning from dl-programs under the well-foundedrses is complete for P under
data complexity, and thus has the same data complexity as reasoning froarprainmal programs under
the well-founded semantics. This result is formally expressed by the folipingprem, whose membership
part follows immediately from Proposition 6.3 while the hardness part folloars the P-completeness of
reasoning from the well-founded semantics of ordinary normal programs

Theorem 7.1 Given a vocabulary?, a dl-program KB = (L, P), and a literall € Litp, where every dI-
atom in P can be evaluated in polynomial time, deciding whether WFS(KB) is complete folP under
data complexity.

Since there is a current trend towards highly scalable query answerihgeasoning over ontologies,
there are many recent DLs that allow for evaluating dl-atoms in polynomial tinraongy the most ex-
pressive ones is Hor@HZ Q [Hustadt et al. 2005], which is a fragment of the description logic behind
OWL Lite, and which allows for reasoning and conjunctive query ansigen polynomial time under data
complexity [Eiter et al. 2008]. The following theorem shows that reasoinorg dl-programskB = (L, P)
under the well-founded semantics, whérés defined in HornS HZ O, has the same data complexity as in
the ordinary case, when all concepts in dl-querieB iare atomic.

Theorem 7.2 Given a vocabulary?, a dl-program KB = (L, P), and a literal [ € Litp, where (i) L is
defined in HornSHZ Q, and (ii) all concept” and D in dl-queries of one of the forms amongC D,
-(CCD), C(t), and=C(t) in P are atomic (includingL and T), deciding whethef €¢ WFS(KB) is
complete foP under data complexity.

Similarly, under data complexity, literal inference under the well-foundedasgics is P-complete for
dl-programs over knowledge bases in the OWL2 profiles EL, QL, and RL.

7.2 First-Order Rewritable Case

We next consider the case where the evaluation of every dl-query ipediamKB = (L, P) is first-
order rewritable. In this case, if we make additional acyclicity assumptioosgtdh then reasoning from
dl-programs under the well-founded semantics is also first-order reveitatich implies that reasoning
from dl-programs under the well-founded semantics can be done@SkACE under data complexity.
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Here, a dl-queryQ(t) over L is first-order rewritableiff it can be expressed in terms of a first-order
formula ¢(t) over the setLcg of all concept and role membership axioms/Zinthat is, for everye, it
holds thatl = Q(c) iff I, = ¢(c), where for any set of atoms, we denote by the total Herbrand
interpretation that satisfies exactly the atomgiri.e., under the closed world assumption Bp!! The
dl-program KB is first-order rewritableiff the extension of every predicatgx) in WES(KB) can be
expressed in terms of a first-order formula) over the sef” of all concept and role membership axioms in
L and all database facts i, that is, for every, it holds thatp(c) € WFS(KB) iff Ir = ¢(c). Informally,
such dl-atoms and predicates can be expressed in terms of SQL queies @lational database. The
notion of acyclicity for dl-programs assures that they are first-orderitable when all dl-atoms are so. It
is defined as follows. LePp denote the set of all predicate symbolsiin We sayKB = (L, P) is acyclic
iff a mappingx: Pp — {0, 1,...,n} exists such that for evenyc P, the predicate symbel of H (r), and
every predicate symbal of some ordinary € B(r) or of an input argument of some dl-atdng B(r), it
holdsk(p) > k(q).

The following result shows that reasoning from acyclic dl-prograkiis = (L, P) under the well-
founded semantics is first-order rewritable (and thus can be done@sikAcE under data complexity),
when (i) all dI-queries inP are first-order rewritable, and (ii) if the operatooccurs inP, thenL is defined
over a description logic that (ii.a) EWA-satisfiabldthat is, for every description logic knowledge base
L', the union ofL’ and all negations of concept and role membership axioms that are not @tugilé is
satisfiable) and (ii.b) allows for first-order rewritable concept and rolembezships.

Theorem 7.3 Given a vocabularyp, an acyclic dl-programkB = (L, P), and a literall € Litp, where
(i) every dl-query inP is first-order rewritable, and (i) if the operatas occurs inP, thenL is defined over
a description logic that (ii.a) is CWA-satisfiable, and (ii.b) allows for first-ondsvritable concept and role
memberships, deciding whetheg WES(KB) is first-order rewritable.

In particular, reasoning from acyclic dl-programd®3 = (L, P) under the well-founded semantics is
first-order rewritable (and thus can be done mdSPACE under data complexity), when (i) is defined in
a description logic of th®L-Lite family [Calvanese et al. 2007] (in which knowledge base satisfiability and
conjunctive queries are both first-order rewritable) and (ii) we assuiiteshée restrictions on dl-queries in
P.

Theorem 7.4 Given a vocabularyb, an acyclic dl-programkKB = (L, P), and a literall € Lit p, where
() L is defined in a description logic of the DL-Lite family, and (ii) all dl-queriesArare of one of the
formsC C D, -(C C D), C(t), andR(t, s), whereC'is an atomic concept, anf! is an atomic or a negated
atomic concept, deciding whethkeg WFE'S(KB) is first-order rewritable.

Finally, we remark that the RGSPACEfeasibility generalizes from first-order rewritable dl-atoms to one
that can be evaluated indGSPACE, but omit further details.

8 Implementation

Based on the ideas of Section 6, we developed an experimental systeaniputing the well-founded
semantics of a given dl-prograiiB = (L, P). It consists of three separate modules: the answer set solver

Note that the notion of first-order rewritability here does not mean thay éwewledge basé in a description logicC can be
expressed as an equivalent first-order theory (which holds fot deseription logics). Note also that the first-order rewritability
here corresponds to the first-order reducibility in [Calvanese et a¥]200
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DLV [Leone et al. 2006], the description logic reasoner RACER [Haarand Moller 2001], and a module
W that computedVFS(KB) by accessing DLV and RACER.

In a first step, a progran®; is computed fromP by replacing every dl-atofWL[\; Q](t) by an atom
Porixo) (t), whereppy g is a fresh predicate. The programis then grounded using the grounding mod-
ule of the DLV system. For that, optimizations performed by that module areegyogisabled (otherwise,
the result may not be sound for our purposes). After appropriatigliroeucing the dl-atoms in the obtained
programgrd (P,), the resulting progran®” = grd(P;)’ is returned to the modulé’, which then computes
lfp(7(2L7P,/)) andgfp(fy(ZLP,,)) as defined in Section 6.1. Whenever the truth value of a given dl-atom has to
be determinediV invokes the RACER system; the latter performs reasoning and variants thereof.

It is worth mentioning that the RACER module has been embedded within a canbihgje that short-
cuts multiple (time consuming) similar queries; e.g., the truth valu®bf\; C|(a) can be quickly es-
tablished if DL[C](a) is true and this information is cached; dually, #L[\; C](a) is cached as false,
subsequent querid3L[C](a) can be answered by a quick cache lookup.

