
How Far Can We Go Beyond
Linear Cryptanalysis?

Thomas Baignères, Pascal Junod, and Serge Vaudenay

EPFL
http://lasecwww.epfl.ch

Abstract. Several generalizations of linear cryptanalysis have been pro-
posed in the past, as well as very similar attacks in a statistical point
of view. In this paper, we define a rigorous general statistical framework
which allows to interpret most of these attacks in a simple and unified
way. Then, we explicitely construct optimal distinguishers, we evaluate
their performance, and we prove that a block cipher immune to classical
linear cryptanalysis possesses some resistance to a wide class of general-
ized versions, but not all. Finally, we derive tools which are necessary to
set up more elaborate extensions of linear cryptanalysis, and to general-
ize the notions of bias, characteristic, and piling-up lemma.
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1 A Decade of Linear Cryptanalysis

Linear cryptanalysis is a known-plaintext attack proposed in 1993 by Matsui
[21, 22] to break DES [26], exploiting specific correlations between the input and
the output of a block cipher. Namely, the attack traces the statistical correlation
between one bit of information about the plaintext and one bit of information
about the ciphertext, both obtained linearly with respect to GF(2)L (where L
is the block size of the cipher), by means of probabilistic linear expressions, a
concept previously introduced by Tardy-Corfdir and Gilbert [30].

Soon after, several attempts to generalize linear cryptanalysis are published:
Kaliski and Robshaw [13] demonstrate how it is possible to combine several in-
dependent linear correlations depending on the same key bits. In [31], Vaudenay
defines another kind of attack on DES, called χ2-attack, and shows that one can
obtain an attack slightly less powerful than a linear cryptanalysis, but without
the need to know precisely what happens in the block cipher. Harpes, Kramer,
and Massey [7] replace the linear expressions with so-called I/O sums, i.e., bal-
anced binary-valued functions; they prove the potential effectiveness of such a
generalization by exhibiting a block cipher secure against conventional linear
cryptanalysis but vulnerable to their generalization. Practical examples are the
attack of Knudsen and Robshaw [15] against LOKI91 and the one of Shimoyama
and Kaneko [28] against DES which both use non-linear approximations.

In [8], Harpes and Massey generalize the results of [7] by considering par-
titions pairs of the input and output spaces. Let X = {X1,X2, . . . ,Xn} and
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Y = {Y1,Y2, . . . ,Yn} be partitions of the input and output sets respectively,
where Xi and Yi are called blocks. The pair (X ,Y) is called a partition-pair
if all blocks of X (respectively Y) contain the same number of plaintexts (re-
spectively ciphertexts). A partitioning cryptanalysis exploits the fact that the
probabilities Pr [(X, fk(X)) ∈ (X ,Y)] may not be uniformly distributed for a
block cipher fk when the plaintext X is uniformly distributed. In order to char-
acterize the non-uniformity of a sample distribution, Harpes and Massey con-
sider two “measures” called peak imbalance and squared Euclidean imbalance.
Furthermore, they observe on toy-examples that the latter seems to lead to
more successful attacks. These results are completed by Jakobsen and Harpes
in [10, 9], where they develop useful bounds to estimate the resistance of block
ciphers to partitioning cryptanalysis, with the help of spectral techniques; these
bounds are relative to the squared Euclidean imbalance only, but this choice is
not motivated in a formal way. To the best of our knowledge, the first practi-
cal example of partitioning cryptanalysis breaking a block cipher is the attack
known as “stochastic cryptanalysis” [24] proposed by Minier and Gilbert against
Crypton [17, 18].

In recent papers, Junod and Vaudenay [12, 11] consider linear cryptanalysis in
a purely statistical framework, as it was done for the first time by Murphy et al.
[25], for deriving optimal key ranking procedures and asymptotic bounds on the
success probability of optimal linear distinguishers. A somewhat similar approach
is chosen by Coppersmith et al. [1], except that it is adapted to stream ciphers.
One can note that tight results about optimal distinguishers allow furthermore
to derive useful security criteria.

Finally, the NESSIE effort resulted in a few papers investigating the power
of linear (or non-linear) approximations based on different algebraic structures,
like Z4. For instance, Parker [27] shows how to approximate constituent func-
tions of an S-box by any linear function over any weighted alphabet. However,
Parker observes that it is not straightforward to piece these generalized linear
approximations together. In [29], Standaert et al. take advantage of approxima-
tions in Z4 by recombining the values in order to reduce the problem to the
well-known binary case; they obtain more interesting biases comparatively to a
classical linear cryptanalysis.

Notation. Throughout this paper, random variables X,Y, . . . are denoted by
capital letters, whilst their realizations x ∈ X , y ∈ Y, . . . are denoted by small
letters. The cardinal of a set X is denoted |X |. The probability function of
a random variable X following a distribution D is denoted Pr D [x] or abu-
sively Pr X [x], when the distribution is clear from the context. For convenience,
sequence X1, X2, . . . , Xn of n random variables is denoted Xn. Similarly, a se-
quence x1, x2, . . . , xn of realizations is denoted xn. We call support of a distri-
bution D the set of all x ∈ X such that Pr D [x] �= 0. As usual, “iid” means
“independent and identically distributed”. The transpose of a linear function h
is denoted th. 1lA is 1 if the predicate A is true, 0 otherwise. Finally, “·” denotes
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the inner product. The distribution function of the standard normal distribution
is denoted

Φ(t) =
1√
2π

∫ t

−∞
e− 1

2 u2
du .

