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Abstract. We introduce ctm, a process calculus which embodies a no-
tion of trust for global computing systems. In ctm each principal (lo-
cation) is equipped with a policy, which determines its legal behaviour,
and with a protocol, which allows interactions between principals and
the flow of information from principals to policies. We elect to formalise
policies using a Datalog-like logic, and to express protocols in the pro-
cess algebra style. This yields an expressive calculus very suitable for the
global computing scenarios, and provides a formalisation of notions such
as trust evolution. For ctm we define barbed equivalences and study their
possible applications.

1 Introduction

In the last few years Global Computing (GC) has emerged as an important part
of computer science. A GC system is composed of entities which are autonomous,
decentralised, mobile, dynamically configurable, and capable of operating under
partial information. Such systems, e.g. the Internet, become easily very complex,
and bring forward the need to guarantee security properties. Traditional security
mechanisms, however, have severe limitations in this setting, as they often are
either too weak to safeguard against actual risks, or too stringent, imposing
unacceptable burdens on the effectiveness and flexibility of the infrastructure.
Trust management systems, in which safety critical decision are made based on
trust policies and their deployment in the presence of partial knowledge, have
been proposed as an alternative attempting to deal with those limitations.

Building on the experience of our previous work on trust [8] we introduce a
process calculus for modelling trust management systems (ctm). Many models
for trust based system have appeared in the literature, and most of them feature
some sort of logic to describe trust policies. However, lacking a notion of protocol,
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such approaches typically fall short to describe the exact behaviour of systems,
which is a fundamental property when security concerns are present. Consider
for instance a server whose policy is to grant access only to a certain class of
users, but whose (flawed) protocol of communication always allows access to a
particular resource. Even though the policy may be correct, the whole system
is not. A second aspect of paramount importance here is to allow principals’
interactions to feedback to the security mechanisms and influence future policies.
For instance, access rights can change for a principal in response to its behaviour,
and how precisely this behaviour should be observed and the variation should
take place ought to be part of the model.

The aim of this work is to develop a coherent framework centred on these
two aspects, and establish its basic theory. In ctm, a principal is specified by a
pair, a policy α and a protocol P , which interact in precise ways, as described
below. The policy α informs the protocol P as to what actions are allowed at
any given time, and works on the basis of evidence and observations collected
from past interactions. Dually, P interacts with a network of other principals,
and in doing so it produces the observations gathered in α. The protocol P will
consult α when making a decision, e.g. whether or not to grant a specific service
to a specific principal. Schematically, we can represent the situation as in the
informal picture below.

(Policy ⇐⇒ Protocol) ‖ Network

We model the “policy” side of the drawing with a decidable logic. The choice
is a Datalog-like logic: a principal’s policy will be represented as a set of formu-
las depending on a set of past observations. On the “protocol” side, our model
is based on a process calculus in the style of the π-calculus [14]. More pre-
cisely, ctm is a calculus with locations linked by channel names. Each location
(uniquely) identifies a principal, and the diagram above would be represented as
a{ P }α | N , where a is a principal with protocol P and policy α, in parallel
with the rest of the network N . In ctm we associate the action of sending a
message to another principal as granting a particular resource (viz. the service
represented by the channel name). Outputs will then be guarded by a formula
φ from the logic, as for instance φ :: b · �〈m̃〉, which according to the truth
value of φ allows the protocol to send m̃ to b on channel (or method) �. As a
concrete example, a protocol like Access(b,R) :: b · l〈n〉 would stand for “if my
policy grants b ‘Access’ to R, then send n along l to b.” Symmetrically, inputs
represent requests of services, and form the observable basis mentioned above.
For instance, if executing an input action b · print(y) . P , we receive a message
‘junk’ for y from b, we observe and record that b has attempted to print a cor-
rupted file. As mentioned above, multiple channels at a single location allows
to distinguish among different services provided by a principal. We assume in
ctm that the identity of communicating principals cannot be corrupted (i.e. we
assume implicitly that authenticity etc. is guaranteed by lower level protocols).

In order to allow principals to offer services to generic (as opposed to named)
clients, ctm features a new form of input capability, which allows to abstract from
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the communicating principal. For instance, in order to offer a printing service
for all, we would write x · print(y) . P , where x is a variable, which at the time
of interaction will be bound to the name of the principal requesting the service.
We call this operation global input.