The modulelV is also exploited for computing the answer set semantids®f In virtue of Theorem
5.7, one can indeed, providédB is consistent, comput®FS(KB) and exploit this information for con-
straining atoms ififp(1¢;, ) as true in any answer set, while atogfs(¢;, ) can be constrained to not
appear in any answer set. One can exmloitstraintgi.e., rules with empty head) in DLV programs for this,
which allow to prune models. An intermediate ordinary progi@hobtained fromP can be enriched with
the constraint— not a for any atoma such thate € WFS(KB), and with a constraint- « for any atoma
such that~a € WFS(KB). Notice that such constraints may also be added only for a sub$gt6f KB)
(e.g., the subset obtained after some steps in the least/greatest fixpotiaritefay? ;). This technique
proves to be useful for helping the answer-set programming solventeoge to solutions faster.

The prototype systetin fact supports both the answer set semantics and the well-foundedtgaman
of dl-programs. More details about the architecture and the algorithmsglhaswoptimization techniques,
can be found in [Eiter et al. 2005; Schindlauer 2006; Eiter et al. 2008].

9 Related Work

In this section, we discuss related work on combining rules and ontologiéslso consider related work
on logic programs with aggregates.

9.1 Combinations of Rules and Ontologies

A number of proposals to integrate rules and ontologies have been maddasttiears; we refer to [Eiter
et al. 2008; Drabent et al. 2009; Rosati 2006; Motik and Rosati J00f&h also give (slightly different)
taxonomies to distinguish different types of combinations, for recenegarv

As for this paper, we confine our discussion to combinations of rules atodogies, where ontologies
are expressed in description logics, and rules and ontologies are cahibioe native formalism rather
than a common fragment (like DLPs [Grosof et al. 2003]), or one whdes thave an inherent classical
(implicational) semantics, like in SWRL [Horrocks et al. 2004] and its fragm@ntgs, [Motik et al. 2005;
Krotzsch et al. 2008]). Moreover, we focus on important approacbes the perspective of well-founded
semantics.

https://ww. mat . unical .it/ianni/sw p/
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Donini et al. [1998] combined Datalog with the DILLC into AL-log. A rule may have atom€'(X)
where(' is a concept in the body, which act as “constraints”; the varidblsust however also occur in
an ordinary body atomL-safety. Levy and Rousset [1998] similarly combined Horn rules with the DL
ALCNR into CARIN, allowing also role atomB(X, Y') in rule bodies; this leads to undecidability already
in very simple settings.

Rosati'sDL+log [2006] distinguishe®L andDatalog predicatesDL and Datalog atoms may occur
in both the head and the body of a rule, bitis restricted to Datalog atoms; in addition, each occurring
variableX must occur in some unnegated atom in the body; the latter must be a Datalog aloogelrs
in a dl-atom in the headueak DL-safety Rosati defined an answer set (stable model) semantics for a KB
(7, P) in a two step process by handling first the classical fagnd then the rule® (see Section 9.1.1
and [Rosati 2006] for details), which faithfully generalizes the semanti@sand P.

Rosati and Motik’s [2007b] hybrid MKNF KB§7', P) treat DL and Datalog predicates homogeneously,
thus allowing thatotis applied to dl-atoms. They resort to the logic of Minimal Knowledge and Negatio
as Failure [Lifschitz 1991], lifting in a sengeL+log KBs to a more general and elegant framework. Two
modal operators can change the interpretation of an atom (or a formulaénate K¢, which intuitively
means thap is necessarily known to be true, andt ¢, which intuitively means that is not true, i.e., false
in some scenario. Rosati and Motik's semanticf P), which is based, in S5-style, on (pairs of) sets of
possible worlds, captures naturally the answer set semantiés of

The approaches above give semantics to a hybrid KB in terms of two-vétlassical) models resp.
sets of such models in case of MKNF, wheret is handled similarly as in answer set semantics. They
informally give a canonical semantics to programs without recursion throegation, where for ordinary
logic programs answer set and well-founded semantics do coincide. Meltied semantics beyond such
programs is a natural and important issue. In the following, we considestalo approaches.

9.1.1 Hybrid Programs

Drabent and Maluszynski [2007] consideitggbrid programs7', P) where7 is an ontology specified as a
set of DL axioms (in first-order logic) ang is a normal logic program where the rules may have constraint
expressiong’y, . .., C,, in the bodies, where eadl}; is a disjunctive normal form over literal constraints
p(X) and—p(X), wherep is an ontology predicate. In some sense, hybrid programs can be viensed a
variant ofDL+log where the stable model semantics fois replaced with the well-founded semantics; in
fact, as ontology predicates can only occur in rule bodies, hybrid anogjiare closer in spirit talL-log
[Donini et al. 1998].

The well-founded semantics for hybrid prografds P) is defined by a reduction to ordinary logic pro-
gramming similar as i L+log. Given a modelM for 7, the programP/M consists of all groundings of
rules inP that satisfy all constraints if/, from which all constraints are removed. The well-founded model
of P w.r.t. M is then the (unique) well-founded model of the ordinary logic progfam/. Semantically,
this model approximates the answer set$gf\/ according toDL+log. A ground literala (resp.,—a) is
true in the well-founded semantics @f, P), if a is true (resp., false) in the well-founded modelfv.r.t.
every model of7. Thus, it can be viewed as an approximation of the skeptical answeerseinsics of
(T, P) in DL+log, similar as the well-founded semantics of dl-programs is an approximation ofSteea
set semantics.

The declarative semantics has been complemented with an operational ssrwargigery answering,
which is based on an extension of SLD-resolution handling negation amstramts; an implementation
of a prototype for Datalog programs with negation, which uses XSB and staralardized interface a
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DL-reasoner (e.g., RacerPro) has been described in [Drabdn260a].

Compared to dl-programs, hybrid programs seem more query-orientedrbdel-oriented. The re-
striction that ontology predicates cannot occur in rule heads means tivéd pyogramg7’, P) allow only
a unidirectional flow of information from the ontology to the rulesP, while dl-programs enable a bidi-
rectional flow of information between the rules and the ontology. Queryweniisg from positive hybrid
programs is thus, like for positive ordinary programs, reducible to forgbility in classical logic; the
same holds only for a fragment of the corresponding class of positigeodikams. On the other hand, hy-
brid programs share witR L+ 1log the possibility to express reasoning by cases from the ontology via simple
rules. For dl-programs, this is not possible, but such reasoning mayiftedsto dl-atoms or supported by
more expressive dl-atoms like cg-atoms (cf. the example below and the simtdier DL+log in [Eiter
et al. 2008]).

