Skip to main content

On the Complexity of Hilbert’s 17th Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3328))

Abstract

Hilbert posed the following problem as the 17th in the list of 23 problems in his famous 1900 lecture:

Given a multivariate polynomial that takes only non-negative values over the reals, can it be represented as a sum of squares of rational functions?

In 1927, E. Artin gave an affirmative answer to this question. His result guaranteed the existence of such a finite representation and raised the following important question:

What is the minimum number of rational functions needed to represent any non-negative n -variate, degree d polynomial?

In 1967, Pfister proved that any n-variate non-negative polynomial over the reals can be written as sum of squares of at most 2n rational functions. In spite of a considerable effort by mathematicians for over 75 years, it is not known whether n+2 rational functions are sufficient!

In lieu of the lack of progress towards the resolution of this question, we initiate the study of Hilbert’s 17th problem from the point of view of Computational Complexity. In this setting, the following question is a natural relaxation:

What is the descriptive complexity of the sum of squares representation (as rational functions) of a non-negative, n -variate, degree d polynomial?

We consider arithmetic circuits as a natural representation of rational functions. We are able to show, assuming a standard conjecture in complexity theory, that it is impossible that every non-negative, n-variate, degree four polynomial can be represented as a sum of squares of a small (polynomial in n) number of rational functions, each of which has a small size arithmetic circuit (over the rationals) computing it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM 45(1), 70–122 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S., Safra, S.: Probabilistic Checking of Proofs. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pp. 2–13 (1992)

    Google Scholar 

  3. Artin, E.: Über die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Sem. Univ. Hamburg 5, 100–115 (1927)

    Article  Google Scholar 

  4. Blekherman, G.: There are significantly more non-negative polynomials than sums of squares. (preprint)

    Google Scholar 

  5. Bochnak, H., Coste, M., Roy, M.-F.: Real algebraic geometry. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  6. Boppana, R., Hastad, J., Zachos, S.: Does Co-NP Have Short Interactive Proofs? Information Processing Letters 25, 127–132 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Browder, F. (ed.): Mathematical developments arising from Hilbert’s Problems. In: Proc. Symp. Pure Math, vol. 28. Amer. Math. Soc, providence (1976)

    Google Scholar 

  8. Choi, M.D., Dai, Z.D., Lam, T.Y., Reznick, B.: The pythagoras number of some affine algebras and local algebras. J. Reine Angew. Math. 336, 45–82 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third ACM Symposium on the Theory of Computing, pp. 151–158 (1971)

    Google Scholar 

  10. Dubois, D.W.: Note on of Hilbert’s 17th problem. In: Bull, vol. 73, pp. 540–541. Amer. Math. Soc, providence (1967)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  12. Hilbert, D.: Über die Darstellung definiter Formen als Summen von Formenquadraten. Math. Ann. 32, 342–350 (1888)

    Article  MathSciNet  Google Scholar 

  13. Hilbert, D.: Über ternäre definite Formen. Acta Math 17, 169–198 (1893)

    Article  MathSciNet  Google Scholar 

  14. Hilbert, D.: Grundlagen der Geometrie. Leipzig, ch. 7 (1899)

    Google Scholar 

  15. Hilbert, D.: Darstellung definiter Formen durch Quadrate. Akad. Wiss. Göttingen, 284–285 (1900)

    Google Scholar 

  16. Ibarra, O.H., Moran, S.: Probabilistic Algorithms for Deciding Equivalence of Straight-Line Programs. JACM 30(1), 217–228 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kaltofen, E.: Greatest common divisors of polynomials given by straight-line programs. JACM 35(1), 231–264 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.M. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, NewYork (1972)

    Google Scholar 

  19. Levin, L.A.: Universal’nye perebornye zadachi (Universal search problems: in Russian). Problemy Peredachi Informatsii 9(3), 265–266 (1973)

    Google Scholar 

  20. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  21. Pfister, A.: Zur Darstellung definiter Funktionen als Summe von Quadraten. Invent. Math. 4, 229–237 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  22. Powers, V., Reznick, B.: A new bound for Po‘lya’s Theorem with applications to polynomials positive on polyhedra. J. Pure Appl. Alg. 164, 221–229 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Prestel, A., Delzell, C.N.: Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra. Monographs in Mathematics. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  24. Reznick, B.: Some concrete aspects of Hilbert’s 17th Problem. Publ. Math. Univ. Paris VII 56 (January 1996)

    Google Scholar 

  25. Reznick, B.: On the absence of uniform denominators in Hilbert’s Seventeenth Problem.(preprint)

    Google Scholar 

  26. Roy, M.-F.: The role of Hilbert’s problems in real algebraic geometry. In: Proceedings of the ninth EWM Meeting, Loccum, Germany (1999)

    Google Scholar 

  27. Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1974)

    Article  MathSciNet  Google Scholar 

  28. Strassen, V.: Vermiedung von Divisionen. J. Reine Angew. Math 264, 184–202 (1973)

    MATH  MathSciNet  Google Scholar 

  29. Thiele, R.: Hilbert’s Twenty-Fourth Problem. American Math. Monthly 110(1), 1–23 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Devanur, N.R., Lipton, R.J., Vishnoi, N.K. (2004). On the Complexity of Hilbert’s 17th Problem. In: Lodaya, K., Mahajan, M. (eds) FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2004. Lecture Notes in Computer Science, vol 3328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30538-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30538-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24058-7

  • Online ISBN: 978-3-540-30538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics