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Abstract. In the bare public-key model, introduced by Canetti et al.
[STOC 2000], it is only assumed that each verifier deposits during a set-
up phase a public key in a file accessible by all users at all times. As
pointed out by Micali and Reyzin [Crypto 2001], the notion of soundness
in this model is more subtle and complex than in the classical model. In-
deed Micali and Reyzin have introduced four different notions which are
called (from weaker to stronger): one-time, sequential, concurrent and
resettable soundness. In this paper we introduce the counter public-key
model (the cPK model for short), an augmentation of the bare public-key
model in which each verifier is equipped with a counter and, like in the
original bare public-key model, the key of the verifier can be used for
any polynomial number of interactions with provers. In the cPK model,
we give a three-round concurrently-sound resettable zero-knowledge argu-
ment of membership for NP. Previously similar results were obtained by
Micali and Reyzin [EuroCrypt 2001] and then improved by Zhao et al.
[EuroCrypt 2003] in models in which, roughly speaking, each verifier is
still equipped with a counter, but the key of the verifier could only be
used for a fixed number of interactions.

1 Introduction

The notion of Zero Knowledge, put forth by Goldwasser, Micali and Rackoff [1],
has proved to be a fundamental concept in the area of complexity-based cryptog-
raphy. The original notions of security with respect to malicious provers (formal-
ized by the soundness requirement) and the security with respect to malicious
verifiers (captured by the zero-knowledge requirement) only considered a prover
and a verifier acting in isolation. Recently, the case in which provers and ver-
ifiers are part of a large system (and thus prover-verifier interactions may be
interleaved) has been considered and stronger notions of soundness and zero
knowledge have been proposed. In a sequence of papers the notions of concur-
rent zero knowledge [2] and resettable zero knowledge [3] were introduced and
protocols in the standard model were provided [4, 5, 6, 3].
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An important measure of an efficiency of a system is the number of rounds
needed. Lower bounds for the number of rounds for concurrent and resettable
zero knowledge have shown that these strong notions of security cannot be imple-
mented, in the standard model, using a constant number of rounds if black-box
zero knowledge is sought [7]. Canetti et al. [3] were thus motivated to introduce
the bare public-key model (the BPK model for short) in which, during a set-up
stage, each verifier stores in a public file his public key to be used in all sub-
sequent interactions and keeps secret the associated private key. In this model
constant-round concurrent and resettable zero-knowledge arguments for all NP
were shown to exist in [3].

Other models have been proposed in order to achieve similar results by focus-
ing on black-box concurrent zero knowledge, in particular the results of [2, 8, 9]
in the timing model, those of [10, 11] in the common reference string model,
those of [13] in the preprocessing model, and those of [12] in some partially
synchronous model.

Among the different proposed models, the BPK model has the following ad-
vantages: 1) it is not based on any trusted third party; 2) no timing assumption
is made; 3) the set-up stage is non-interactively performed only by the veri-
fiers. Consequently, the public-key model is, from among the currently proposed
models, the one that makes the least set-up assumptions and, in particular, it is
weaker than the widely accepted Public Key Infrastructure model.

Subsequently to the introduction of the BPK model, Micali and Reyzin [14]
noticed that, unlike in the standard model for interactive zero knowledge, dis-
tinct notions of soundness arise depending on whether the verifier’s public key
is used for once (one-time soundness), for polynomially many sequential argu-
ments (sequential soundness), for polynomially many concurrently interleaved
arguments (concurrent soundness), or whether the prover is allowed to reset
the verifier to a given state during the interaction (resettable soundness). How-
ever, they showed that resettably sound zero knowledge cannot be achieved in
the black-box model for non-trivial languages. Consequently, for black-box zero
knowledge, the strongest possible notion is that of a concurrently sound reset-
table zero-knowledge argument. In [14], Micali and Reyzin showed that in the
BPK model, concurrent soundness cannot be achieved in less than four rounds.
Moreover they showed that the argument system of Canetti et al. presented
in [3] is only sequentially sound and the same holds for the four-round reset-
table zero-knowledge argument presented in [14]. Recently, the existence of a
constant-round concurrently-sound resettable zero-knowledge argument in the
BPK model has been proved by [15] where a 4-round concurrently-sound reset-
table zero-knowledge argument in the BPK model has been given for all NP
languages.

Prior to the work of [15], augmented variations of the BPK model had been
presented in which constant-round concurrently-sound resettable zero knowledge
could be achieved. These proposals are interesting, even in light of the result of
[15], since they achieve three-round concurrently-sound resettable zero knowl-
edge which is remarkable as no non-trivial (black-box) zero knowledge can be
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achieved in less than three rounds in any variation of the BPK model [14, 16]. In
particular, three-round concurrently sound resettable zero-knowledge arguments
for all NP are possible in the upper-bounded public-key (UPK, for short) model
(see [17]) and in the weak public-key (WPK, for short) model (see [18]). In the
UPK model, each public key can be used for a fixed number of arguments to be
determined during set-up. The verifier is equipped with a counter to keep track
of the number of arguments he has been involved in. In the WPK model, instead,
there is a fixed upper bound on the number of times the verifier can be involved
in sessions regarding the same statement. Thus, also in this model, the verifier
must have a counter (actually, one for each possible statement).