2 Optimal Distinguisher Between Two Sources

In this section, we shall consider a source generating a sequence of n iid random
variables Zn following a distribution D and taking values in a set Z. We wonder
whether D = D0 or D = D1 (where D1 is referred to as an “ideal distribution”),
knowing that one of these two hypotheses is true. An algorithm which takes a
sequence of n realizations zn as input and outputs either 0 or 1 is known as
a distinguisher limited to n samples. It can be defined by an acceptance region
A ⊂ Zn such that the distinguisher outputs 0 (respectively 1) when zn ∈ A
(respectively zn /∈ A). The ability to distinguish a distribution from another is
known as the advantage of the distinguisher and is defined by

Advn
A =

∣∣∣Pr Dn
0

[A] − Pr Dn
1

[A]
∣∣∣ ,

which is a quantity an adversary would like to maximize. The distinguisher can
make two types of mistakes: it can either output 0 when D = D1 or output 1 when
D = D0. We denote α and β the respective error probabilities and Pe = 1

2 (α+β)
the overall probability of error. We can assume without loss of generality that
Pe ≤ 1

2 ; we easily obtain that Advn
A = 1 − 2Pe.

2.1 Deriving an Optimal Distinguisher

We describe here how to derive an optimal distinguisher for the scenario de-
scribed below [1, 11]. Clearly, Pe = 1

2 − 1
2

∑
zn∈A

(
Pr Dn

0
[zn] − Pr Dn

1
[zn]

)
, and

therefore that the set minimizing1 Pe is

A = {zn ∈ Zn : LR(zn) ≥ 1} where LR(zn) =
Pr Dn

0
[zn]

Pr Dn
1

[zn]
(1)

stands for likelihood ratio2. It defines an optimal distinguisher, i.e., with max-
imum advantage given a bounded number of samples and with no assumption
on the computational power of the adversary.

In order to take a decision, a distinguisher defined by (1) has to keep in
memory the results of the n queries, which is not feasible in practice if n grows.
Fortunately, it is possible to derive an equivalent distinguisher with |Z| counter
values N(a|zn), each one counting the number of occurrence of a certain symbol
a of Z in the sequence zn. We summarize this in the following result.

1 Note that we could have equivalently chosen a strict inequality in (1).
2 The likelihood ratio builds the core of the Neyman-Pearson lemma [2–Ch. 12].
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Proposition 1 (Optimal Distinguisher). The optimal acceptance region to
test D = D0 against D = D1 is Aopt = {zn ∈ Zn : LLR(zn) ≥ 0} where

LLR(zn) =
∑
a∈Z

s.t. N(a|zn)>0

N(a|zn) log
Pr D0 [a]
Pr D1 [a]

is the logarithmic likelihood ratio, with the convention that log 0
p = −∞ and

log p
0 = +∞ (the log 0

0 case can be ignored), and where N(a|zn) is the number
of times the symbol a occurs in the sequence zn ∈ Zn.

Given the number of realizations n, we can compute the exact advantage of
the optimal distinguisher. Let [D0]n and [D1]n be the vectors defined by

[Dj ]n(z1,z2,...,zn) = Pr Dn
j

[z1, z2, . . . , zn] with j ∈ {0, 1} ,

which are a specific case of n-wise distribution matrices of the Decorrelation
Theory [33] in a simplified case as we have no input here, only outputs zi. The
probability that the distinguisher outputs 0 when D = Dj is

∑
zn∈A[Dj ]nzn ,

for j ∈ {0, 1}. The advantage is thus
∣∣∑

zn∈A ([D0]nzn − [D1]nzn)
∣∣. Since Aopt

maximizes the sum, we obtain

Advn
Aopt

=
1
2

‖ [D0]n − [D1]n ‖1 ,

where the norm ‖ · ‖1 of a vector A is defined by ‖ A ‖1=
∑

i |Ai|. Note that
the statistical framework of Coppersmith et al. [1] is based on this norm.

2.2 Complexity Analysis

In this section, we compute the number of queries the optimal distinguisher
needs in order to distinguish D0 from D1, given a fixed error probability Pe.

Definition 2. The relative entropy or Kullback-Leibler distance between two
distributions D0 and D1 is defined as

D(D0 ‖ D1) =
∑
z∈Z

Pr D0 [z] log
Pr D0 [z]
Pr D1 [z]

,

with the convention that 0 log 0
p = 0 and p log p

0 = +∞ for p > 0.

We will refer to this notion using the term relative entropy as, being non-
symmetric, it is not exactly a distance. Nevertheless, it is always positive since
− log is convex. Using this notation, the following proposition can be proved.

Proposition 3. Considering that Z1, Z2, . . . is a sequence of iid random vari-
ables of distribution D and that D0 and D1 share the same support,

Pr
[
LLR(Zn) − nµ

σ
√
n

< t

]
n→∞

−−−−−−−→ Φ(t) , (2)
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assuming that µ = µj with µ0 = D(D0 ‖ D1) ≥ 0 and µ1 = −D(D1 ‖ D0) ≤ 0,
and that σ2 is

σj
2 =

∑
z∈Z

Pr Dj [z]
(

log
Pr D0 [z]
Pr D1 [z]

)2

− µ2
j , (3)

when D = Dj for j ∈ {0, 1}.

