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Abstract. Secret handshakes were recently introduced [BDS+03] to al-
low members of the same group to authenticate each other secretly, in the
sense that someone who is not a group member cannot tell, by engaging
some party in the handshake protocol, whether that party is a member
of this group. On the other hand, any two parties who are members of
the same group will recognize each other as members. Thus, a secret
handshake protocol can be used in any scenario where group members
need to identify each other without revealing their group affiliations to
outsiders.

The work of [BDS+03] constructed secret handshakes secure under
the Bilinear Diffie-Hellman (BDH) assumption in the Random Oracle
Model (ROM). We show how to build secret handshake protocols se-
cure under a more standard cryptographic assumption of Computational
Diffie Hellman (CDH), using a novel tool of CA-oblivious public key en-
cryption, which is an encryption scheme s.t. neither the public key nor
the ciphertext reveal any information about the Certification Authority
(CA) which certified the public key. We construct such CA-oblivious en-
cryption, and hence a handshake scheme, based on CDH (in ROM). The
new scheme takes 3 communication rounds like the [BDS+03] scheme,
but it is about twice cheaper computationally.
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1 Introduction

A secret handshake scheme, introduced by Balfanz et al. [BDS+03], allows two
members of the same group to identify each other secretly, in the sense that
each party reveals his/her affiliation to the other only if the other party is also
a group member. For example, a CIA agent Alice might want to authenticate
herself to Bob, but only if Bob is also a CIA agent. Moreover, if Bob is not a
CIA agent, the protocol should not help Bob in determining whether Alice is a
CIA agent or not. This secrecy property can be extended to ensure that group
members’ affiliations are revealed only to members who hold specific roles in the
group. For example, Alice might want to authenticate herself as a CIA agent
with security level one if and only if Bob is a CIA agent with security clearance
two, and vice versa.
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In other words, if A is a member of group Ga with role ra and B is a member
of Gb with role rb, a secret handshake scheme guarantees the following [BDS+03]:
– A and B authenticate each other if and only if Ga = Gb.1
– If Ga �= Gb then both parties learn only the sole fact that Ga �= Gb.
– A can choose not to reveal anything about herself unless B is a member with

particular role rb (and vice versa).2
– An eavesdropper or a man in the middle learn nothing from the protocol.

As observed in [BDS+03], secret handshakes seem to require new crypto-
graphic protocols since they can not be easily obtained from existing tools in
the “cryptographic toolbox”. For example, group signatures [CVH91, ACJT00]
might appear to be an attractive building block for secret handshakes. However,
they offer anonymity and unlinkability of group members’ signatures, not secrecy
of membership itself. In the interactive variant of group signatures, called iden-
tity escrow [KP98], one party can prove to another its membership in a group
in an anonymous fashion. However, what turns out to be quite difficult is the
seemingly simple issue of two parties proving group membership to each other
simultaneously, in such a way that one party never reveals its group membership
to another unless the former is also a member of the same group.

Secret Handshake Scheme as a “CA-oblivious PKI”. To be usable in practice, a
secret handshake scheme must provide efficient revocation of any group member
by the Group Authority (GA) which administers the group. To support this
functionality we will consider secret handshake schemes which, like the scheme
of [BDS+03], are similar to PKI’s (Public Key Infrastructures), where the role
of a group authority corresponds to that of a Certification Authority (CA) in a
PKI. Namely, to become a member of a group a party needs the GA to issue a
certificate on an ID bitstring which the CA agrees to assign to this party. The
certificate must include a CA-specific trapdoor which corresponds to this ID.3 To
revoke some party, the CA puts that party’s ID on a revocation list. To perform
a handshake, two parties first exchange their ID’s, and then proceed only if the
ID of the other party is not on the revocation list of their CA. Since the secret
handshake protocol must hide one’s group affiliation from outsiders, the ID’s
will be random strings picked from the same domain by all the CA’s.4

1 However, as noted by [BDS+03], a handshake protocol cannot be fair in the sense
that if Ga = Gb then one party is going to learn about it first and could abort the
protocol and thus withhold their group affiliation from the counterparty.

2 To simplify the presentation, we will ignore roles for most of the paper. However, as
we show in appendix A.1, they can be added easily.

3 For example, in an identity based encryption scheme, the trapdoor is a secret key
corresponding to the public key which can be recovered from ID and the public
parameters associated with the CA. In a standard PKI system, this correspondence
has an added level of indirection: The trapdoor t is a secret key corresponding to
the public key PK which is in turn bound to the ID string by a signature of CA on
the (ID|PK) pair.