Every modelM of 7 gives rise to a well-founded model @/M and influences the well-founded
consequences. On the other hand] ihas no model, the inconsistency spreads to the rules and all ground
queries are true. For example AAfconsists of the ruleg < p(a), ¢ <— —p(a), andr < not ¢, wherep is an
atomic concept, and is unsatisfiable, then bothandq are concluded under hybrid programs semantics;
however, intuitively one may expect thais false, as it can never be true regardless of the conterifs of
The corresponding dI-program, with reasoning by cases©f expressed by < DL[p LI —p](a), would
conclude this under the well-founded semantics.

Due to the quantification over the models Bf also a nice model-based interpretation of the well-
founded semantics for hybrid programs is non-obvious. Indeed, whilgvell-founded semantics yields a
partial model of the dI-program with a simple totalization (cf. Theorem 5.2),ishi®t the case for hybrid
programs. In connection with this, well-founded semantics of our dl-arogris directly defined on the
intuitive and constructive notion of unfounded set (which results in afikjp while an appealing notion of
unfounded set for hybrid programs is unclear.

9.1.2 Hybrid MKNF Knowledge Bases under the Well-Founded Semantics

Knorr et al. [2008] gave a well-founded semantics for hybrid MKNF KBs- (7, P) whereP amounts to
a normal logic program, and more precisely consists of rules of the form

Kh «— Kby, ... Kby, not by 41,...,n0t b, ,

whereh and allb; are atoms. The KB is transformed into the MKNF formul@C) = K= (7) A w(P),
wheren(T) = Ayer ¢ 7(P) = \,cp7(r) andr(r) is the universal closure ofread as material impli-
cation (assuming thaf and?P are finite). As we aim here to give the flavor of the approach, we omit for
simplicity further technical assumptions (safety of rules, treatment of eguetlifyand give just a superficial
description.

Using an S5-style approacK, andnot are evaluated over sei$ of 2-valued (Herbrand) interpretations
(or possible worldsJ; in fact, pairs M = (Mj, M,) of such sets are used for the 3-valued logic, whefie
serves for truth valuerue and My for false. Three-valued MKNF structures are of the fofih M, M),
where(\ M; C (| My and wherg" M C () M}, over which formulas are inductively evaluated, where
M is used forK¢ and M’ for not ¢. A pair M = (M, Ms), whereM; 2O M, satisfies a closed MKNF
formulag, if ¢ evaluates tdrue on (I, M, M) for eachl € M;; M is a(partial) MKNF modelof ¢, if in
addition for everyM’ = (M7, M}) such thatM; D M; for i = 1,2 and one of the inclusions is proper,
does not evaluate toue on (I, M’, M) for somel’ € Mj.
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In order to select a particular MKNF modejf () of 7(K) as the semantics &, Knorr et al. single
out subset® - andN of the setKA(K) of all ground atomdK¢ such that eitheKK¢ or not £ occurs in
the grounding ofP; intuitively, P and N state ground atoms that evaluatettae respectivelyfalse.
They are obtained by an alternating fixpoint construction, similar to the anerdtinary logic programs
(cf. Section 5), using a monotonic consequence opefigtofor not-free (“positive”) KBsK’ on subsets
of KA(K') (in fact, K is slightly rewritten in order to correlate falsity of atorhin the first-order parf to
not¢ in P); general KBs are reduced to positive KBs using a Gelfond-Lifsciyie seduction.

Most of the properties of the traditional well-founded model are preskiyiven that the first-order part
7 is consistentwf (K) is unique, and moreover, it is the least MKNF modeloficcording to a natural
knowledge ordering. lfuf (K) is total, i.e., of form(M, M), then it coincides with the unique MKNF model
of K as in [Motik and Rosati 2007b]; if” = (), thenwf (K) corresponds to the well-founded modelBf
Furthermore, computingf (K) is polynomial in data complexity if entailment in the DL underlyiighas
such complexity.

The approach of Knorr et al. bears some similarity to ours as it builds on atorooeonsequence oper-
ator. However, the alternating fixpoint construction has a strong tedtilsicar and may be less persuasive
than a construction that works from first principles with unfounded s®&isilar as with hybrid programs
above,wf (K) may not exist if7 itself or its interaction with the rules paft is not consistent. The latter
can be detected in the iterated fixpoint construction, while inconsisterifyiofiot expressible at the object
level of the semantics; in dl-programs, this is trivial (use e.g. a iudens — DL[T C L]()) and can
be exploited for expressing paraconsistent behavior. Finally, theacted approach of dl-programs makes
them more amenable for incorporating variants of entailment from the ontaludjypossibly heterogenous)
other knowledge bases, which seems more difficult for the tight integragalized by the hybrid MKNF
approach.

We remark that several other interesting formalisms have potential for comghboygic programs and
DLs under the well-founded semantics. Among these are FO(ID) logicd€lear and VVennekens 2007],
which extends first-order logic with inductive definitions, quantified equiliorogic [de Bruijn et al. 2007],
and first-order autoepistemic logic [de Bruijn et al. 2007]; for the latter wvavell-founded semantics
remains to be developed.

9.2 Logic Programming with Aggregates

Our dl-programs are related to extensions of logic programs with aggsef@atevhich also a well-founded
semantics has been developed independently, e.g., [Calimeri et al. 2006 ePal. 2007]. Such programs
allow aggregate atoms in rule bodies, which in [Calimeri et al. 2005] arehipugf the form f(.5) 6 k,
wheref(S) is an aggregate functiofisuch asnin, max, sum, or count, applied to a set of elemenssthat

is specified using a conjunction of ordinary atofiss a comparison operator, aikd value. An example
is #count{X : h(X),p(X,a)} < 2, which evaluates to true if less than two ground valuesXcsatisfy
the given conjunction. Pelov et al. [2007] considered a notion of agéeavheref andd are abstracted to
aggregate functions and aggregate relations.

Intuitively, aggregate atoms work similarly as dl-atoms over some given inpot fne program, even
though the underlying evaluation domain is completely different. Noticeablyn€a et al. [2005] defined
a well-founded semantics of non-monotonic logic prografmwith aggregates (assuming each is either
monotone or anti-monotone) based on a notion of unfounded set, in thienesupran Gelder et al. 1991].
According to their definition, a set of (ordinary) ground atoMds unfounded w.r.t. a given (partial) in-
terpretation/, if for each ruler from the grounding ofP that has some atom fro in the head, either
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(a) some anti-monotone literal in the bodysois false w.r.t.Z, or (b) some monotone body literal ofis
false w.r.t.(I — X) U —.X; here, falsity of an aggregate atom in a partial interpretation amounts to falsity
in all its totalizations. The condition (a) corresponds to our conditions (ii)(andn Definition 4.1, while
(b) corresponds to (i) and (iii). Note that the two notions of unfoundssieeincide iff N X = (). This
is the relevant case foiVF'S(KB), as in the least fixpoint-construction Wfxz, Uxp(I) andI (which is
contained inl'xz (1)) will be always disjoint. Thus, Calimeri et al.’s notion of unfounded ssuits in the
same well-founded semantics as our notion.