Proof. We first note that the logarithmic likelihood ratio can be expressed as a
sum LLR(Zn) = R1 + · · · +Rn where

Ri =
∑
z∈Z

1lZi=z log
Pr D0 [z]
Pr D1 [z]

,

where every Zi follows distribution Dj (so that the Ri’s are iid). The Central
Limit Theorem then states that Pr [(LLR(Zn) − nµj)/(σj

√
n) < t] converges

in distribution towards Φ(t), where µj = EDj [Ri] and σj
2 = VarDj [Ri]. Some

straightforward computations lead to the announced result. Note that the as-
sumption that both distributions share the same support is necessary for µj and
σj to be well defined. 
�

We now assume that the distributions D0 and D1 are close to each other,
since it is the usual encountered case in practice.

Assumption 4. Considering that D0 is close to D1, we can write

∀z ∈ Z : Pr D0 [z] = pz + εz and Pr D1 [z] = pz with |εz| 
 pz .

Note that in such a case we can approximate LLR(zn) by
∑

a N(a|zn)εa/pa.
Proposition 3 can now be simplified using Taylor series.

Proposition 5. Under the hypothesis of Proposition 3 and of Assumption 4 we
have, at order two:

µ0 ≈ −µ1 ≈ 1
2

∑
z∈Z

ε2z
pz

and σ0
2 ≈ σ1

2 ≈
∑
z∈Z

ε2z
pz

.

We can finally derive a heuristic theorem giving the number of samples the
distinguisher needs, together with the implied probability of error, in order to
distinguish close distributions with same support.

Theorem 6. Let Z1, . . . , Zn be iid random variables over the set Z of distribu-
tion D, D0 and D1 be two distributions of same support which are close to each
other, and n be the number of samples of the best distinguisher between D = D0
or D = D1. Let d be a real number such that

n =
d∑

z∈Z

ε2z
pz

≈ d

2D(D0 ‖ D1)
(4)

(where pz = Pr D1 [z] and pz + εz = Pr D0 [z]). Then, the overall probability of
error is Pe ≈ Φ(−√

d/2).
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Proof. If d is such that µ̃ = 1
2

√
d/n σ̃, where µ̃ and σ̃ respectively denote

the approximation of µ0 and σ0 at order 2, we obtain (4). By definition Pe =
1
2 (1 − Pr D1 [LLR < 0] + Pr D0 [LLR < 0]). However

Pr Dj
[LLR < 0] = Pr Dj

[
LLR − nµj

σj
√
n

< −
√
nµj

σj

]
≈ Φ

(
−

√
nµj

σj

)
,

where we make the usual approximation that the left hand side of (2) can be
approximated by Φ(t). Therefore, as Proposition 5 states that µ0 ≈ −µ1 ≈ µ̃ and
that σ0 ≈ σ1 ≈ σ̃, we have Pe ≈ 1

2

(
1 − Φ(

√
d/2) + Φ(−√

d/2)
)

= Φ(−√
d/2).


�

Note that it may be possible to obtain strict tight bounds instead of an
approximation for Pe using, for instance, Chernoff bounds.

2.3 Case Where the Ideal Source Is Uniform

From now on, we assume that D1 is the uniform distribution. When D0 is a
distribution whose support is X itself and which is close to D1, Theorem 6 can
be rewritten with

n =
d

|Z|
∑
z∈Z

ε2z
.

This shows that the distinguishability can be measured by means of the
Euclidean distance between D0 and D1. In the very specific case where Z =
{0, 1}, we have ε0 = −ε1 = ε and one can see that n is proportional to ε−2. It is
a well accepted fact that the complexity of linear cryptanalysis is linked to the
inverse of the square of the bias [21] which is, as we can see, a consequence of
Theorem 6. We now recall what appears to be the natural measure of the bias
of a distribution, considering the needed number of samples and Assumption 4.

Definition 7. Let εz = Pr D0 [z]− 1
|Z| . The Squared Euclidean Imbalance3 (SEI)

∆(D0) of a distribution D0 of support Z from the uniform distribution is defined
by

∆(D0) = |Z|
∑
z∈Z

ε2z .

It is well-known (see [6, 14]) that a χ2 cryptanalysis needs O(1/∆(D0)) queries
to succeed, which is by no means worse, up to a constant term, than an optimal
distinguisher. Junod observed [11] that a χ2 statistical test is asymptotically
equivalent to a generalized likelihood-ratio test developed for a multinomial dis-
tribution; although such tests are not optimal in general, they usually perform
reasonably well. Our results confirm this fact: a cryptanalyst will not loose any

3 Although this appellation coincide with the one of [7], note that the definitions
slightly differ.
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essential information in the case she can describe only one of the two distribu-
tions, but the precise knowledge of both distributions allows to derive an optimal
attack. In other words, when it is impossible to derive both probability distri-
butions, or when an attack involves many different distributions and only one
is known, the best practical alternative to an optimal distinguisher seems to be
a χ2 attack, as proposed in [31]. This fact corroborates the intuition stipulating
that χ2 attacks are useful when one does not know precisely what happens in
the attacked block cipher.

2.4 Case Where the Source Generates Boolean Vectors

We assume here that random variables are bitstrings4, so that Z = {0, 1}�.

Definition 8. Following the notations of Assumption 4, let D0 be the distribu-
tion defined by the set {εz}z∈Z , D1 being the uniform distribution on Z. We
define the Fourier transform of D0 at point u ∈ Z as

ε̂u =
∑
z∈Z

(−1)u·z εz . (5)

The involution property of the Fourier transform leads to

εz =
1
2�

∑
u∈Z

(−1)u·z ε̂u . (6)

The next property can be compared to Parseval’s Theorem.