4 To make protocol runs executed by the same party unlinkable, [BDS+03] propose
that a single user gets multiple (ID,certificate) pairs, each to be used only once.
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In this setting, constructing a secret handshake scheme amounts to solving
the following protocol problem: For a given CA, Alice wants to prove to Bob
that she possesses a trapdoor tA issued by this CA on her IDA, but only if Bob
possesses a trapdoor tB issued by the same CA on his IDB (and vice versa).
Moreover, the protocol must be “CA-oblivious” in the sense that if a cheating
Bob is not in the group administered by a given CA, and hence does not hold
a CA-specific trapdoor tB associated with IDB , then his interaction with Alice
must not help him in guessing if Alice belongs to this group or not. (And vice
versa for an honest Bob and a cheating Alice.) While this protocol problem
can be solved in principle with general 2-party secure computation techniques,
the issue remains whether it can be solved with a practical protocol, at a cost
comparable to standard authentication protocols.

Existing Solutions Based on Bilinear Maps. The secret handshake protocol of
[BDS+03] is based on bilinear maps, which can be constructed using Weil pair-
ings on elliptic curves [Jou02, Gag02]. The protocol of [BDS+03] builds on the
non-interactive key-agreement scheme of [SOK00], and works as follows. As in the
identity based encryption scheme of [BF01], A and B can compute each other’s
public keys from each other’s ID’s and from the public parameters associated
with the CA. If Alice is a group member, she can use her trapdoor tA corre-
sponding to PKA to non-interactively compute a session key from (tA, PKB).
Similarly, if Bob is a group member he can compute the same session key from
(tB , PKA). The two parties can then verify if they computed the same key via
a standard MAC-based challenge-response protocol. Under the Bilinear Diffie-
Hellman (BDH) assumption, it is easy to show (in the Random Oracle Model)
that an attacker who does not hold the correct trapdoor cannot compute the
session key. Moreover, the MAC-based challenge response confirmation proto-
col has the needed property that without the knowledge of the key, one learns
nothing from the counterparty’s responses.

Thus, the “CA-obliviousness” property of the protocol of [BDS+03] follows
from two properties of cryptosystems built on bilinear maps: (1) that the re-
ceiver’s public key can be recovered by the sender from the receiver’s ID, and
thus the receiver does not need to send any information revealing his CA af-
filiation to the sender, and (2) knowing their public keys, the two parties can
establish a session key non-interactively, and thus they again do not reveal any
CA-specific information. Given that the first property relies on identity based
encryption, and that the only practical IBE known so far is based on bilinear
maps [BF01], it seems that BDH is indeed needed for secret handshakes.

Our Contributions. In this paper we show that efficient secret handshake (SH)
schemes can be built using weaker and more standard assumption than the
BDH, namely the Computational Diffie Hellman (CDH) assumptions. However,
our security arguments, just like those for the BDH-based scheme of [BDS+03]
remain in the so-called Random Oracle Model (ROM). Moreover, the proposed
scheme is computationally at least twice cheaper than the scheme of [BDS+03].
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We show this in several steps: First, we generalize the IBE-based secret hand-
shake solution sketched above by showing that an efficient four-rounds secret
handshake protocol can be built using any PKI-enabled encryption with the ad-
ditional property of CA-obliviousness. We define the notion of (chosen-plaintext
secure) PKI-enabled encryption, which generalizes both the Identity Based En-
cryption schemes, and the standard encryption schemes used in the context of
a PKI system like X.509. We define the CA-obliviousness property for this no-
tion of PKI-enabled encryption, which requires that both the public-key-related
information which the receiver provides to the sender, and the ciphertext sent
from the sender to the receiver, do not reveal which CA issued the receiver’s
certificate. We then show that every CA-oblivious PKI-enabled encryption leads
to a four-round secret handshake protocol whose cost is one decryption and
one encryption for each party. We also show an alternative construction, which
creates a three-round secret handshake protocol using any CA-oblivious PKI-
enabled encryption equipped with the so-called zero-knowledge “signature of
knowledge” [CS97] of the private decryption key.

Next, we combine ElGamal encryption and Schnorr signatures to construct a
practical CA-oblivious PKI-enabled encryption secure under the CDH assump-
tion (in ROM), which thus leads to a four-round secret handshake protocol secure
under CDH. However, since this encryption admits a very practical (in ROM)
ZK signature of knowledge of the private key, which is simply the Schnorr sig-
nature scheme itself, this results in a secret handshake scheme which takes three
rounds, like the scheme of [BDS+03], and which involves one multiexponenti-
ation and one or two exponentiations per player. Compared to the cost of the
scheme of [BDS+03], where each player computes a pairing of two elements one
of which is known in advance, this is about twice less expensive, according to
the results of Barreto et al. [BKLS02].