The calculus ctm seems a powerful tool for expressing several examples of
trust-based systems for GC. Casting these ingredients in the world of process
algebras provides many interesting theoretical notions, and in particular be-
havioural equivalences. The natural separation of principals in pairs of com-
ponents, viz. policies and protocols, induces new notions of equivalences. In
particular, besides studying equivalences of principals and networks, one can fo-
cus on protocols as well as policies. Technically, the main contribution of this
paper is to introduce a theory of observational equivalence for trust-based sys-
tems, which captures in a single, homogeneous framework with equivalence of
protocols, policies, and principals.

Related Work. To the best of our knowledge, the notion of trust has never been
fully treated in process calculi. In Dπ [3, 10] policies are statically specified, not
allowing dynamic updates; [9] considers a formalism for cryptographic protocols,
similar to ours: communications are guarded by logical formulas meant for prov-
ing correctness, whereas protocols are expressed with strand-spaces. Concerning
policies for access control, there are many works on logics, where a trust engine
is responsible for constructing [6, 11, 12] or checking [4] a proof that a desired
request is valid. In [13] and [5] authors provide a decidable logic for policies,
proposing variants of Datalog. In particular, Cassandra, provides a formalism
for expressing policies in a GC scenario, where, as in our case, each principal
has its own policy. They also allow references to other principals’ polices and
delegation, using fixed-point computations as in [8].

Plan of the Paper. Section 2 defines the calculus: logic for policies, syntax and
semantics of networks and protocols. In Section 3 we study barbed equivalences
on protocols, policies and principals, while Section 4 is about the expressiveness
of global input.

2 The Calculus

Let Val be a denumerable set of values ranged over by l,m and partitioned into
sets P and N, respectively the set of principals (ranged over by a, b, c) and the
set of names (ranged over by n). Moreover Var (ranged over by x, y, z) is a set
of variables such that Var ∩ Val = ∅. In the sequel we assume u, v in Var ∪ Val
and p in Var∪P. As usual a tilde over a letter indicates the extension to vectors.

A Small Logic for Policies. As explained in the introduction, each principal
acts on a body of knowledge built on the past interactions with other principals.
We represent such information using the notion of interaction datatype. Messages
in our calculus have form a · l̃ � m̃ representing a message m̃ from principal a on
channel l̃.
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Definition 1 (Interaction Datatype). An interaction datatype M over Val
is a triple (S,R, upd) where S is a generic set of so-called interaction values, R
is a set of decidable subset of S × Valk, and upd is a function which given s ∈ S
and a message a · l̃ � m̃ returns an element of S.

According to the above definition, the setS is a generic set: the idea is to build el-
ements of S as representation of abstract information about past interactions with
other principals.The setRdefines thebasic predicates binding together interaction
values and elements of Val, and upd defines the effect in S by receiving a message.

Example 1 (Lists and Multisets). Let S be the set of lists with elements a · l̃�m̃,
i.e. S = {[a1 · l̃1 � m̃1, . . . , ak · l̃k � m̃k] | k ≥ 0} and upd the operation of list
concatenation. The set R could contain the relation lastm̃ which holds true of lists
whose last element carries the message m̃, and the relation from≥5(a), satisfied
whenever the number of messages in the list from a is larger than 5. Another
interesting example is when S is the set of multisets over elements a · l̃ � m̃ with
multiset union as upd. Predicates can express the number of message occurrences,
e.g. predicate x ·−�y < k is satisfied by all elements of S such that the number
of occurrences of elements x · z � y is less than k.

Principals use policies to make decisions based on the information contained
in an element s ∈ S of a given interaction datatype M.

Definition 2 (Policy). Let M = (S,R, upd) be an interaction datatype, let
P and PM be disjoint signatures of predicates symbols, with PM in one-to-one
correspondence with R. A policy π is defined as a set of rules of type L(ũ) ←
L1(ũ1), . . . Lk(ũk) such that L ∈ P and Li ∈ P ∪ PM.

π is interpreted as a Datalog program [2] relative to an element s ∈ S. More
precisely, each rule in π is interpreted as Datalog implication, where predicate
symbols in PR take as an implicit first argument the interaction value s. Given
a pair (π, s) and a predicate A(l̃) we write (π, s) � A(l̃) meaning that A(l̃) is
entailed by the Datalog program π relative to s. In the sequel, letters α, β will
denote pairs (π, s).