Proposition 9. In the case where D1 is the uniform distribution over Z =
{0, 1}�, the SEI and the Fourier coefficients are related by:

∆(D0) =
∑
u∈Z

ε̂ 2
u .

We now recall the definition of the linear probability [23], which plays a
central role in the context of linear cryptanalysis.

Definition 10. The linear probability of a boolean random variable B is

LP(B) = (Pr [B = 0] − Pr [B = 1])2 = (2 Pr [B = 0] − 1)2 =
(
E
[
(−1)B

] )2
.

Proposition 11. Let Z = {0, 1}�. If Z ∈ Z is a random variable of distribution
D0, the SEI and the linear probability are related by:

∆(D0) =
∑

w∈Z\{0}
LP(w · Z) .

4 Note that all the study below extends in a straightforward way to Z = GF(p)� for
a prime p by replacing (−1) by e

2iπ
p and by using the conjugates of εz and ε̂z in (5)

and (6) respectively. For simplicity we restrict ourselves to GF(2).
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Proof. By using (5) we have ε̂u = ED0

[
(−1)u·Z]− 1lu=0. Proposition 9 gives

∆(D0) =
∑

u∈Z\{0}
(
ED0

[
(−1)u·Z])2 =

∑
w∈Z\{0} LP(w · Z). 
�

Corollary 12. Let Z be a random variable over Z = {0, 1}� of distribution D0
and let5 LPZ

max be the maximum of LP(w · Z) over w ∈ Z \ {0}. We have

∆(D0) ≤ (
2� − 1

)
LPZ

max .

Theorem 6 and Corollary 12 together mean that the complexity of the best
distinguisher between two distributions of random bit strings can decrease with
a factor up to 2� when compared to the best linear distinguisher. It is interesting
to note that there are cases where this bound is tight. For example if D0 is such
that Pr D0 [z] is 1

2� +
(
1 − 1

2�

)
γ if z = 0, and 1

2� − 1
2� γ otherwise (where γ is a

positive constant), it can be shown that LP(w · Z) = γ2 for all w �= 0. Hence
∆(D0) = (2� − 1)γ2 and LPmax = γ2.

2.5 Statistical Distinguishers

In the last section, we have been trying to distinguish two random variables
following two distinct distributions in a set Z = {0, 1}� where 	 should not be too
large from an implementation point of view. If we try to distinguish two random
variables distributed in some set {0, 1}L of large cardinality (e.g. where L = 128),
we won’t be able to implement the best distinguisher of Proposition 1 as the
memory requirement would be too high. Instead, we can reduce the source space
to a smaller space Z = {0, 1}� by means of a projection6 h : {0, 1}L → Z defining,
for a random variable S ∈ {0, 1}L of distribution D̃, a random variable Z = h(S)
of distribution D. Here we consider that h is a balanced function and that D̃1 is a
uniform distribution, so that D1 is a uniform distribution as well. This is a typical
construction in a real-life block cipher cryptanalysis, where the block length is
quite large. Now, even though we know which distinguisher is the best to use in
order to distinguish D0 from D1, it is still not clear how the projection h has to be
chosen. Probably the most classical example arises when 	 = 1 and h(S) = a · S
for some non-zero a ∈ {0, 1}�. We then talk about a linear distinguisher. In
this case, we note that ∆(D0) = LP(a · S) ≤ LPS

max. Modern ciphers protect
themselves against that type of distinguisher by bounding the value of LPS

max.
A natural extension of the previous scheme would be to consider any linear
projection onto wider spaces, e.g. to consider h(S) ∈ Z = {0, 1}� (where 	 > 1
is still small) such that h is GF(2)-linear. We then talk about an extended linear
distinguisher. It seems natural to wonder about the complexity gap between
linear cryptanalysis and this extension. The following theorem proves that if
a cipher provably resists classical linear cryptanalysis, it is (to some extent)
protected against extended linear cryptanalysis.

5 We make a slight abuse of notation since LPZ
max is not a random variable depending

on Z, but a real value depending on the distribution of Z.
6 We borrow this appellation from Vaudenay [31]; the same expression is used within

Wagner’s unified view of block cipher cryptanalysis [34] as well.
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Theorem 13. Let S be a random variable over {0, 1}L. Whenever the source
space is reduced by a projection h : {0, 1}L → {0, 1}� in a GF(2)-linear way, we
have ∆(h(S)) ≤ (2� − 1)LPS

max.

Proof. We use Proposition 11 and the fact that w · h(S) = th(w) · S. 
�
A classical example of a linear space reduction arises when considering con-

catenation of several projections. For example, denoting D(i)
0 = h(i)(D̃0) for

i ∈ {1, . . . , 	} where h(i) : {0, 1}L → {0, 1} is linear, we consider h(S) =(
h(1)(S), . . . , h(n)(S)

)
. This corresponds to the works of Kaliski and Robshaw

[13] (where different linear characteristics involving identical key bits are merged)
and of Junod and Vaudenay [12] (where different linear characteristics involving
different key bits are merged). In the latter situation, if no assumption is made
about the dependency among the ∆(D(i)

0 )’s, Theorem 13 tells us ∆(D(1)
0 × · · · ×

D(�)
0 ) ≤ (2� − 1)LPS

max. The following proposition tells us what happens in gen-
eral when the D(i)

0 ’s are independent but do not necessarily come from a linear
projection nor a Boolean projection.