Our Contribution. In this paper we introduce the counter public-key (cPK for
short) model, that is a model weaker than the WPK (and thus of the UPK) model
and only slightly stronger than the BPK model. The cPK model, like the UPK of
Micali and Reyzin and the WPK of Zhao et al., is an extension of the BPK model in
which the verifier is equipped with a counter that, roughly speaking, keeps track
of the number of sessions that she has been involved with. However, unlike the
UPK model and the WPK model, each public key of the verifier can be used any
polynomial number of times exactly like in the original BPK model. Therefore,
our proposed model, although slightly stronger than the original BPK model, can
be considered much weaker than the UPK model and the WPK model. Indeed, in
the cPK model the verifier has no bound on the number of proofs he can engage
with the provers while in both UPK and WPK models once the bound is reached,
soundness is not guaranteed to hold.

We first present a three-round concurrently sound resettable zero-knowledge
argument of membership for NP in the cPK model. This construction improves
the previous works of [17, 18] that achieved the same result but in stronger mod-
els. We notice that, in the BPK model, concurrent soundness requires 4 rounds.
Our protocol is based on the existence of sub-exponentially hard primitives, as
in all previous works for obtaining a constant-round resettable zero-knowledge
argument in any public-key model.

Our second construction is a three-round concurrently sound concurrent zero-
knowledge argument of knowledge for all NP relations in the cPK model under
standard intractability assumptions. We notice that, in the black-box model,
resettable zero-knowledge arguments of knowledge exist only for trivial languages
and thus concurrent zero knowledge is the strongest notion of zero knowledge
that can be achieved when arguments of knowledge are sought.

2 The cPK Model

The cPK model assumes that:

1. there exists a public file F that is a collection of records, each containing a
public key;

2. an (honest) prover is an interactive deterministic polynomial-time algorithm
that takes as input a security parameter 1n, F , an n-bit string x, such that
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x ∈ L and L is an NP-language, an auxiliary input y, a reference to an
entry of F and a random tape;

3. an (honest) verifier V is an interactive deterministic polynomial-time algo-
rithm that works in the following two stages: 1) in a first stage on input a
security parameter 1n and a random tape, V generates a key pair (pk, sk)
and stores pk in one entry of the file F ; 2) in the second stage, V takes
as input the private key sk, a counter value c, a statement “x ∈ L” and a
random string, then V performs an interactive protocol with a prover , and
outputs “accept” or “reject”;

4. interactions between prover and verifier start after all verifiers have com-
pleted their first stage.

Definition 1. Given an NP-language L and its corresponding relation RL, we
say that a pair 〈P, V 〉 is complete for L, if for all n-bit strings x ∈ L and any
witness y such that (x, y) ∈ RL, the probability that V interacting with P on
input y, outputs “reject”is negligible in n.

Malicious Provers in the cPK Model. We will give argument systems that are
sound with respect to s-concurrent malicious provers, for any positive polyno-
mial s. An s-concurrent malicious prover P � for the complete pair 〈P �, V 〉 is a
probabilistic polynomial-time algorithm that takes as input V ’s public key pk,
and, if P � is concurrently running i sessions, for 0 < i ≤ s(n), P � can pick a
new statement xi+1 and a value ci+1 of the counter and start a new session with
V on input xi+1 and ci+1. The only restriction is that, for each value c of the
counter, P � can only start one session with value c. Also, we allow the malicious
prover to schedule his messages in the concurrent sessions in any way he wants
and, for each message of P �, V ’s reply is immediately received.

We stress here that our definition of malicious prover is the same used by L.
Reyzin (see [16]) for the UPK model. Instead, in [18], the value of the counter
is assumed to be private to the verifier and the malicious prover has no way of
manipulating it. Moreover, we stress that in the cPK model there is no bound on
the number of sessions in which the verifier can be involved, thus the model is
weaker than the WPK and UPK models and very close to the standard BPK model.

Given an s-concurrent malicious prover P � and an honest verifier V , a con-
current attack is performed in the following way: 1) the first stage of V is run on
input 1n and a random string so that a pair (pk, sk) is obtained; 2) P � is run on
input 1n and pk; 3) whenever P � starts a new protocol choosing a statement, V
is run on inputs the new statement, a new random string and sk.