Syntax for the Calculus. Let M be a interaction datatype, P a signature.
The syntax of ctm is then featured by two main syntactic categories: networks
(N) and protocols (P,Q).

N,M ::= ε (empty) P,Q ::= 0 (null)
| N | N (net-par) | Z (sub)
| a{ P }α (principal) | P | P (par)
| (νn) N (new-net) | (νn) P (new)

| !P (bang)
Z ::= p · ũ(ṽ) . P (input)

| φ :: p · ũ〈ṽ〉 . P (output) φ ::= L(l̃) L ∈ P (null)
| Z + Z (sum) φ ∧ φ (and)
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A network N is composed of principals running in parallel. Each principal is
equipped with a protocol P and a policy α. From now on we assume to work
only with networks N where principals names are unique, i.e. for each a ∈ P
there is at most one subterm of N of the kind a{ P }α.

A protocol P is given in the style of π-calculus [14]. The protocol 0 represents
the inactive process. Terms (input) and (output) represent the main actions, and
both can be part of the standard sum operator (guarded choice). As remarked
in the introduction, the input capability can either refer to a specific principal,
or be global. The output action sends a message on a channel and is guarded
by a predicate φ in the signature P. For generality, we allow composite channel
names as in [7]. The (bang) and (par) operators are standard. The rest of the
paper will omit trailing inactive processes.

The set of free names fn (resp. bound names bn) and free variables fv (resp.
bound variables bv) are defined as usual on networks and protocols. Closed and
open terms are defined as usual (with respect to variables). The symbol σ denotes
a substitution from variables to names. Applying a substitution σ to a network
N (or a protocol P ) will be denoted by Nσ (Pσ). The global input variable is a
strong binder, e.g. in x·l(y).x·l(y) the first x binds the second, instead the first y
does not bind the second y. We omit trivial guards from outputs, i.e. tt :: b · l̃〈m̃〉
will be written as b · l̃〈m̃〉 where tt denotes the “always” true predicate.

Reduction Semantics. In this section we give the formal semantics of the
calculus in terms of reduction semantics. The structural congruence relation ≡
is the least congruence relation on N such that | and + are commutative monoids
on protocols, | is a commutative monoid on networks, and such that it satisfies
alpha-conversion and the rules

(Struct1) a{ !P | Q }α ≡ a{ P | !P | Q }α

(Struct2) (νn) (νn′) W ≡ (νn′) (νn) W for W ∈ {P,N}
(Struct3) a{ (νn) P | Q }α ≡ a{ (νn) (P | Q) }α if n �∈ fn(Q)
(Struct4) (νn) N | M ≡ (νn) (N | M) if n �∈ fn(M)
(Struct5) a{ (νn) P }α ≡ (νn) a{ P }α

We define → as the least binary relation on N satisfying the rules given
in Table 1. Rule (RCom) defines communication between two principals. For
α = 〈π, s〉, the operator α ⊕ [b · l̃ � m̃] returns a new α′ = 〈π, s′〉 such that s′ =
upd(s, b · l̃ � m̃). The operator � is defined on tuples, as the most general unifier
returning a substitution σ, whose application in the semantics is conditioned by
successful unification. The rule (RInt) describes internal communication and is
similar to (RCom). Rules (RStruct) and (RPar) are standard. As usual we
define →∗ as the reflexive and transitive closure of →.

Example 2. Suppose a printer a has two functions: black-and-white and colour
printing. The latter service is more expensive and therefore “harder” to get
access to. The system is trust-based, meaning that according to its behaviour a
principal may not be allowed to use a printer. In ctm this corresponds to writing
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Table 1. Reduction Rules

(RCom)
β � φ α′ = α ⊕ [b · l̃ � m̃] b : m̃ � p : x̃ = σ

a{p · l̃(x̃) .P +P ′ |P ′′}α|b{φ ::a· l̃〈m̃〉 .Q+Q′ |Q′′}β→a{Pσ |P ′′}α′|b{Q |Q′′}β