Proposition 14. Consider the case where D0 = D(1)
0 ×· · ·×D(�)

0 . If D(1)
0 , . . . ,D(�)

0

are independent distributions, then ∆(D0)+1 =
∏�

i=1

(
∆(D(i)

0 ) + 1
)
. Therefore,

∆(D0) can be approximated by the sum of the ∆(D(i)
0 )’s.

Proof. For the sake of simplicity, we restrict this proof to the case where D0 =
D(a)

0 ×D(b)
0 . Let Z = (A,B) where A and B are two independent random variable

following distributions D(a)
0 and D(b)

0 respectively. As in Proposition 11, we have

∆(D(a)
0 × D(b)

0 ) =
∑

(v,w)∈Z2\{0}

(
E
[
(−1)v·A⊕w·B])2

=
∑

(v,w)∈Z2\{0}

(
E
[
(−1)v·A])2 (E [(−1)w·B])2

=
(
∆(D(a)

0 ) + 1
)(

∆(D(b)
0 ) + 1

)
− 1 .


�
This result tells us that merging 	 independent biases should only be consid-

ered when their respective amplitudes are within the same order of magnitude.
In the light of the preceeding discussion, the cryptanalyst may wonder if it

is possible to find a distinguisher with a high advantage even though the value
of LPS

max is very small. We provide an example for which it is indeed the case.

Example. Consider a source generating a random variable S = (X1, . . . , Xn+1) ∈
Z

n+1
4 , where n is some odd large integer, and we represent Z4 by {0, 1}2 in binary.

Here we have L = 2n+2. If the source follows distribution D0, then X1, . . . , Xn ∈
Z4 are uniform iid random variables and Xn+1 = (Y +

∑n
i=1Xi) mod 4, where

Y ∈ {0, 1} is a uniformly distributed random variable independent ofX1, . . . , Xn.
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If the source follows distribution D1, S ∈ Z
n+1
4 is uniformly distributed. It can

be shown (see Appendix A) that LPS
max = 2−(n+1). On the other hand, if we

let h : Z
n+1
4 → Z2 be such that h(S) = msb ((Xn+1 −∑n

i=0Xi) mod 4) (where
msb stands for most significant bit), we have 	 = 1 and a SEI equal to 1, so that
∆(D0) � LPS

max: D0 can be distinguished from D1 despite LPS
max is small.

This example shows that Theorem 13 tells us nothing about the SEI whenever
the plaintext space is reduced by a non-linear projection. Therefore, even though
LPS

max is very low, there may exist some tricky non-linear projections which lead
to significant breakdown of the complexity of distinguishers, i.e., there may be
something beyond linear cryptanalysis.

3 Optimal Distinguisher Between Two Oracles

So far we discussed how to distinguish random sources. Now we investigate
applications for distinguishing random oracles, such as block ciphers, and how
to transform this into the previous problem.

We consider the random variable Z taking values in Z to be a couple of ran-
dom variables (X,Y ) taking values in X ×Y. As discussed in Sect. 2.5, the couple
(X,Y ) can be seen like the image of a plaintext/ciphertext couple (P,C) by some
balanced projections φ and ψ (which actually define the statistical cryptanalysis
in use); in other words, the adversary queries the oracle for known-plaintext pairs
and compute the projections φ and ψ to sample (X,Y ). For simplicity reasons,
we focus our study on known-plaintext attacks (such as linear cryptanalysis)
and thus, we consider that X is uniformly distributed. The distribution of Y is
defined by a transition matrix T such that

[T ]x,y = Pr [Y = y|X = x] = Pr [ψ(C) = y|φ(P ) = x] .

The transition matrix T can either be T 0 or T 1, where T 1 is the uniform
transition matrix (i.e., [T 1]x,y = 1

|Y| ). The distribution D of Z depends on the
transition matrix T . We will denote it D0 (respectively D1) when T = T 0 (re-
spectively T = T 1). We can see that if T = T 1, as X is uniformly distributed,
the distribution D1 of Z is also uniform. Therefore, all the results presented so
far can be applied to the particular case we study here. Indeed, if we note that

Pr D [z] = Pr [X = x, Y = y] = [T ]x,y Pr [X = x] .

We can express Proposition 1 in terms of the transition matrices.

Proposition 15 (Optimal Binary Hypothesis Test with Transition Ma-
trices). The optimal acceptance region to test D = D0 against D = D1 (where
D1 is the uniform distribution), that is to test T = T 0 against T = T 1, is

Aopt = {(xn,yn) ∈ X n × Yn : LLR(xn,yn) ≥ 0}
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where

LLR(xn,yn) =
∑

(x,y)∈X×Y
s.t. N((x,y)|zn)>0

N((x, y)|zn) log
[T 0]x,y

[T 1]x,y

with the conventions used in Proposition 1.

In the next sections, we derive the complexity of this distinguisher, discuss
the relationship between our model and previous work, and study how Matsui’s
Piling-up Lemma [21] extends to our model.

3.1 Cryptanalysis Complexity

We introduce the notion of bias matrix B = T 0−T 1. Note that
∑

x∈X [B]x,y = 0
when X is uniformly distributed and that

∑
y∈Y [B]x,y = 0 in any case. Similarly

to Definition 8, the Fourier transform B̂ of the bias matrix B is such that[
B̂
]

u,v
=

∑
(x,y)∈X×Y

(−1)u·x⊕v·y [B]x,y .