The notion of unfounded set was extended later by Faber [2005] iwaaybaggregates, by changing
(@) and (b) to falsity of some literal in the body ofw.r.t. I and w.r.t.(I — X) U -.X, respectively. To
accommodate non-monotonic dl-atoms like those in [Eiter et al. 2004;2008]awéeocthe same effect
change (iv) in Definition 4.1 to (i} for some dl-atonb € B~ (r), ST=.b for every consistens C Litp
with 7U—-.U C S, and generalize (b) dfxp(I) to (0) ST =1, b, for all consistentS C Litp with I C S
and allb € B™(r). The properties in Section 5 then naturally carry over to the extended settirege
strong answer sets do not allow non-monotonic dl-atoms in positive ruled)odie

On the other hand, Pelov et al. defined well-founded semantics for logfggons with aggregates on a
purely algebraic basis without unfounded sets, using operators on leaitti¢che theory of approximating
operators [Denecker et al. 2004]. Studying dI-programs and thgdepties in an analog framework would
be an interesting issue for further research.

10 Conclusion

In this paper, we presented a well-founded semantics for non-monotgmiograms [Eiter et al. 2004;2008],
which combine logic programs and description logic knowledge bases in@doogling by an interfacing
approach. The semantics faithfully generalizes the canonical well-eausemantics for ordinary normal
logic programs [van Gelder et al. 1991], and is, like the latter, definedreiatest unfounded sets for dI-
programs. The proposal is distinct from other proposals of well-fedrsggmantics for combinations of rules
and description logics, such as [Drabent and Maluszynski 2007]kamait et al. 2008], which provide a
heterogenous but tight integration and a homogenous integration, tigefje@nd which are not based on
unfounded sets. By its nature, it is amenable to realize non-monotonic mdesmtologies by combining
existing reasoning engines which may be modularly replaced.

As we have shown, the proposed semantics retains a number of propéttiesvell-founded semantics
for ordinary logic programs in the generalized context, including an atpnv characterization in terms
of a generalized Gelfond-Lifschitz transform, and that the well-fourssdantics is a partial model that
approximates the (strong) answer set semantics, while in the positive atifiestrcase, it is a total model
that coincides with the answer set semantics for dl-programs. Furthermergrovided a complexity
analysis, which shows that our proposal also retains the good compatgiroperties of the well-founded
semantics. In particular, it is polynomial under data complexity provided tlead¢hess to the description
logic part is polynomial (as e.g. with the profiles EL, QL, and RL in the upcon®vgL2 standartf);
depending on the structure of the program and the description logic olasd$ias even lower complexity
and, in case of acyclic programs aDd-Lite ontologies, one even achieves first-order rewritability.

There are several directions for further work. One direction is optimizatnal efficient implementation
of the well-founded semantics, but also of restricted fragments like thosmmgdered, in particular the
ones where ontology reasoning is first-order expressible. To thistigidly integrated non-monotonic
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logic programming and relational databases engines, like the'iLsystem [Terracina et al. 2008], may
be fruitfully exploited for evaluating programs with recursion. On the otterdh top-down evaluation
methods for efficient query answering, as well as developing magicrseitistaguing issues.

Another direction are language extensions. The language we corbkaierde readily extended to use
cg-atoms [Eiter et al. 2009], which allow to query the ontology also with canium queries and unions
thereof. In contrast, an extension to rules with disjunctive heads seesrstri@ightforward; many proposals
for well-founded semantics of disjunctive logic programs exist (see,[#/gng and Zhou 2005] and [Knorr
and Hitzler 2007] for discussion), but none is ultimately acknowledgedladhave limited significance
in practice. An extension to rules with explicit negation [Pereira and Alf&88&2] may be targeted, which
then also may use three-valued dl-atoms, in line with the underlying logic.

Finally, an interesting direction would be to establish a similar formalism over multipielapies,
possible even in heterogeneous formats (e.g., RDF and OWL).
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A Appendix: Proofs for Section 4

Proof of Lemma 4.5. Supposely, U, C HBp are both unfounded sets &B w.r.t. I. We now show
that (x) holds forU =U; UU,. Consider any: € Uy andr € ground(P) with H(r) =a. Then, one of
()-(iv) holds for U = Uy, and thus one of (i)-(iv) holds fd = Uy U Us. Similarly, for anya € Us and any
r € ground(P) with H(r) =a, one of (i)-(iv) holds forU =U; UUs. In summary, for any. € Uy U Uy
and anyr € ground(P) with H(r)=a, one of (i)-(iv) holds forU =U; UU,. That is, (x) holds for
U=U,UU,.0

Proof of Lemma 4.7. It is sufficient to show thal'xg andU g are monotonic. Let/; C Jy C Litp be
consistent. We first show thdl s is monotonic. If some € ground(P) exists such that conditions (a)—(d)
in the definition ofT'xp hold for I = J;, then some € ground(P) exists such that (a)—(d) hold fdr= J,.
Thatis,Tx5(J1) € Tkp(J2). We next prove thal/ x5 is monotonic. If(x) holds for/ = .J;, then(x) holds
for I =J5. Hence, every unfounded set &3 w.r.t. J; is also an unfounded set &B w.r.t. J,. Thus,
Ukg(J1) € Ugg(J2). O

B Appendix: Proofs for Section 5

Proof of Theorem 5.2. Let KB= (L, P). We have to show that there exists some total interpretation
M D WFS(KB) such thatV * is a model ofKB, that is, satisfies all instantiated rules/f

Let M = WFS(KB) U (HBp—(WFS(KB)U-.WFS(KB))). Thatis,M is obtained fromiWFS(KB)
by assigning true to all ground atoms whose value is unknowiV "5 (KB). We now show thafi/ " is a
model of KB.