(RInt)
α � φ α′ = α ⊕ [a · l̃ � m̃] a : m̃ � p : x̃ = σ

a{p · l̃(x̃) . P +P ′ | φ :: a · l̃〈m̃〉 . Q+Q′ | Q′′ }α → a{ Pσ | Q | Q′′ }α′

(RRes)
N → N ′

(νn) N → (νn) N ′

(RStruct)
N ≡ N ′ N ′ → M ′ M ′ ≡ M

N → M
(RPar)

N → M

N | N ′ → M | N ′

principal a{ P }α where the policy and the protocol are defined as follows. Let
message j represent the reception of a ‘junk document’ and M be the interaction
datatype of lists, where the predicate a · − � j < k checks that messages in the
list of type a · l̃ � j occur less than k times. We then define the policy π as
{ Access(x,Colour) ← x · − � j < 3; Access(x,BW ) ← x · − � j < 6} where
Access(x, y) is a predicate meaning that x can access y. Moreover we assume
that upd() keeps only lists of length at most n deleting the oldest messages and
judging if a message is junk. Finally protocol P is defined as

P = !x · printC(y) .Access(x,Colour) :: printer · printC〈y〉 |
!x · printBW(y) .Access(x,BW ) :: printer · printBW〈y〉

In this example the action of granting access to the printer is modelled by
sending a message to printer. A user could then be modelled as principal b
running the protocol

Q = a · printC〈spam〉 . a · printBW〈spam〉 . a · printC〈spam〉 | a · printC〈doc〉
Suppose that upd() will store spam as j and consider the network N =

a{ P }(π,∅) | b{ Q }α where ∅ is the empty list. If a · printC〈doc〉 is executed
first, b will get the authorisation to use the printer. But if the left component is
all executed then b will no longer be able to colour-print as he has printed too
much junk. Note that as we chose the function upd() to keep lists of length at
most n, any principal can behave well for n times and regain trust.

3 Barbed Equivalences

We now move to study the semantic theory of ctm. We first discuss the notion
of observation formalised in terms of the actions offered to the environment.
Formally we write N ↓ a · b whenever one of the following conditions is satisfied:
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– N ↓ a · b if N ≡ (νñ) a{ φ :: b · l̃〈m̃〉 . P + P ′ | Q }α | N ′ and α � φ, b �∈
P(N ′);

– N ↓ a · b if N ≡ (νñ) a{ p · l̃(x̃) . P + P ′ | Q }α | N ′ and b �∈ P(N ′).

where P(N ′) is the set of principals contained in N ′, l̃ ∩ ñ = ∅ and if p �∈ Var
then p = a. This definition excludes observing internal and restricted actions.
Moreover we write N ⇓ a · b whenever there exists M such that N →∗ M and
M ↓ a · b.

In the following we assume to work with closed protocols and networks.

Definition 3. A network barbed bisimulation is a symmetric relation R on
networks such that whenever NRM

– N ↓ a · b implies M ↓ a · b;
– N → N ′ implies M → M ′ and N ′RM ′.

Two networks are barbed bisimilar (
•�) if related by a network barbed bisim-

ulation. Moreover we define
•≈ as above where ↓ and → after the two “implies”

are substituted resp. by ⇓ and →∗.

3.1 Barbed Equivalences for Principals

We now define three different barbed equivalences for principals: one on proto-
cols, one on policies and one on principals.

Protocol Congruence. Protocol barbed congruence compares only protocols.
Contexts are, as usual, terms with a hole. We write Ca[P ] for the insertion of
protocol P in the hole of context C, when the hole is placed in principal a.

Definition 4 (Protocol Barbed Congruence). Given a principal a, we say
that P and Q are a-barbed congruent, written P �a Q, if Ca[P ]

•� Ca[Q] for all
contexts Ca[−].

Intuitively two protocols are congruent whenever they are able to observe
the same events, input the same data and granting access in the same way, i.e.
guards are such that there is no policy able to distinguish them. For instance,
φ :: b · l〈m〉 and φ′ :: b · l〈m〉 are equated only if φ and φ′ hold true for exactly
the same set of policies α.

Policy Equivalence. Varying the kind of contexts we use, we can use bisim-
ulation to assess policies with respect to a fixed protocol P . The idea is that,
given P , two policies are going to be equivalent whenever they “control” P ’s
behaviour in the same way.

Definition 5 (Policy Equivalence). Given a principal a, we say that π and
π′ are a-barbed equivalent wrt P , written π �P

a π′, if for all contexts CP
a [·] =

a{ P }(−,s) | N , we have CP
a [π]

•� CP
a [π′].