Furthermore, we define LPM, the linear probability matrix, by [LPM]u,v = 0
if u = v = 0 and by [LPM]u,v = LP(u ·X ⊕ v ·Y ) otherwise. It can be noted that[
B̂
]2

u,v
= |X |2 [LPM]u,v. With the notations we just introduced, it is possible to

derive the complexity of the best distinguisher between two oracles as a simple
consequence of Theorem 6 and of Proposition 11.

Proposition 16. Let n be the number of queries of the best distinguisher be-
tween T 0 and T 1, which are supposed to be close to each other and of same
support. Then the overall probability of error is Pe ≈ 1 − Φ(

√
d/2), where d is a

real number such that n = d/∆(D0). Furthermore, as

∆(D0) =
|Y|
|X | ‖ B ‖2

2 =
1

|X |2 ‖ B̂ ‖2
2 =

∑
(u,v)∈X×Y

[LPM]u,v ,

n can be equivalently expressed in terms of the bias matrix, of its Fourier trans-
form, or of the linear probability matrix (and thus, of the linear probabilities).

Matsui’s linear expressions are a very particular case of the transition matri-
ces we have defined at the beginning of Sect. 3. Indeed, choosing balanced linear
projections φ, ψ : {0, 1}L → {0, 1} is equivalent to choose input/output masks
on the plaintext/ciphertext bits. The respective shapes of the corresponding bias
matrix, of its Fourier transform, and of the LPM matrix are

B =
(
ε −ε

−ε ε

)
, B̂ =

(
0 0
0 4ε

)
, and LPM =

(
0 0
0 4ε2

)
,

where ε is nothing but the bias of Matsui’s linear expressions. According to
Proposition 16, we see that the complexity of the distinguishing attack is pro-
portional to ‖ B ‖−2

2 , which is a well known result in linear cryptanalysis, for
which ‖ B ‖2

2= 4ε2.
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P (2)

P (1)

P (3)

C(1)

C(2)

φ

ξ

ψ

X

W

Y

T (1)

T (2)

Fig. 1. Two rounds of an iterated block cipher

There is an intuitive link between linear probability matrices and corre-
lation matrices [3]. Recall that the correlation matrix of a Boolean function
f : {0, 1}n → {0, 1}m is the 2m × 2n matrix C(f) such that

[
C(f)

]
u,v

=
2 Pr [u · f(P ) ⊕ v · P ] − 1, where the probability holds over the uniform dis-
tribution of P , so that

[
C(f)

]2
u,v

= LP(u · f(P ) ⊕ v · P ). We see that correlation
matrices are strongly related to the linear probability matrices in the specific
case where φ and ψ are identity functions (i.e., no reduction is performed on the
plaintext space).

3.2 Piling-Up Transition Matrices

A distinguishing attack on an iterated cipher is practical on condition that the
cryptanalyst knows a transition matrix spanning several rounds. In practice, the
cryptanalyst will derive a transition matrix on each round and, provided that
the projections were chosen carefully, pile them in order to obtain a transition
matrix on several rounds of the cipher.

We consider the scenario where a block cipher is represented by a random
permutation C over {0, 1}L (L denotes the block size of the cipher), where the
randomness comes from the key. Moreover we suppose that the block cipher is
made of two rounds corresponding to the succession of two random permutations
C(1) and C(2). In other words C = C(2) ◦ C(1). We denote P (1), P (2) ∈ {0, 1}L

the respective inputs of C(1) and C(2), whereas P (3) denote the output of C(2).
The random variables X, W , and Y respectively denote φ(P (1)), ξ(P (2)), and
ψ(P (3)), where φ, ξ, and ψ are projections onto X , W, and Y, respectively. With
these notations, the respective transition matrices of C(1), C(2), and C are[

T (1)
]

x,w
= Pr W |X [w | x] ,

[
T (2)

]
w,y

= Pr Y |W [y | w] ,

and [T ]x,y = Pr Y |X [y | x] .

This situation is represented on Fig. 1. Note that we use a representation
which is very similar to Wagner’s commutative diagrams [34]. Under the as-
sumption that X ↔ W ↔ Y is a Markov chain (as in [34]), it can easily be
shown that successive transition matrices are multiplicative, i.e., T = T (1)×T (2).
Note that this situation is idealistic as, even under the classical assumption that
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P (1) ↔ P (2) ↔ P (3) is a Markov chain [16, 32], X ↔ W ↔ Y may not be a
Markov chain unless the projection are chosen with care. Nevertheless, under
the suitable suppositions, the following lemma shows how the Piling-Up Lemma
extends to our model.

Lemma 17. Let B(1), B(2), and B be the bias matrices associated with T (1),
T (2), and T respectively, such that T = T (1) × T (2). In the case of a known-
plaintext attack, B = B(1) × B(2) and B̂ = 1

|W| B̂(1) × B̂(2). Therefore,
‖ B ‖2

2 ≤ ‖ B(1) ‖2
2 ‖ B(2) ‖2

2 , with equality if, and only if we can write[
B(1)

]
x,w

= αxγw and
[
B(2)

]
w,y

= γwβy, for some α ∈ R
|X |, β ∈ R

|Y| and

γ ∈ R
|W|.