Each rule inground(P) such thatd (r) € M is clearly satisfied in/*. Consider thus any ground rule
r € ground(P) such thatH (r) ¢ M. Then,—.H (r) € WFS(KB) and thusH (r) € Uxg( WFS(KB)), and
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one of (i)—(iv) in () holds for/ = WFS(KB) andU = Ugp(WFS(KB)) there. Note thal U -.U = 1.
Thus, if (i) or (ii) holds, clearly some literal if3(r) is false inM*, and hence is satisfied byM . If (iii)
holds, thenS™ £, b for every consisten§ C Litp such thatd C S. Hence, in particulad/ ™ (£, b, and
thusb is false inM ™. Sinceb € B (r), this means that is satisfied byM . Finally, if (iv) holds, then
WFS(KB)* =1 bfor someb € B~ (r). By monotonicity,M ™ =y, b, and thus is true inM*. Again,r
is satisfied byl ™. Sincer was arbitrary, it follows thaf/ T is a model ofKB. O

Proof of Proposition 5.4.Let I CJ C HBp. Since every dl-atom i# is monotonic, it hoId$PL7 - sPi.
Hence, every model ofZ, sP/) is also a model of L, sP{ ). Thus, the least model ¢, sP/) is a subset
of every model of(L, sP}), and thus in particular also of the least model(6f sP!). That is,yxp is
anti-monotonic0

Proof of Theorem 5.5 (sketch). The proof can be carried out by generalizing the proof in [Van Gelder
1989] that the alternating fixpoint partial model coincides with the well-feahgartial model. One new
aspect is to show thatx (1) is the set of all atoms € HB p that logically follow from KB and the negated
atoms in—.(HBp — I). The operatoSp(J) on all J C —.HBp in [Van Gelder 1989] then coincides with
vixB(I), wherel = HBp ——.J. Another new aspect is to show that our notion of unfounded set is ctenple
in the sense that no other atom outside the greatest unfounded setassubreed false. This corresponds to
showing that

W Cyrp(W), 3)

whereW = ifp(Wxp) andW’ =W — (W+ U (=.W)*). Roughly, (3) can be proved as follows. It can be
shown thatV*+ C vyxp(W*) € W+ UW?’. Towards a contradiction, suppose thiat W’ —~gp (W) # (.
Hence, for everyn € U and everyr € ground(P) with H(r)=a, it holds that either (b€ W U-.U

for some ordinary atonh€ B (r), or (ii) b€ W for some ordinary atonh€ B~ (r), or (iii) for some dI-
atomb e Bt (r), we have thatyxp(W™) F b, and thusS™ (£ b for every consistenf C Litp with
WU-.UCS,or(iv) W |1 bfor some dl-atonb € B~ (r). Hencel is an unfounded set df B relative

to W. But this contradict$V" = Ifp(Wgg). This shows that (3) holds]

Proof of Theorem 5.7.For anyl C HBp, it holds that/ is a strong answer set & B iff I is a fixpoint of
k- Sincelfp(v%5) C I C gfp(v%p) for every fixpoint ofyxg, it thus follows thatfp(v%5) C I C gfp(v25)
for every strong answer sétof KB. Thus, every sucli includes every well-founded and no unfounded
atoma € HB p relative toKB. O

Proof of Theorem 5.9.1f everya € HBp is either well-founded or unfounded relativekd@, thenifp(v%5)
= gfp(v%5). Hencelfp(v%g) = I = gfp(v%g), for every fixpointl C HBp of yxp. Thatis,lfp(v%g) =1 =
gfp(v%p) for every answer set of KB. That is, the set of all well-foundede HBp relative toKB is the
only answer set oKB. O

Proof of Theorem 5.10 (sketch)We use the characterization GfF'S(KB) given in Theorem 5.5. Assume
first KB is positive. Then, for every C HBp, it holds thats Pi = P and thusyxp (1) is the least model
of KB. Thus, the only fixpoint ofyxs (and thus also the least and the greatest fixpoinigf) is the
least model ofK B, which in turn is the unique answer set B3. Suppose nexKB is stratified. Since
Ufp(v%5) CIC gfp(v%p) holds for the unique answer sétof KB, it is sufficient to show that neither
(@) Ufp(v%5) C I nor (b) I C gfp(7%5) holds for the unique answer sétof KB. This can be proved by
contradiction along a stratificationof KB. O
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Proof of Theorem 5.12.Given KB = (L, P), the correspondingB% = (L, P%), and an interpretatiof
over Lit p, we will denotel” asI U {p,(c) | I =1, a(c) for each ground dl-atom appearingground(P)}.
Also, defineG (I) = yxp(I) andG¥(I) = ypa (I). The proof relies on the following intermediate results.

Lemma B.1 LetI be any interpretation, and let = G (I). Then,J = J.

The above follows from the fact thag (c) < a(c) appears ir:sPdli, for each ground dl-atom appearing
in ground(P); so if J =1, a(c), then we will havep,(c) € J.

Lemma B.2 For every interpretation’ over Litp, G(I)% = G4 (1%).

dl
The above holds since one can observeiﬁ’étandsPdli have the same rules, with the only difference

that each (positive) dl-atoma(c) in sPf is replaced wittp,(c) in sPdlf”, and a rule of the formp,(c) «—
a(c) is added; one can then easily observe thak)? andG9 (1) coincide.

Proposition B.3 Ifp(G*)" = Ifp((G™)?) and gfp(G*)™ = gfp((G™)?).

Let Iy = (. One shows first by induction oh > 0 that for thek-th powers ofG(I,) and G¥(1d"),
denoted byG* (1) and(G4)" (1d'), we have

GH(1o)" = (@™ g, 4)

The equality obviously holds fgt = 0. Given (4) holds foik, then fork + 1, we have

= (@ctm))”.

G* (1)
Now, let] = G*(Iy). Then, by Lemma B.2, we have
G = (1),
since by the induction hypothesig* (I,)" = (G4)* (1d), we get
G(GH(10))" = G (™) (1gh) = (™)),
which proves (4) for each > 0. Furthermore, we have that

I8 C (G4 (1), for eachk > 0. (5)

Observe indeed that!(I,) containsId!, as well agG%)* (1), and thaf G%) is monotonic. From (5) we
conclude that(G4)*)(1d) and ((G4)*)(I,) converge to the same limit, which ifp((G%)®). On the
other handG2* (I,)" converges tdfp(G2)%. Thus, we getfp(G2)% = ifp((G4)?).

In a similar way, one can show that the greatest fixpoin@%:éind(Gdl)2 are related: indeed, by letting
Iy = HBp, we haveG2¢(HBp)" = (G)* (HB%), where HBY > (G4)** (HBp), thus(G4)*" (HBY)
converges tgfp((G%)*). O
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C Appendix: Proofs for Section 6

Proof of Theorem 6.1. We first show that, givertkB = (L, P) andI C HBp, computingyxg(I) is
feasible in exponential time, which then implies that computifsg% ;) and gfp(7%5) (and thus also
WFS(KB)) is feasible in exponential time.

The reductk B! = (L, sP}) is constructible in exponential time, since giound (P) is computable in
exponential time and (i = a for each dl-atomu in ground(P) can be decided in exponential time, by
the complexity of deciding knowledge base satisfiabilitySiHZ 7 (D). Furthermore, computing the least
model of KB is feasible in exponential time by computiffig (T :) = Ui, T, () with n = |[HBp|,
which requires at most exponentially many applicatiorig,gf, each of which is computable in exponential
time (deciding/ =1, a for any dl-atoma in ground(P) is feasible in exponential time, by the complexity
of deciding knowledge base satisfiability#HZ F(D)).