This notion allows, e.g., to remove formulas which P would never use.
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Definition 6. We write

– P ↓ φ if P ≡ (νñ) (φ :: b · l̃〈m̃〉 . P + P ′ | P ′′) for ñ ∩ l̃ = ∅;
– P ⇓ φ if there exists N and α such that a{ P }α | N →∗ a{ P ′ }α′ | N ′ and

P ′ ↓ φ;
– P ⇓ H if H = {φ | P ⇓ φ}.

We can now state the following.

Theorem 1. Suppose that P ⇓ H and for all φ ∈ H and s ∈ S we have that
(π, s) � φ if and only if (π′, s) � φ. Then π �P

a π′.

The opposite is of course not true. Consider the protocol P = φ :: b · l〈m〉 |
φ′ :: b · l〈m〉 and policies π and π′ such that (π, s) � φ, (π, s) �� φ′, (π′, s) � φ′

and (π′, s) �� φ for all s. In this case we have that π �P
a π′ but the policies entail

different formulas wrt s.

Corollary 1. Suppose that for all φ and s we have (π, s) � φ if and only if
(π′, s) � φ. Then, π �P

a π′, for all P .

In the following we write π � H whenever H = {φ | (π, s) � φ for some s}.
Theorem 2. Suppose that π � H and π′ � H ′. If π �P

a π′ for all P , then H
and H ′ are equivalent, i.e. equal up to logical equivalence of the formulas they
contain.

Principal Equivalence. We now introduce the last of our equivalences which
is the most general one.

Definition 7 (Principal Barbed Equivalence). Given a principal a, we say
that (π, P ) and (π′, Q) are a-barbed equivalent, written (π, P ) �s

a (π′, Q), if
Cs

a[π, P ]
•� Cs

a[π′, Q] for any context Cs
a[−1,−2] = a{ −2 }(−1,s) | N .

It is possible to define the previous two equivalences in terms of barbed
principal equivalence. We are now able to state the following.

Proposition 1. P �a Q if and only if for all s, π and protocols R we have that
(π, P | R) �s

a (π,Q | R).

Proposition 2. π �P
a π′ if and only if for all s we have that (π, P ) �s

a (π′, P ).

Example 3 (Implication). We consider a variation of the printer access control
example and apply principal barbed equivalence. Suppose that a server a man-
ages two printers both offering colour and b/w printing as before. The only
difference between them is that Printer 1 does not distinguish colour from b/w
printing, while Printer 2 does, e.g., by granting access only for b/w printing. For
z ∈ {1, 2} we define the following protocol for a print server.

P (z) =(νn) (a · n() | !a · n〈〉 . x · z(y) .Access(z, x) :: x · z〈OK〉 .

(x · z · col() . Col(z, x) :: x · z · col〈OK〉 . a · n() +
x · z · bw() . BW (z.x) :: x · z · bw〈OK〉 . a · n()))
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Note that the protocol first checks if it can give access to any type of printing,
then verifies which one. The bang is used for writing a recursive protocol: after
finishing dealing with a principal, the protocol will be ready once again to provide
the service for printer z. The final server protocol is P (1) | P (2); its policy is as
below, where j and doc represents respectively a junk and a proper document.

π = {Access(1, x) ← x · 1 � j ≤ x · 1 � doc; Col(1, x) ← Access(1, x);
Col(2, x)←x · 2 �j=0; BW (1, x)←Access(1, x); BW (2, x)←Access(2, x);
Access(2, x) ← x · 2 � j ≤ 5}

Then the principal would be represented by the pair (π, P (1) | P (2)). Using
the equivalence �s

a we can rewrite the principal as (π,Q | P (2)) where

Q = (νn) (a · n() | !a · n〈〉 . x · 1(y) .Access(1, x) :: x · 1〈OK〉 .

(x ·1 · col() . x · 1 · col〈OK〉 . a · n() + x · 1 · bw() . x · 1 · bw〈OK〉 . a · n()))

In fact (π, P (1) | P (2)) �s
a (π,Q | P (2)) for any s and this can be explained

by the following argument. In protocol P (1) | P (2) the output x · 1 · Col〈OK〉
is guarded by Col(1, x) instead in Q | P (2) it is unguarded. We need to show
that Col(1, x) is always true at that point of the computation. In fact in π the
predicate Access(1, x) implies Col(1, x) and the action x·1·bw does not change the
value of Access(1, x) (Q and P (z) are sequential) as well as the inputs executed
by the branch P (2).