We also improve the functionality of a secret handshake system by showing
that our CDH-based SH schemes support “blinded” issuance of the member
certificates in the sense that the CA does not learn the trapdoors included in
the certificate, and thus, in contrast to the BDH-based SH scheme of [BDS+03],
the CA cannot impersonate that member.

Finally, we note that the CA-oblivious encryption we devise can be also
applied to provide a CDH-based solution to the Hidden Credentials problem
[HBSO03], which generalizes the notion of secret handshakes to general PKI
trust evaluations where two communicating partners are not necessarily certified
by the same group/certification authority. This problem was also given only a
BDH-based solution so far, in [HBSO03].

Related Work. As described in [BDS+03], existing anonymity tools such as
anonymous credentials, group signatures, matchmaking protocols, or accumu-
lators, have different goals than secret handshakes, and it is indeed unclear how
to achieve a secret handshake scheme from any of them. Thus we will briefly
discuss here only the new work of [LDB03], which proposes a new notion “obliv-
ious signature-based envelopes”, which is closely related to the secret handshake
problem. The oblivious envelope notion they define is very similar to our notion of
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PKI-enabled encryption, but with a weaker obliviousness property. Namely, they
only require that the encrypting party does not know if the receiver possesses a
CA-certified public/private key or not, but the protocol does not hide the iden-
tity of the CA itself from the receiver. In contrast, our CA-oblivious encryption
notion requires the protocol to hide this identify. Thus, while our CA-oblivious
encryption gives an oblivious signature-based envelope for Schnorr signatures,
the other direction is not clear. In particular, it remains an open problem if
CA-oblivious encryption and/or secret handshakes can be constructed based on
the RSA assumption.5

Organization. In section 2 we revise the definitions of an SH scheme [BDS+03],
restricting them to “PKI-like” SH schemes we consider here. In section 3 we
define the notion of a PKI-enabled encryption, and the CA-obliviousness property
for such encryption. In section 4 we construct a CA-oblivious encryption secure
under CDH in ROM. In section 5 we give two general constructions of SH schemes
from any CA-oblivious encryption. In appendix A we show how to support roles
and blinded issuing of CA certificates.

2 Definition of Secret Handshakes

We adapt the definition of a secure Secret Handshake [SH] scheme from [BDS+03]
to what we call “PKI-like” SH schemes. Our definitions might potentially restrict
the notion of a secret handshake scheme, but both the SH scheme of [BDS+03]
and our SH schemes fall into this category. We define an SH scheme as a tuple
of probabilistic algorithms Setup, CreateGroup, AddMember, and Handshake s.t.

– Setup is an algorithm executed publicly on the high-enough security parame-
ter k, to generate the public parameters params common to all subsequently
generated groups.

– CreateGroup is a key generation algorithm executed by a GA, which, on input
of params, outputs the group public key G, and the GA’s private key tG.

– AddMember is a protocol executed between a group member and the GA on
GA’s input tG and shared inputs: params, G, and the bitstring ID (called a
pseudonym in [BDS+03]) of size regulated by params. The group member’s
private output is the trapdoor t produced by GA for the above ID.

– Handshake is the authentication protocol, i.e. the SH protocol itself, executed
between players A, B on public input IDA, IDB , and params. The private
input of A is (tA, GA) and the private input of B is (tB , GB). The output of
the protocol for either party is either a reject or accept.

We note that AddMember can be executed multiple times for the same group
member, resulting in multiple (ID, t) authentication tokens for that member. We

5 In the poster advertising the preliminary version of these results in PODC’04, we
erroneously claimed that we know how to get RSA-based CA-oblivious encryption
scheme, but this claim was incorrect, and this issue is still an open problem.
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also note that in all the SH schemes discussed here the output of the Handshake
protocol can be extended to include an authenticated session key along with the
“accept” decision.

2.1 Basic Security Properties

An SH scheme must be complete, impersonator resistant, and detector resistant:6

Completeness. If honest members A, B of the same group run Handshake with
valid trapdoors tA, tB generated for their ID strings IDA, IDB and for the same
group GA = GB , then both parties output “accept”.

Impersonator Resistance. Intuitively, the impersonator resistance property is vi-
olated if an honest party V who is a member of group G authenticates an adver-
sary A as a group member, even though A is not a member of G. Formally, we
say that an SH scheme is impersonator resistant if every polynomially bounded
adversary A has negligible probability of winning in the following game, for any
string IDV which models the ID string of the victim in the impersonation attack:

1. We execute params← Setup(1k), and (G, tG) ← CreateGroup(params).
2. A, on input (G, IDV ), invokes the AddMember algorithm on any number of

group members IDi of his choice. (The GA’s inputs are IDi’s, G, and tG.)
3. A announces a new IDA string, different from all the IDi’s above. (This

models a situation where the IDi’s belong to group members who are mali-
cious but who might be revoked.)