~Therefore, we can computip(v%5) = Us, by computingUp, Uy, ... untilU; = ~v3,(0) =
7?%2(@) = U4 holds for somei. Sincei is bounded byl HBp| and the latter is exponential in the

size of® and KB, the positive part oWFS(KB), thatis,lfp(v%5), is computable in exponential time. The
negative part ofWFS(KB) is easily obtained fromyfp(7%5) = O, Which can be similarly computed in
exponential time. Therefore, computingF's (KB) is feasible in exponential time.

Hence, deciding whethée WFS(KB) holds is in EXP. The EXP-hardness of the problem is immedi-
ate from the EXP-hardness of deciding whether a given positive Dapatmgam logically implies a given
ground atom [Dantsin et al. 2001] as well as from the EXP-hardnedsadling whether a knowledge base
in SHZF (D) is satisfiableD

Proof of Theorem 6.2. For membership in ¥*XP an algorithm is not allowed to use exponential work
space (only polynomial one). Thus, differently from the situation in thefob Theorem 6.1, we cannot
simply compute the powers) () and~/,(HBp), becausground(P) is exponential. The idea is to
move this problem inside an oracle call.

It is easy to see that we can comput&'S(KB) and decidd € WFS(KB) in exponential time, if the
answers for all dl-atom evaluatiotis =, a that we encounter during the computation of the powérg((i))
andfyﬁ(B(HBp) would be known. However, decidingy =y, a is co-NEXP-complete for 8 HOZN (D)
knowledge basd., and thus these answers cannot be computed by a recursive callansigiXP oracle
call itself. To surmount this problem, we apply a census technique thatpsognough information to the
oracle for verifying a correct guess for all the answers.

If I, -1 a, then there is an exponential size “proof” witnessing this fact which eachiecked in time
polynomial in its size. Therefore, given a ground dl-aterand an integek > 0, deciding whether there
are at leask different inputsI;, e ,Ij such thatly £, ais in NEXP. As easily seen, the maximutrfor
which this holds is given by a numbey, which is exponential in the size ¢fB and®.

In order to decide whethér= WFS(KB) holds, we can thus proceed as follows:

1. Foreach ground dl-atomin ground(P), compute with binary search ¢, . . . , n,], using the NEXP
oracle, the exact number of inputssuch that,, = a, denotedf,.

2. Ask the oracle whether (a) there afg different inputsI]}, . t.,I}f“ for each dl-atomz such that
I, -1, a, and (b) such that for the computation of the powggs () resp.*(HBp) where for each
I,, =1, a the value compliant With';, e I}f“ is taken, it holds thatis contained in the limiU/, of
the sequence®* (0) if 1 is a positive literal resp. thatis not contained in the limiD.,, of the sequence
v?¥(HBp) if | = not b.
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3. If the oracle answers yes, return yes, otherwise no.

Note that for the answer “yes”, (b) is only relevant if the guess in (apisect. Hence, Step 3 correctly
decides whethdre WFS(KB) holds.

Step 1 is feasible in polynomial time modulo the NEXP oracle calls, since the nurhbeownd dl-
atomsa in ground(P) is polynomial and the binary search takeflog n,) many steps, which is polyno-
mial in the size ofKB and®. The oracle query in Step 2 is in NEXP, since for (a) the proper (unique)
inputsI;, e I}f“ together with their withesses can be guessed and verified in exponentiahtich€)) is
feasible in exponential time; In summary, this algorithm correctly decides whiethiVF'S(KB) holds in
polynomial time with a NEXP oracle. This proves the membership part.

The PYEXP.hardness is easily derived from Theorem 5.10 and the result thditpehether a stratified
KB in which classical negation may occur has some strong answer set\§ -complete [Eiter et al.
2004]. Replace in a stratified’ B classical negative literalsp(t) by positive literalsp(t), wherep is a
fresh predicate, and add rulgs— p(t),p(t), wheref is a fresh propositional atom. Then, for the resulting
dl-programKB’, we have-f € WFS(KB) iff KB has some strong answer sét.

Proof of Proposition 6.3. We show that, fokB = (L, P) whereL is in a DL such that evaluating =, a
for givenI C HBp and ground dl-atoma has a data complexity in clags computingyxg (1) is feasible
in polynomial time with aC-oracle in the data complexity. This then implies that computip¢y?5) and
9fp(v%5) (and thus alsdVFS(KB)) is feasible in polynomial time with @-oracle in the data complexity.

The reductk B’ = (L, sP}) is constructible in polynomial time with &-oracle, since (i)yround(P)
is computable in polynomial time and (i) =1, a for each dl-atonu in ground(P) is decidable using the
C-oracle. Furthermore, computing the least modekd@’ is feasible in polynomial time with &-oracle
by computinglfp(Txzr) = Ui, T}}BI(Q)) with n=|HBp|, which requires at most polynomially many
applications ofl’ 51, each of which is computable in polynomial time witidaracle.

Hence, we can computép(v%5) = U, by computing the set&y, Uy, ... until U;=~%5(0) =
7%‘9*2(@) = U;+1 holds for some. As: is polynomially bounded byHB p|, the positive part oW FS(KB),
that is, Ifp(7v%), is computable in polynomial time with @&oracle. The negative part dVFS(KB) is
easily obtained fromfp (%) = Owo, Which can be similarly computed in polynomial time witti-@racle.
Therefore, computindVFS(KB) is feasible in polynomial time with &-oracle in the data complexity, and
thus deciding whethére WFS(KB) is in FX in the data complexityd

Proof of Theorem 6.4. As for membership in B, observe first that instance checkingShZ.F (D) is
in co-NP under data complexity. This follows from the results in [Glimm et al8200hich showed that
the data complexity of answering conjunctive querie§HiZ Q is co-NP-complete, where the knowledge
bases are also allowed to contain negated role assertions. Thus, fbtesddtatypes, the same data com-
plexity holds forSHZQ(D). Hence, deciding whethdr =, a for interpretationd, knowledge baseg
in SHZF (D), and dl-atoms: is clearly in co-NP in the data complexity farwith queries of the form
C(b), =C(b), R(b,c), 7R(b,c), U(b,v), and=U (b,v). Furthermore, it is also in co-NP in the data com-
plexity for all other types of dl-atoms, since @iy =C C D iff L'U{(C M —D)(e), A(d)} E—-A(d); (i)
L'E-~(CCD)iff 'U{CED, A(d)} E—-A(d); (ii)) L' = =(b,c) iff L'U{#(b,¢), A(d)} =—-A(d); and
(iv) L' = #(b,c) iff L'U{=(b,c), A(d)} E—A(d), whered ande are fresh individuals, and is a fresh
atomic concept. TheM®-membership follows then by Proposition 6.3.