We can also use our previous results: by Theorem 1 we have that π �Q|P (2)
a π′

where

π′ = { Access(1, x) ← x · 1 � j ≤ x · 1 � doc; Col(2, x) ← x · 2 � j = 0;
Access(2, x) ← x · 2 � j ≤ 5}.

Now by Proposition 2 we then have that (π, P (1) | P (2)) �s
a (π′, Q | P (2))

for all s.

3.2 A Barbed Congruence for Networks

Above we have analysed equivalences for manipulating single principals. But
clearly we also need techniques to reason about networks forming webs of trust.
For this purpose, we now introduce a barbed congruence for networks.

Definition 8 (Network Barbed Congruence). We say that two networks N

and M are barbed congruent, written N ≈ M , if for any context C[−] C[N ]
•≈

C[M ].

The above definition defines a congruence which is well known as weak barbed
congruence. We now show an interesting application of such a congruence in an
example where recommendations are taken into account.

Example 4 (Recommendations and Trust Security). Trusting someone may be a
consequence of observed good behaviour, but it may also be a consequence of
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good recommendations from a trusted third party. In this example we show how
to describe in ctm a system where principals’ trust is based both on observations
and recommendations. We consider a European network of banks where each
bank issues mortgages for customers according to a policy. The policy grants
a mortgage whenever the customer has always paid back previous mortgages
and, additionally, other banks’ opinions about the customer are positive. In
ctm, granting the mortgage is equivalent to proving a predicate G(x) from the
following policy

π1(Y )= {G(x) ← Y · − � (x, Bad)=0, M(x); Good(x) ← M(x), Bad(x) ← NoM(x)}.

The interaction datatype is multiset. The predicates Good and Bad (which will
be used for recommendations) depend on the predicate M and NoM only (local
observations), instead the predicate G depends also on the recommendations
received from Y . The predicate M(x) is assumed to check whether every mortgage
granted to x is matched by a full repayment: in order to get a mortgage, there
must be no outstanding mortgages. This is expressed by identifying messages
with a fresh name w. We can then define the following template for banks.

P1(X,Y ) = !x · mg(w) . (νk) (Y · rec〈k, x〉 . Y · k(x, z) . G(x) :: X · gr〈x,w〉)
| !X · gr(x,w) . x · w〈〉 . x · w()
| !Y · rec(k, x) .(Good(x) :: Y · k〈x, Good〉 + Bad(x) :: Y · k〈x, Bad〉)

Bank X has three components: one for granting mortgages, one for account-
ing, and one for giving recommendations to another bank Y . When receiving a
request from a on channel mg a fresh name w reserved for the particular trans-
action is received. Then X will send a request of recommendation to bank Y .
At this point, if the predicate G is provable from the policy, the protocol will
transfer the request to the accounting component (on channel gr), which will
send an authorisation message to a, and will finally be waiting for a repayment.
In case G is not provable, the request will be pending. As pointed out before, the
policy will take care of denying further authorisations until repayment. The third
component, which gives recommendations to bank Y , just checks whether the
predicate Good or Bad are provable, and sends a message accordingly. Suppose
now that BF and BI are respectively French and Italian banks. We can define
a network of banks as follows.

N1 = BF { P1(BF , BI) }(π1(BI),∅) | BI{ P1(BI , BF ) }(π1(BF ),∅)

Suppose now that a customer a has just moved from Italy to France, and she
is asking the French bank BF for a mortgage, e.g. with the protocol (νw) BF ·
mg〈w〉 . BF ·w() . BF ·w〈〉. Let us now define a different network of banks using a
third party (O) which is going to deal with all the requests. The following policy
is used by principal O.

π2(X,Y ) = {G(X,x) ← M(Y, x), M(X,x)}
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All the operations previously performed by the banks will now be performed
by this policy, and we no longer need recommendations. The following is part of
the protocol for principal O.

F (W )= W (x,w) . G(W,x) ::O · W · gr〈x,w〉 | !O · W · gr(x,w) . W · w〈〉 . W · w()

The banks will only forward messages from the principals to O and vice-versa.