Proof. As T = T (1) × T (2), we have

[B]x,y = [T ]x,y − 1
|Y| =

∑
w∈W

([
B(1)

]
x,w

+
1

|W|
)([

B(2)
]

w,y
+

1
|Y|
)

− 1
|Y| .

As
∑

w

[
B(1)

]
x,w

= 0, we obtain [B]x,y =
[
B(1) × B(2)

]
x,y

+ 1
|W|

∑
w

[
B(2)

]
w,y

.

The fact that P (1) is uniformly distributed implies that P (2) and P (3) are uni-
formly distributed and thus, as φ, ξ, and ψ are balanced, that X, Z, and Y are
also uniformly distributed. In that case, we know that

∑
w∈W

[
B(2)

]
w,y

= 0,

which proves that B = B(1) × B(2). We also have[
B̂(1) × B̂(2)

]
u,v

=
∑
a∈W

[
B̂(1)

]
u,a

[
B̂(2)

]
a,v

=
∑

(x,w)∈X×W
(w′,y)∈W×Y

(−1)u·x⊕v·y
[
B(1)

]
x,w

[
B(2)

]
w′,y

∑
a∈W

(−1)a·(w⊕w′)

= |W|
∑

(x,y)∈X×Y
(−1)u·x⊕v·y ∑

w∈W

[
B(1)

]
x,w

[
B(2)

]
w,y

= |W|
∑

(x,y)∈X×Y
(−1)u·x⊕v·y [B]x,y

= |W|
[
B̂
]

u,v
,

which proves that B̂ = 1
|W|B̂

(1)×B̂(2). Finally, from Cauchy-Schwarz inequality:

‖ B(1) × B(2) ‖2
2 =

∑
(x,y)∈X×Y

(∑
w∈W

[
B(1)

]
x,w

[
B(2)

]
w,y

)2

≤
∑

(x,y)∈X×Y

(∑
w∈W

[
B(1)

]2
x,w

)( ∑
w′∈W

[
B(2)

]2
w′,y

)
= ‖ B(1) ‖2

2 ‖ B(2) ‖2
2 ,
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with equality if, and only if, for all x, y ∈ X ×Y there exists some λx,y such that[
B(1)

]
x,w

= λx,y

[
B(2)

]
w,y

, so that
[
B(1)

]
x,w

= λx,0
[
B(2)

]
w,0 = αxγw. Taking

βy equal to α0/λ0,y when λ0,y �= 0 and to zero otherwise leads to the announced
result. 
�

How to find projections φ, ψ and ξ on larger spaces exhibiting such a Marko-
vian property in a given block cipher remains however an open question to us.
We may hope to approximate such a Markovian process.

4 Distinguishers Versus Key Recovery

In this section we show that our framework can adapt to key recovery instead of
distinguishers. Let us consider a process which generates independent random
variables Z1,K , . . . , Zn,K depending on some key K ∈ {0, 1}k. We assume that
for one unknown value K = K0 all Zi,K ’s follow distribution D0, whereas when
K �= K0 all Zi,K ’s follow distribution D1. We consider the simple key ranking
procedure which, for all possible K ∈ {0, 1}k, instantiates zn

K and ranks K ac-
cording to the grade GK = LLR(zn

K). For any K �= K0 we obtain (similarly to
what we had in Theorem 6) that GK0 − GK is approximatively normally dis-
tributed with expected value n∆(D0) and standard deviation

√
2n∆(D0). Hence

we obtain GK0 < GK (i.e., a wrong key K has a better rank than the right key
K0) with probability approximatively Φ

(
−√n∆(D0)/2

)
. Let d be such that

n = d/∆(D0). This probability becomes Φ
(
−√d/2) which is approximatively

e−d/4/
√

2π when d is large. So K0 gets the highest grade with probability ap-

proximatively equal to
(
1 − e−d/4/

√
2π
)2k−1 ≈ exp

(−2k · e−d/4/
√

2π
)
, which is

high provided that d ≥ 4k log 2. Hence we need

n ≥ 4k log 2
∆(D0)

.

This formula is quite useful to estimate the complexity of many attacks, e.g.
[19, 20]7. We can finally note that the expected rank of K0 (from 1 up to 2k) is
1 + (2k − 1)Φ

(
−√n∆(D0)/2

)
.

5 Conclusion

Most modern block ciphers are proven to be resistant to linear cryptanalysis in
some sense. In this paper, we wonder how this resistance extends to (both known
and unknown) generalizations of linear cryptanalysis. For this, we define a sound

7 Note that [19, 20] use slightly different notations: ∆(D0) denotes the Euclidean Im-
balance instead of the Squared Euclidean Imbalance.
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and rigorous statistical framework which allows us to interpret most of these
attacks in a simple and unified way; secondly, we develop a set of useful statistical
tools to describe such attacks and to analyze their performance. Recently, our
results on GF(2)-linear projections were exploited by [20] to obtain a small
improvement factor in an attack on E0, and by [19] in another attack against
two-level E0 [19]. In the sequel of this paper, we observe that resistance to
linear cryptanalysis implies (a somewhat weaker) resistance to generalizations
based on GF(2)-linear projections; however this resistance does not extend to all
statistical cryptanalysis, as demonstrated by our example exploiting correlations
in Z4, which confirms observations of Parker and Standaert et al. [27, 29]. The
next natural step, which we hope to have rendered easier, will be to exhibit
such a practical statistical cryptanalysis against a block cipher immune to linear
cryptanalysis, like AES [4].
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A A Strange Distribution

We consider a source generating a random variable S = (X1, . . . , Xn+1) ∈ Z
n+1
4 ,

where n is some large integer, which follows either D0 or D1 (the uniform distribu-
tion). The distribution D0 is such that the X1, . . . Xn are uniformly distributed
iid random variables and Xn+1 = (Y +

∑n
i=1Xi) mod 4, where Y ∈ {0, 1} is

uniformly distributed and independent of X1, . . . , Xn. We claim that the linear
probability of the best linear distinguisher with one query is very small (equal
to 2−(n+1)) whereas it is still possible to find a projection h such that Z = h(S)
has a high SEI. In order to simplify the proof, we will suppose that n + 1 is a
multiple of 4.