4. A interacts with the honest player V in the Handshake protocol, on com-
mon inputs (IDA, IDV ), and on V ’s private inputs G and tV , where tV ←
AddMember((G, IDV ), tG).

We say that A wins if V outputs “accept” in the above Handshake instance.
We note that the above impersonator resistance property is rather weak,

and that stronger versions of this property are possible, and indeed advisable.
Namely, the attacker should be allowed to run the protocol several times against
V , and be able to ask for additional trapdoors after each attempt, before he
announces that he is ready for the true challenge. Also, the attacker could be al-
lowed to ask for trapdoors on additional IDi �= IDA strings during the challenge
protocol with V . We adopt the simplest and weakest definition here to reduce
the level of formalism in the paper. Nevertheless, we believe that our schemes
remain secure under these stronger notions as well.

Remark: We note that even such strengthened notion of impostor resistance is
not strong enough to be used in practice. For example, the resulting notion

6 Once we restrict the notion of SH schemes to the PKI-like SH schemes, the security
properties defined originally in [BDS+03] can be stated in a simpler way. Specifically,
their properties of impersonator resistance and impersonator tracing are subsumed
by our impersonator resistance, and their detector resistance and tracing is subsumed
by what we call detector resistance.
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makes no claims of security against the man in the middle attacks, and no
claims if the adversary triggers a handshake protocol with an honest owner of
the IDA identity at any time before the adversary tries to authenticate himself
to V under this identity. Therefore we do not claim that the above impostor
resistance property is sufficient in practice. Instead, the above authentication-
like notion of impostor resistance has to be first extended to Authenticated Key
Agreement [AKE]. We discuss this further in the Section 2.2 below.

Detector Resistance. Intuitively, an adversary A violates the detector resistance
property if it can decide whether some honest party V is a member of some group
G, even though A is not a member of G. Formally, we say that an SH scheme
is detector resistant if there exists a probabilistic polynomial-time algorithm
SIM , s.t. any polynomially bounded adversary A cannot distinguish between
the following two games with the probability which is non-negligibly higher than
1/2, for any target ID string IDV :

Steps 1-3 proceed as in the definition of Impersonator Resistance, i.e. on
input IDV and a randomly generated G, A queries GA on adaptively chosen
IDi’s and announces some challenge string IDA, IDA �= IDi for all i.

4-1. In game 1, A interacts with an algorithm for the honest player V in the
Handshake protocol, on common inputs (IDA, IDV ), and on V ’s private
inputs G and tV = AddMember((G, IDV ), tG).

4-2. In game 2, A interacts with SIM on common inputs (IDA, IDV ).
5. A can query GA on additional strings IDi �= IDA.
6. A outputs “1” or “2”, making a judgment about which game he saw.

Similarly to impersonator resistance, stronger notions of detector resistance
are possible and indeed advisable. In particular, the adversary should be able to
trigger several executions of the handshake protocol with player V , and he should
be able to interleave these instances with instances executed with the rightful
owner of the IDA identity. We adopt the above weak notion for simplicity, but
our schemes satisfy these stronger notion as well.

2.2 Extensions and Other Security Properties

Authenticated Key Exchange. As mentioned in the previous section, the impos-
tor resistance property defined above is only a weak authentication-like property
which does not give sufficient guarantees in practice. Moreover, in practice one
would like to extend the notion of a secret handshake from one where partic-
ipants’ outputs are binary decisions “accept” / ”reject”, to authenticated key
exchange, where parties output instead either “reject” or a secure session key.
We believe that the SH schemes we propose, just like the original SH protocol
of [BDS+03], can be easily extended to AKE protocols using the standard AKE
protocol techniques. However, the formal security analysis of the resulting proto-
cols requires adoption of AKE formalism [BR93, CK02, Sho99], which is beyond
the scope of this paper.



300 C. Castelluccia, S. Jarecki, and G. Tsudik

Group-Affiliation Secrecy Against Eavesdroppers. Our schemes also protect
secrecy of participants’ group affiliations against eavesdroppers, even if the eaves-
dropper is a malicious member of the same group. An observer of our SH proto-
cols does not even learn if the participants belong to the same group or not. We
do not formally define security against eavesdroppers, because it is very similar
to the security against active attackers which we do define, the impersonator
and detector resistance. Moreover, if the protocol participants first establish a
secure anonymous session, e.g. using SSL or IKE, and then run the SH protocol
over it, the resulting protocol is trivially secure against eavesdroppers.