P2 = !x · mg(w) . O〈x,w〉 . O · w() . x · w〈〉 . x · w() . O · w〈〉
The entire new network will be

N2 =O{ !(F (BF ) + F (BI))}(π2(BF ,BI)∪π2(BI ,BF ),∅) |BF { P2 }(∅,∅) |BI{P2 }(∅,∅)
We then have that N1 ≈ N2 accordingly to the definition of ≈.
In this example, O works as a “headquarter” which collects information from

the banks. This is a further step from our previous work [8] where we computed
principal trust policies as the least fixed point of a global function. Such a thing,
plainly unfeasible in a distributed scenario, can be implemented in ctm. For in-
stance, the global trust function can be expressed as the policy of a principal, e.g.
O, and the fixed point as a computation. Then, using the network equivalence, one
may be able to simplify the network and avoid the use of “headquarters,” like in
this example. This is generic technique for stating (and proving) the correctness of
a “web of trust”, whith a specification in the form of a centralised “headquarter”.

4 On the Expressive Power of Global Input

Our calculus uses a new input construct: global input. In this section we prove
that such a construct adds expressiveness to the language. Let ctm−φ be the
fragment of ctm where all inputs are guarded by tt and let ctm−x;φ be the
fragment of ctm−φ without global input. Moreover let S be a list of observations
a1 · b1; . . . ak · bk; . . . and N ⇓ S if and only if N →∗ N1 →∗ . . . Nk →∗ and
N1 ↓ a1 · b1,. . . , Nk ↓ ak · bk,. . . In the following, with abuse of notation, we will
use [[−]] for both networks and protocols.

Definition 9. An encoding [[−]] : ctm−φ −→ ctm−x;φ is sensible whenever for
all protocols P,Q and networks N,M

– [[P | Q]] = [[P ]] | [[Q]]
– [[N | M ]] = [[N ]] | [[M ]]
– [[a{ P }α]] = a{ [[P ]] }α
– for any N , a{ P }α | N ⇓ S if and only if [[a{ P }α | N ]] ⇓ S

The first three rules represent the notion of uniform encoding, while the last
one corresponds to the notion of reasonable encoding according to [15].

Theorem 3. There is no sensible encoding [[−]] from ctm
−φ
P into ctm

−x;φ
P .

Proof. [Sketch] Suppose there exists such an encoding and consider a{ x·l(y) }α.
Principal a is such that a{ x · l(y) }α ↓ a · b for any b. Now we have that
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a{ [[x · l(y)]] }α �⇓ a ·b for all b. In fact we can prove by induction on the protocols
of ctm−x;φ

P that such a protocol does not exists. ��

5 Conclusion

We have introduced ctm, a calculus for trust management. The calculus enjoys
many new features which fit in global computing scenarios making use of the
notion of trust.

Principals in ctm have two components: the policy and the protocol. The
policy consists of an immutable part, α, and a variable s. The former expresses
the logic of the policy, i.e. the rules following which decisions are taken, on
the basis of past experiences. The latter records the observations which make
up such experiences, as a function of the messages exchanged in interactions
between principals.

It may be objected that this yields a generic concurrent calculus of stateful
entities, and not a calculus specifically designed to represent trust-based systems.
This is actually not the case. The key to the matter is that, while s is definitely a
kind of store, principals have absolutely no control as to what it stores, or when it
stores it: s is updated uniquely and exactly to reflect the outcome of interactions.
These include feedback on untrusted clients and advice from trusted principals.
In particular, a principal cannot store arbitrary values to s, or retrieve them from
it. In other words, the calculus represents faithfully a distributed set of principals
interacting with each other according to trust policies and risk assessment based on
computational histories. Similarly it is not possible to compare ctm to an extension
to locations of the applied π-calculus [1] as the latter does not model the notion of
collecting observations even though function guards can represent policies.

We remark also that our use of guards works quite effectively with the choice
of synchronous communications, to abstract the sequence of actions service re-
quest, risk assessment, response to client, and record observation, in a single,
atomic step where trust-based decisions are localised.

The equivalences for ctm are interesting but still lack efficient proof methods.
In order to accomplish this we aim at defining a labelled transition system for
characterising all the equivalences studied. It would also be interesting to treat
static analysis for the calculus, e.g. a type system, and study its relationship
with what shown in this paper.
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