Hardness for PY of literal entailment from a stratified dl-progra&iB = (L, P) with L in ALE is

proved by a generic reduction from Turing machifés exploiting the co-NP-hardness proof for instance
checking inALE by Donini et al. [1994]. Informally, the main idea behind the proof is to udeatom to
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decide the result of thg-th oracle call made by a polynomial-time boundedwith access to a NP oracle,
where the results of the previous oracle calls are known and input to #tterdl- By a proper sequence of
dl-atom evaluations, the result 8f’s computation on input can then be obtained.

More concretely, let\/ be a polynomial-time bounded deterministic Turing machine with access to a
NP oracle, and let be an input forM/. Since every oracle call can simulaté’s computation ory before
that call, once the results of all the previous oracle calls are known, wassume that the input of every
oracle call is given by and the results of all the previous oracle calls. SiA¢is computation after all
oracle calls can be simulated within an additional oracle call, we can assuntieethesult of the last oracle
call is the result ofA/’s computation orw. Finally, since any input to an oracle call can be enlarged by
“dummy” bits, we can assume that the inputs to all oracle calls have the sameteagh(k + 1), where
k is the size ofv, andl = p(k) is the number of all oracle calls: We assume that the input tarthé-th
oracle call (withm € {0, ...,l—1}) has the form

vglog_11...v11lcglerl oo ep—11¢,,0...¢10,

wherev, vi_1,...,v; are the symbols of in reverse order, which are all marked as valid by a subsequent
“1", ¢o,c1,...,cm_1 are the results of the previous oracle calls, which are all marked as valid by a
subsequentt”, and¢,,, . .., ¢;_1 are “dummy” bits, which are all marked as invalid by a subsequ@nt “

By the co-NP-hardness proof for instance checking £€ in [Donini et al. 1994], for the NP oracl&/’
and any inpub € X*, there exists a knowledge bakeJ L, in ALE, a concepD in ALE, and an individual
f such thatM’ acceptd iff L'U L, = D(f), andL’, Ly, D, andf can be constructed in polynomial time
from b. More concretelyl.’, L,, andD are given as follows:

L' = {A(true), ~A(false)},

Ly = {Cl(f,c1), Cl(f,ca),..., CUT, )
Pl(cl,lH) P2(01,12+) Ny(e1, 1), No(er, 13),.
Pl(cn»lH-) P2(Cnal2+) Nl(cn,l” )s N2(Cnvl2—)}>

D 3CL((3P1.~A) M (3P ~A) 11 (3N1.A) 11 (3N A)) .

Note that the entailment probleft U Ly, (= D(f) in ALE encodes the satisfiability problem for a 2+2-CNF
formulaF =Cy A Ca A --- A Cp, whereCy = Aj, v Ay, vV —A]_ v —~A)  and theAl's are propositional
symbols includingtrue and false, which has been shown to be NP-hard by a reduction from 3-SAT in
[Donini et al. 1994].

Let the stratified dl-programk B = (L, P) now be defined as follows:

L = I,
;o
P o= U_P,
where P/ = PJ U PJ U P/ for everyj € {0,...,1}. Informally, every set of dl-rule$”/ generates the input

of the j+1-th oracle call, which includes the results of the fijsbracle calls. HereP'! prepares, for
simplicity, the input of a “dummy” (non-happening)-1-th oracle call which contains the result of théh
(that is, the last) oracle call. More concretely, the bitsting, - - - a1 is the input of thej+1-th oracle
call iff v’ 5, (a—ox), ..., b, _;(az—1) are in the canonical model &fB. The component®/, P;, and P/
of P7, with j €{0,...,1}, are defined as follows:
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1. PY writeswv into the input of the first oracle call, and eveﬂ? copiesv into the input of thej+1-th
oracle call, forj € {1, ...,l}:

Pq? = {b(‘l%(vi)<—‘|ie{1,...,k}}u{bgmﬂ(ly—]z‘e{l,...,k}},
Pl = (¥ (x) =V () |ie{1,...,2k}}.

2. PC? initializes the rest of the input of the first oracle call with “dummy” bits, andry;-\zEg with
je{l,...,1} writes the result of thg-th oracle call into the input of thg+1-th oracle call and
carries over all the other result and dummy bits from the input ofjttreoracle call (where we have
D=3CIL((3P,.—A) M (3P,.—~A) M (IN1.A) M (IN2.A))):

PO = {02(0)« |iefo,...,20-1},

Pl = {bl(z)—b""(x)]|ic{0,...,21-1}, i ¢ {2j—2,2j-1}}U
{b;_5(0) — DL[Clwecl ™, Priop] ™, Pywpy ', Nywn{ ™, Nawwnj ™' ; D](f);
bhy-2(1) = ot t;_,(0);
byj-1(1) =}

3. EveryP,f with j € {0, ..., 1} realizes the polynomial-time reduction, which transforms any ihpat
the Turing machiné!/’ into the knowledge bask,; in ALE, represented as facts over the predicate
symbolscl?, pi, pb, n}, andn?.

Observe then tha! acceptw iff the last oracle call returns “yes”. The latter is equivalent to the conulitio
thatbl, ,(1) € WES(KB). In summaryM acceptw iff b, ,(1) € WFS(KB). O

D Appendix: Proofs for Section 7

Proof of Theorem 7.1.Membership in P follows from Proposition 6.3 and the assumption that all dl-atoms
can be evaluated in polynomial time,BS = P. Hardness for P follows from thB-completeness of literal
inference from ordinary normal programs under the well-founded sgosgcf. [Dantsin et al. 2001])3

Proof of Theorem 7.2. The statement of the theorem follows from Theorem 7.1 and the resultdhat c
junctive query answering from a knowledge base in H8#iZ Q can be done in polynomial time in the
data complexity [Eiter et al. 2008], since all evaluations of dl-atoms canceeel to this problem. Ob-
serve first that, for. in Horn-SHZ Q, any negated concept (resp., role) membership axidno) (resp.,
—R(b, c)) in the input argument of a dl-atom can be ignored in the actual evaluatitreafl-query, and
handled by evaluating an additional dI-quetyb) (resp.,R(b, c)): if any of these (polynomially many)
additional dI-queries evaluates to true, then the original dl-query evaltatgue (since the description
logic knowledge base along with the input of the dl-atom is unsatisfiable)vageethe original dl-query

is simply evaluated ignoringC'(b) (resp.,—R(b, ¢)). This is due to the fact that knowledge bases in Horn-
SHZQ have canonical universal models [Eiter et al. 2008]. Observe the¢wltogeriesC'(b) and R(b, ¢)

are clearly conjunctive queries. Moreover, axiomé, c) and #(b, ¢) are disallowed in HoriHZ Q and
thus also cannot occur as dl-queries. Furthermore, all other dl-gumaiebe reduced to knowledge base
unsatisfiability: ()L’ |=—-C(b) iff L' U{C(b)} is unsatisfiable; (ii)L.' =—-R(b,c) iff L' U{R(b,c)} is un-
satisfiable; (i)' =C C D iff L'U{C(e),D’'(e), DN D'C L} is unsatisfiable; and (i}’ = ~(C C D)
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iff L' U{C C D} is unsatisfiable, whereis a fresh individual, and’ is a fresh atomic concept. This can
in turn be reduced to conjunctive querids:is unsatisfiable iff.’ U {A’(d), AT A'C 1} E A(d), where
d is a fresh individual, andl and A’ are fresh atomic concepts.