Proposition 18. Let h : Z
n+1
4 → Z2 be defined by

h(S) = msb ((Xn+1 −∑n
i=1Xi) mod 4). Then the SEI of Z = h(S) is 1.

The following lemmas will be used to prove that the best linear distinguisher
is drastically less powerful than the distinguisher of Proposition 18.

Lemma 19. Let u = u1u2 . . . un be a string of n bits. If we denote w the Ham-
ming weight of u then we have∑

1≤j<k≤n

ujuk =
w(w − 1)

2
.



How Far Can We Go Beyond Linear Cryptanalysis? 449

Lemma 20. For any positive integer N , we have:

�N/4�∑
j=0

(
N

4j

)
=

1
4
(
2N + (1 + i)N + (1 − i)N

)
and

�(N−1)/4�∑
j=0

(
N

4j + 1

)
=

1
4
(
2N − i(1 + i)N + i(1 − i)N

)
,

where i is the imaginary unit equal to
√−1.

Proposition 21. When S follows D0 we have LPS
max = 2−(n+1).

Proof. Each Xi is in Z4 so that it can be described by two bits, denoted XH
i X

L
i .

If S is considered like a bit string, a linear distinguisher will be defined by a hash
function h such that

h(S) =

⎛⎝n+1⊕
j=1

ajX
L
j

⎞⎠⊕
⎛⎝n+1⊕

j=1

bjX
H
j

⎞⎠ ,

where a1, . . . , an+1, b1, . . . , bn+1 ∈ {0, 1} with at least one non-zero value. We
easily prove that

XL
n+1⊕Y =

n⊕
j=1

XL
j and XH

n+1 =

⎛⎝ n⊕
j=1

XH
j

⎞⎠⊕
⎛⎝ ⊕

j<k≤n

XL
j X

L
k

⎞⎠⊕
⎛⎝ n⊕

j=1

XL
j Y

⎞⎠ .

Thus, if B denotes the value of the bit h(S), we have

B =

⎛⎝ n⊕
j=1

(aj ⊕ an+1)XL
j

⎞⎠⊕
⎛⎝ n⊕

j=1

(bj ⊕ bn+1)XH
j

⎞⎠⊕ an+1Y

⊕
⎛⎝bn+1

⊕
1≤j<k≤n

XL
j X

L
k

⎞⎠⊕
⎛⎝bn+1

n⊕
j=1

XL
j Y

⎞⎠ .

If bn+1 = 0 we can see that (as at least one of the a1, . . . , an+1, b1, . . . , bn is
strictly positive) Pr D0 [B = 0] = 1

2 , hence LP(B) = 0. If bn+1 = 1, we have

B =

⎛⎝ n⊕
j=1

(aj ⊕ an+1)XL
j

⎞⎠⊕
⎛⎝ n⊕

j=1

bjX
H
j

⎞⎠⊕ an+1Y

⊕
⎛⎝ ⊕

1≤j<k≤n

XL
j X

L
k

⎞⎠⊕
⎛⎝ n⊕

j=1

XL
j Y

⎞⎠ .
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If one of the bj ’s is non-zero, then B is uniformly distributed so LP(B) = 0.
We now assume that bj = 1 for all j = 1, . . . , n. We have

B =

⎛⎝ n⊕
j=1

(aj ⊕ an+1)XL
j

⎞⎠⊕ an+1Y ⊕
⎛⎝ ⊕

1≤j<k≤n

XL
j X

L
k

⎞⎠⊕
⎛⎝ n⊕

j=1

XL
j Y

⎞⎠ .

Let us define Uj = XL
j ⊕ a⊕ aj for j ∈ {0, . . . , n} and Uj = Y ⊕ a for j = n+ 1,

with a =
⊕n+1

j=1 aj . We can show that

B =

⎛⎝ ⊕
1≤j<k≤n+1

UjUk

⎞⎠⊕ c ,

where c ∈ {0, 1} is a constant. Using Lemma 19 and denoting W the Hamming
weight of the random string of bits U1, . . . , Un+1 we obtain

Pr [B = c] = Pr
[
W (W − 1)

2
≡ 0 (mod 2)

]
= Pr [W mod 4 = 0 or 1]

=
1

2n+1

n+1
4∑

j=0

(
n+ 1

4j

)
+

1
2n+1

� n
4 �∑

j=0

(
n+ 1
4j + 1

)
.

Using Lemma 20 we deduce

Pr [B = c] =
1
2

+
(1 + i)n + (1 − i)n

4 × 2n
=

1
2

+
cos
(

nπ
4

)
2

n
2 +1 =

1
2

+
(−1)

n+1
4

2
n+3

2

,

where we used the fact that n+ 1 is a multiple of 4. Finally, LPS
max = 2−(n+1).
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