Unlinkability. A potentially desirable property identified in [BDS+03], is unlink-
ability, which extends privacy protection for group members by requiring that
instances of the handshake protocol performed by the same party cannot be
efficiently linked. This can be achieved trivially (but inefficiently) by issuing to
each group member a list of one-time certificates, each issued on a randomly
chosen ID, to be discarded after a single use. Unfortunately, an honest mem-
ber’s supply of one-time certificates can be depleted by an active attacker who
initiates the handshake protocol enough times. Indeed, while one can run our
SH schemes using multiple certificates to offer some heuristic protections against
linking, constructing an efficient and perfectly unlinkable SH scheme remains an
open problem.

3 Definition of PKI-Enabled CA-Oblivious Encryption

We define the notion of PKI-enabled encryption, which models the use of stan-
dard encryption in the context of a PKI system, and also generalizes Iden-
tity Based Encryption. We define one-way security for PKI-enabled encryption,
adapting a standard (although weak) notion of one-way security of encryption to
our context, and we define a novel CA-obliviousness property for such schemes.

A PKI-enabled encryption is defined by the following algorithms:

– Initialize is run on a high-enough security parameter, k, to generate the pub-
lic parameters params common to all subsequently generated Certification
Authorities (CAs).

– CAInit is a key generation algorithm executed by a CA. It takes as inputs
the system parameters params and returns the public key G and the private
key tG of the CA.

– Certify is a protocol executed between a CA and a user who needs to be
certified by this CA. It takes CA’s private input tG, and public inputs G
(assume that G encodes params) and string ID which identifies the user,
and returns trapdoor t and certificate ω as the user’s outputs.

– Recover is an algorithm used by a sender, a party who wants to send an
encrypted message to a user identified by some string ID, to recover that
user’s public key. It takes inputs (G, ID, ω) and outputs a public key PK.

– Enc is the actual encryption algorithm which takes inputs message m and
the public key PK (assume that PK encodes params and G), and outputs
a ciphertext c.
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– Dec is the decryption algorithm which takes as inputs the ciphertext c and
the trapdoor t (as well as possibly params, G, ID, and ω, all of which can
be encoded in t), and returns m.

The above algorithms must satisfy the obvious correctness property that the
decryption procedure always inverts encryption correctly.

It is easy to see (see footnote 3) that this notion of encryption indeed models
both regular encryption schemes in the PKI context as well as the Identity Based
encryption schemes.

One-Way Security. We define the security of PKI-enabled encryption only in the
relatively weak sense of so-called one-way security, namely that the attacker who
does not own a trapdoor for some public key cannot decrypt an encryption of a
random message. This is a weaker notion than the standard semantic security
for an encryption, but we adopt it here because (1) it simplifies the definition of
security, (2) one-way security is all we need in our construction of a secure SH
scheme, and (3) in the Random Oracle Model, it is always possible to convert
a one-way secure encryption into a semantically secure encryption, or even a
CCA-secure encryption using the method of Fujisaki and Okamoto [FO99].

The definition of security for PKI-enabled encryption is very similar to the
definition of security of an IBE scheme: We say that a PKI-enabled encryption
scheme is One-Way (OW) secure on message space M under Chosen-Plaintext
Attack (CPA), if every polynomially-bounded adversary A has only negligible
probability of winning the following game:
1. The Initialize and CAInit algorithms are run, and the resulting public key G

is given to A.
2. A repeatedly triggers the Certify protocol under the public key G, on ID

strings IDi of A’s choice. In each instance A receives (ti, ωi) from the CA.
3. A announces a pair (IDA, ω), where IDA �= IDi for all IDi’s queried above.
4. A receives c = EncPK(m) for a random message m ∈ M and PK =

Recover(G, IDA, ω).
5. A is allowed to trigger the Certify algorithm on new IDi �= IDA strings of

his choice, getting additional (ti, ωi) pairs from the CA.
6. A outputs a message m′. If m′ = m then we say that A wins.

CA-Obliviousness. Informally, PKI-enabled encryption is CA-oblivious if (1) the
receiver’s message to the sender, i.e., the pair (ID, ω), hides the identity of the
CA which certified this ID; and (2) the sender’s messages to the receiver, i.e.,
ciphertexts, do not leak any information about the CA which the sender assumed
in computing the receiver’s public key. Consequently, in a standard exchange of
messages between the receiver and the sender, neither party can guess which CA
is assumed by the other one. Formally, we call a PKI-enabled encryption scheme
CA-oblivious under two conditions:

(I) It is “Receiver CA-oblivious”, i.e., if there exists a probabilistic polynomial-
time algorithm SIM(R), s.t. no polynomially-bounded adversary A can distin-
guish between the following two games with probability non-negligibly higher
than 1/2, for any target ID string IDR:



302 C. Castelluccia, S. Jarecki, and G. Tsudik

1. The Initialize and CAInit algorithms are executed, and the resulting param-
eters params and the public key G is given to A.