Proof of Theorem 7.3.Since KB is acyclic, there is a mapping: Pp — {0, 1,...,n} such that for every
dl-rule r € P, the predicate symbagl of H(r), and every predicate symbglof some ordinary € B(r) or
of an input argument of some dl-atdne B(r), it holds thatx(p) > k(q). We callx(p) therank of p. By
assumption, every dl-query iR? can be expressed in terms of a first-order formula over thel seft all
concept and role membership axiomsZin We now show by induction or(p) € {0, 1,...,n} that each
predicate symbagb € Pp can be expressed in terms of a first-order formula over th& sédtall concept and
role membership axioms ih and thedatabase facts P, constructed from predicate symbols of rank

Basis: Each predicate € Pp of rank0 can trivially be expressed in terms of a first-order formula dver

Induction: We have to consider the evaluation of a dl-atdm[\; Q](c) and the definition of a predi-
catep € Pp via the set of all rules irP with p in their head:

(i) Consider the dl-atonDL[\; Q](c) with A= AT, A\~, whereA™ =S Wpy,..., SiWp, A~ =S Upra,

ooy Sy I pm, andm >1>0. The dl-query@(c) can be expressed in terms of a first-order formu(a)
over A, that is,L = Q(c) iff 14 |=a(c). Since the underlying DL allows for first-order rewritable concept
and role memberships, evefy in A\~, [ <i <m, can be expressed in terms of a first-order formida(y)
over A, thatis,L = S;(c) iff 14 =1g,(c) for everyc. By the induction hypothesis, every input predicate
p;j in A can be expressed in terms of a first-order formujéx) over F, that is,p;(c) € WFS(KB) iff

Ir [=1;(c). We define the first-order formuli{x) for DL[X; Q](x) over F’ as follows:

m

i(x) =) v \/ Iy @8 () Av(), (6)

j=l+1

wheres*" is obtained from3 by replacing even;(s) such thatS; occurs in\™ by S;(s) v Vi (8) V-V
Vi, (s), whereS;, ..., S; are all occurrences d; in AT
For example, suppose={C(a)} and

P={p(c); q(b); r—p(x); r—DLIC @ p;C|(x); s not DL[C' W p,CJgq;C](x) }.

Then, both dl-atoms i have the same quey(z) (= C(x)) over L which can be expressed by the formula
a(z)=C(z) over A={C(a)}, and the predicateg and ¢ can be expressed by the formulas(z) =
p(x) andy,(x) = q(z), respectively, ovef’ = {C(a), p(c), q(b)}. The dl-atomDL[C' @ p; C](z) is thus
translated intdy; () = o' (z) = C(x) V p(z) over F (note thatm = [), while the dl-atomDL[C
p, CJgq; C](z) is translated intd2(z) = C(z) V p(z) V Iy ((C(y) V p(y)) A q(y)) overF.

Note that/ |= S;(c) iff S;(c) € L, forall 1 <i <. Hence,

Ip = Si(e) V iy (€) V- V by, (c)
iff Si(c)eL or p;,(c) € WES(KB), for somel < j <k;
iff Si(c)eLUU._, Ai(WFS(KB)) (recall A;(I) from Section 3.2)
iff T4 = Si(c), whered’ = AU, Ai(WFS(KB)).

It follows from this that
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Ir o () iff Ly = a(e) and I =3 (c) iff Tu = 1bs,(c), forall i < j <m.
This in turn implies that

IrEd(c) iff (i) LUA EQ(c), or
(i) LUA'=S;(d) andp;(d) € WES(KB) for somel < j < m andd.

Let A” = A'UUJL,,, Aj(WFS(KB)). If LUA" = Q(c), then clearly both (i) and (ii) are false; conversely,
if LUA"B=Q(c)andL U A’ b= S;(d) for everyp;(d) € WFS(KB) wherel < j <m, thenL U A" |~ Q(c)
holds since the underlying DL is CWA-satisfiable.

In summary, this shows thdi = d(c) iff LU A” = Q(c) iff WFS(KB) satisfiesDL[\; Q](c). That s,
d(x) is a first-order formula foDL[\; Q] (x) over F.

(if) Consider next the set of all rules iR with p in their head. W.l.o.g., the heagéx) of all these rules
coincide. Leta(x) denote the disjunction of the existentially quantified bodies of these rulese wine
default negations in the rule bodies are interpreted as classical neg&iotine induction hypothesis, every
body predicate inx(x) can be expressed in terms of a first-order formula dveand the same holds for
every dl-atom inx(x). Leta/(x) be obtained fromx(x) by replacing all but the predicates of rafky
these first-order formulas. Thet)(x) is a first-order formula oveF’ for p.

Continuing our example, the rules foiin P are translated into the first-order formula

Jrp(z) VvV Ixd(z) = Jrp(x) V Iz (C(z) Vp(z)) = Jx(C(x) Vp(x))
and the rule fos into
Jz —d2(z) = Fz —~(C(2) Vp(z) V Iy (Cy) vV p(y) Aa(y)))

over{C(a),p(c),q(b)}.

Proof of Theorem 7.4. We apply Theorem 7.3. Observe first thiatis defined in a description logic

of the DL-Lite family in which knowledge base satisfiability and conjunctive queries are fixstrorder
rewritable. Observe also thatis defined in a CWA-satisfiable description logic [Calvanese et al. 2007]
(and thus Theorem 7.3 also allows the operatdo occur inP). Hence, all dl-atoms with dl-queries of
the formC/(¢t) and R(t, s) are immediately first-order rewritable. Furthermore, all other dl-atoms ave als
first-order rewritable, since their dl-queries can be reduced to camnjerquieries as follows: (i =C C D

iff L'U{C(e),D'(e),D'C-D,A'(d),A’C-A} = A(d),and (i) L' E~(CC D) iff L'U{CC D, A'(d),
A'C-A} = A(d), whered ande are fresh individuals, and, A’, and D’ are fresh atomic concepts. By
Theorem 7.3, it thus follows that deciding whetther WF'S(KB) is first-order rewritabled
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