2. A can trigger the Certify protocol on any number of IDi’s.
3-1. In game 1, A gets (IDR, ωR), where ωR is output by the Certify protocol on

G and IDR.
3-2. In game 2, A gets (IDR, r) where r = SIM(R)(params).

4. A can trigger the Certify protocol some more on any IDi �= IDR.
5. A outputs “1” or “2”, making a judgment about which game he saw.

(II) It is “Sender CA-oblivious”, i.e., if there exists a probabilistic polynomial-
time algorithm SIM(S) s.t. no polynomially-bounded adversary A can distin-
guish between the following two games, with probability non-negligibly higher
than 1/2:

1. The Initialize and CAInit algorithms are executed, and the resulting param-
eters params and the public key G is given to A.

2. A can trigger the Certify protocol any number of times, for public key G and
group members IDi’s of A’s choice.

3. A announces pair (IDR, ωR) on which he wants to be tested, where IDR �=
IDi for all i.

4-1. In game 1, A gets c = EncPKR
(m) for random m ∈ M and PKR =

Recover(G, IDR, ωR).
4-2. In game 2, A gets c = SIM(S)(params).

5. A can query GA on some more IDi’s s.t. ∀i, IDi �= IDR.
6. A outputs “1” or “2”, making a judgment about which game he saw.

4 Construction of CA-Oblivious Encryption

We construct a CA-oblivious PKI-enabled encryption scheme secure based on
the CDH assumption in the Random Oracle Model.7

– Initialize picks the standard discrete logarithm parameters (p, q, g) of security
k, i.e., primes p, q of size polynomial in k, s.t. g is a generator of a subgroup
in Z

∗
p of order q. Initialize also defines hash functions H : {0, 1}∗ → Zq and

H ′ : {0, 1}∗ → {0, 1}k. (Both hash functions are modeled as random oracles,
but we note that H ′ is not essential in this construction and can be easily
removed.)

– CAInit picks random private key x ∈ Zq and public key y = gxmodp.
– In Certify on public inputs (y, ID), the CA computes the Schnorr signature

on string ID under the key y [Sch89], i.e., a pair (ω, t) ∈ (Z∗
p, Zq) s.t. gt =

ωyH(ω,ID) mod p. The user’s outputs are the trapdoor t and the certificate ω.
The signature is computed as ω = gr mod p, and t = r + xH(ω, ID) mod q,
for random r ← Zq.

7 We remark that since the Identity Based Encryption scheme of [BF01] is also a CA-
oblivious PKI-based encryption scheme, the SH construction of Section 5 applied to
that encryption scheme implies efficient BDH-based SH schemes.
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– Recover(y, ID, ω) outputs PK = ωyH(ω,ID) mod p.
– EncPK(m) is an ElGamal encryption of message m ∈ {0, 1}k under the public

key PK: It outputs a ciphertext [c1, c2] = [gr mod p, m⊕H ′(PKr mod p)],
for random r ∈ Zq.

– Dec is an ElGamal decryption, outputing m = c2 ⊕H ′(ct
1 mod p).

Theorem 1. The above encryption scheme is CA-oblivious and One-Way se-
cure under the CDH assumption in the Random Oracle Model.

Proof (of One-Way Security). Assume that an adversary A breaks one-wayness
of this encryption scheme. This means that after receiving n Schnorr signatures
(ti, ωi) on IDi’s of his choice, A sends a tuple (ID, ω) s.t. ID �= IDi for all the
above IDi’s, and (in ROM), to break one-wayness Amust query the H ′ oracle on
ct
1modp where gt = ωyH(ω,ID) mod p. Therefore, A must exponentiate a random

element c1 it received to the exponent t. Hence, what we need to argue that,
even though A receives n signatures (ti, ωi) on her IDi’s, she cannot produce a
new pair (ID, ω) s.t. she can exponentiate a random elements c1 to exponent t
where gt = ω ∗ yh(ω,ID). Now, this is very similar to proving the chosen message
attack security of the underlying Schnorr signature scheme, where one argues
that, after receiving n signatures, A cannot produce a new triple (ID, ω, t) s.t.
gt = ω ∗ yh(ω,ID). Hence, our proof is very similar to the forking-lemma proof
for Schnorr signature security in [PS96]. However, here we reduce the successful
attack not to computing discrete logarithm, but to breaking the CDH assumption
by computing mx on input y = gx and a random value m.

To reduce A’s ability to succeed in this protocol to computing mx on the
Diffie-Hellman challenge (g, gx, m), we first simulate, as in the proof of Schnorr
signature security, the signatures (ti, ωi) that A gets on her IDi’s, by taking
random ti, ci, computing ωi = gti ∗ y−ci modp, and assigning H(ωi, IDi) to
ci. Since the verification equation is satisfied and ti, ci are picked at random,
this is indistinguishable from receiving real signatures. Then, as in the forking
lemma argument of [PS96], we can argue that if A’s probability of success is ε,
the probability that A executed twice in a row succeeds in both executions and
sends the same (ID, ω) challenge in both of them, is at least ε2/qh where qh is
the number of queries A makes to the hash function H (see [PS96]). The forking
lemma used in the security proof of the Schnorr signature scheme shows that if
two conversations with an adversary produce triples (t, ω, ID) and (t′, ω, ID),
where in first conversation H(ω, ID) = c and in the second H(ω, ID) = c′ for
some random c, c′, then x = DLg(y) can be computed as x = (s−s′)/(c−c′) mod
q, because gt = ω ∗ yc and gt′

= ω ∗ yc′
. By applying the same forking lemma

to our case, adversary A produces two exponentiations mt and mt′
, instead of

forgeries t, t′, but still we have that x = DLg(y) = (t − t′)/(c − c′). Therefore,
with probability ε2/qh we can break the CDH challenge and compute mx =
m(t−t′)/(c−c′) = (mt/mt′

)1/(c−c′) mod p.
Note that if the success probability ε is higher than negligible, and if A∗ is

an efficient algorithm and hence the number of queries qh is polynomial, then
the probability of CDH break ε2/qh is non-negligible as well.
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Proof (of CA-Obliviousness). It is easy to see that neither ω nor the ciphertext
C = [c1, c2] reveal any information about the CA: Since ω = gr for random r,
ω is independent from CA’s public key y, and hence the scheme is receiver CA-
oblivious. Ciphertext C = [c1, c2] on a random message m is also independent
from the group key y, because c1 = gr for random r and c2 is computed by
xoring H ′(PKr) with the random m.

5 Secret Handshakes from CA-Oblivious Encryption

We first show how to built a secure four-rounds SH scheme using CA-oblivious
PKI-enabled encryption. Given a CA-oblivious one-way secure PKI-enabled
encryption scheme (Initialize, CAInit, Certify, Recover, Enc, Dec), and a hash
function H : {0, 1}∗ → {0, 1}k modeled as a random oracle, we specify a secret
handshake scheme as follows: Algorithms Setup, CreateGroup, and AddMember,
are simply set to Initialize, CAInit, and Certify, respectively, while algorithm
Handshake proceeds as follows. A’s inputs are (IDa, ωa, ta) and B’s inputs are
(IDb, ωb, tb).8

1. (B −→ A): IDb, ωb

– A obtains PKb = Recover(G, IDb, ωb)
– A picks ra ←M and cha ← {0, 1}k
– A computes Ca = EncPKb

(ra)
2. (A −→ B): IDa, ωa, Ca, cha

– B obtains PKa = Recover(G, IDa, ωa)
– B obtains ra = Dectb

(Ca)
– B picks rb ←M and chb ← {0, 1}k
– B computes Cb = EncPKa

(rb)
– B computes respb = H(ra, rb, cha)

3. (B −→ A): Cb, respb, chb

– A obtains rb = Decta(Cb)
– if respb �= H(ra, rb, cha), A outputs FAIL; otherwise A outputs ACCEPT.
– A computes respa = H(ra, rb, chb)

4. (A −→ B): respa

– if respa �= H(ra, rb, chb), B outputs FAIL; otherwise B outputs ACCEPT.

We note that the above protocol can be easily turned into an Authenticated
Key Exchange (AKE) protocol (secure in the ROM model) if the two parties
compute their authenticated session key as K = H(ra, rb).

Theorem 2. If the PKI-enabled encryption is CA-oblivious and One-Way se-
cure, the above construction yields a Secret Handshake scheme secure in the
Random Oracle Model (ROM).

8 Group member’s trapdoor on string ID in this SH scheme is a pair (ω, t) produced
by the Certify protocol. We can also assume that (IDa, IDb) are public inputs.
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Proof (of Impersonator Resistance). Assume that A violates with non-negligible
probability ε the impersonator resistance property against some honest member
V identified by IDV . Assume that A plays the role of A and V plays the role of B
(the other case is easier because B has to speak first). Therefore with prob. ε, A
sends a valid respa = H(ra, rb, chb) response to B. In the ROM model, that can
happen with non-negligible probability only if A querries the oracle for H(·) on
the input (ra, rb, chb) s.t., in particular, rb was the value picked by V and sent to
A in the form of a ciphertext Cb = EncPKa(rb) for PKa = Recover(G, IDa, ωa),
where (IDa, ωa) are sent by A in its first message to V . Therefore, in ROM, we
can use A to create a break A′ against the one-way security of the encryption
scheme:

On input G, A′ passes the public key G to A. When A can makes a querry
IDi, so does A′, passing back (ωi, ti) to A. When A announces that he is ready
for the impersonation challenge against V , A′ passes as his encryption challenge
the pair (IDa, ωa) sent by A in his first message to V . On encryption challenge
c = EncPKa

(m) where m is chosen at random inM, A′ passes the same challenge
as its response Cb = c to A, together with a random challenge value chb and
respb picked at random. The only way A can tell between this communication
and a conversation with an honest V is by querying H on (ra, rb, cha) for rb =
Decta(Cb) = m. Otherwise, as we argued above, he queries H on (ra, rb, chb)
with probability almost ε. In either case, since A can make only polynomially-
many queries to H, A′ can pick one such query at random, and A′ will have a
non-negligible chance of outputing rb = m. Thus A′ breaks the one-wayness of
the encryption scheme.

Proof (of Detector Resistance). We will show a simulator SIM s.t. if A distin-
guishes between interactions with SIM and interactions with a group member,
we can break the one-way security of the encryption scheme. Assume again that
the adversary A plays the role of A and V plays the role of B. Assume that the
underlying encryption scheme is CA-oblivious, and therefore there exist sim-
ulators SIM(S) and SIM(R) which satisfy the two CA-obliviousness criteria.
We define a simulator SIM , running on input (IDA, IDV , params), as follows:
(1) To simulate V ’s first message SH-1, SIM sends IDb = IDV together with
ωb = SIM(R)(params), (2) To simulate B’s second message SH-3, SIM sends
respb and chb picked at random, and Cb = SIM(S)(params).

If A can distinguish a conversation with such SIM from a conversation with
a true group member V , then by a standard hybrid argument, since the SIM(S)
and SIM(R) simulators produce messages which are indistinguishable from the
messages of an honest B, it must be that A distinguishes random values respb

chosen by SIM from values respb = H(ra, rb, cha) computed by a real player.
But this can happen only if A makes an oracle query on the triple (ra, rb, cha),
in which case we can use A, exactly in the same manner as we did in the proof
of impersonator resistance, to attack the one-way security of the underlying
encryption scheme.
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5.1 Three-Round Secret Handshake Scheme

We can eliminate one communication round in the above protocol using the zero-
knowledge signature of knowledge [CS97] of the trapdoor t that corresponds to
the public key PK = Recover(G, ID, ω), which we will denote sigt(m). One can
easily construct such signatures in ROM if this relation admits a 3-round honest-
verifier special-soundness proof system [CS97]. The protocol proceeds as follows,
using the same notation as above:

1. (B −→ A): (IDb, ωb, chb)
– A computes PKb = Recover(G, IDb, ωb) and c = EncPKb

(ra, sigta
(chb))

2. (A −→ B): (IDa, ωa, chaa, c)
– B accepts if c decrypts to (ra, sig) where sig verifies as a signature on chb

under the public key PKa = Recover(G, IDa, ωa)
3. (B −→ A): respb = H(ra, cha)

– A accepts if respb = H(ra, cha)

In the case of the CDH-based encryption of Section 4, the above signature of
knowledge is simply a Schnorr signature, and the resulting computational cost
is one or two exponentiation and one multiexponentiation per player.
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A Achieving Additional Properties

A.1 Roles

Our schemes can easily be extended to handle group member roles (as in the SH
scheme of [BDS+03]), in a way that a member can choose not to reveal anything
about herself unless the other party is a member with a particular role r (and
vice versa). This functionality can be provided by modifiying the AddMember
and Recover procedures as follows:

- AddMember: takes as inputs params, G, t G and an arbritary string ID ∈
{0, 1}∗ and returns (ω, t) where t is a trapdoor and ω is a public parameter.
(ω, t) are constructed using the string ID|r (instead of ID as in the original
procedure), where r is the role that the CA is assigning to the user.

- Recover: takes as input params, G, ID and ω (provided by another user B).
It outputs a public key PK using as input ID|r (instead of ID as in the
original Recover procedure), where r is the role that A chooses to have a
secret hanshake with.

A.2 Trapdoor Secrecy

Since CA computes the user’s trapdoor t, it can impersonate that user. Would
that be problematic, AddMember can easily be modified to blind the trapdoor if
in the AddMember protocol the user supplies the CA with b = gδ mod p, where
δ is the user’s temporary secret. The CA can then reply with ω = gk ∗ b mod p,
where k is a random value in Zq, and t′ = k +H(ω, ID)∗ tG mod q, and the user
computes his trapdoor as t = t′ + δ mod q.
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