Definition 2. Given a complete pair 〈P, V 〉 for an NP-language L in the cPK
model, then 〈P, V 〉 is a concurrently sound interactive argument system in the
cPK model for language L if, for all positive polynomial s, for all s-concurrent
malicious prover P �, for any false statement “x ∈ L” the probability that in
an execution of a concurrent attack V outputs “accept” for such a statement is
negligible in n.
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The strongest notion of zero-knowledge, referred to as resettable zero knowl-
edge, gives to a verifier the ability to reset the prover to a previous state. This
is significantly different from a scenario of multiple interactions between prover
and verifier since after a reset, the prover uses the same random bits. We now
give the formal definition of a black-box resettable zero-knowledge argument
system with concurrent soundness for NP in the counter public-key model.

Definition 3. An interactive argument system 〈P, V 〉 in the cPK model is black-
box resettable zero-knowledge if for any polynomial t(·), and for any probabilistic
adversary V � running in time t(·), there exists a probabilistic polynomial-time
algorithm S such that for any polynomial s(·), for any x1, · · · , xs(n) ∈ L of length
n, the following two distributions are indistinguishable:

1. the output of V � consisting of a public file F with s(n) entries and the tran-
script of a polynomial number of (even concurrent) interactions with each
P (xl, yl, rg, F, i) where yl is a witness for “xl ∈ L”, |xl| = n, rg is a random
tape and i specifies an entry of the public file, for 1 ≤ i, l, g ≤ s(n);

2. the output of S that has black-box access to V � on input x1, . . . , xs(n).

Moreover we define such an adversarial verifier V � as an (s, t)-resetting ma-
licious verifier.

3 Cryptographic Tools

We review the cryptographic tools that we will use in our constructions. We
start from the notions of an η-secure digital signature scheme and of a γ-secure
commitment scheme.

Definition 4. An η-secure digital signature scheme SS is a triple of algorithms
SS = (G, Sig, Ver) such that

1. Correctness: for all messages m ∈ {0, 1}k,
Pr[(pk, sk)← G(1k); m̂← Sig(m, sk) : Ver(m, m̂, pk) = 1] = 1.

2. Unforgeability: for all algorithms A running in time o(2kη

) it holds that

Pr[(pk, sk)←G(1k); (m, m̂)←AO(sk)(pk) :m �∈ Query and Ver(m, m̂, pk)=1]

is negligible in k where O(sk) is a signature oracle that on input a message
returns as output a signature of the message and Query is the set of signature
requests submitted by A to O.

We assume that signatures of k-bit messages produced by using keys with
security parameter k have length k. This is not generally true as for each signa-
ture scheme we have a constant a such that signatures of k-bit messages have
length ka but this has the advantage of not overburdening the notation. It is
understood that all our proofs continue to hold if this assumption is removed.

Standard secure signature schemes exist under the assumption of the exis-
tence of one-way functions [19]. In our case we need the existence of functions
that are one-way with respect to subexponential-time adversaries.



Improved Setup Assumptions for 3-Round Resettable Zero Knowledge 535

Definition 5. An γ-secure bit commitment scheme is a pair of algorithms (Com,
Dec) such that

1. Correctness: for all b ∈ {0, 1} and for all k,

Pr[(com, dec)← Com(b, 1k) : Dec(com, dec, b) = 1] = 1;

2. Perfect Binding: for all k, the set of strings com of length k for which there
exist strings dec0, dec1 such that Dec(com, dec0, 0) = 1 and Dec(com, dec1, 1)
= 1 is empty;

3. Computationally Hiding: the ensembles of random variables

{[(com, dec)←Com(0, 1k) :com]}k>0 and {[(com, dec)←Com(1, 1k) :com]}k>0

are indistinguishable with respect to algorithms running in time o(2kγ

);
4. Extractability: there exists an extractor algorithm E running in time 2kγ

such that, for all commitments com computed by a probabilistic polynomial-
time committer adversary A, if A succeeds in decommitting com as b with
non-negligible probability, then E(com) = b with overwhelming probability.

The above definitions can be easily extended to the case in which we wish to
commit to a string (instead of committing to a bit). Such commitment scheme
exists, for instance under the assumption that there exist permutations that are
one-way with respect to polynomial-time adversaries but such that they can be
inverted in subexponential time. In [20], these type of commitment schemes are
used in order to achieve straight-line extractability in superpolynomial time.

Finally, we review the notion of a ZAP[21].

Definition 6. A triple of polynomial-time algorithms (ZG,ZP,ZV ) is a ZAP
for the NP-language L with polynomial-time relation RL iff:

1. Completeness: given a witness y for “x ∈ L” and z = ZG(1k) then
ZV (x, z, ZP (x, y, z)) = 1 with probability 1.

2. Soundness: for all x �∈ L, with overwhelming probability over z = ZG(1k),
there exists no z′ such that ZV (x, z, z′) = 1.

3. Witness-Indistinguishability: let y1, y2 such that (x, y1) ∈ RL and (x, y2)
∈ RL. Then ∀z, the distributions on ZP (x, y1, z) and on ZP (x, y2, z) are
computationally indistinguishable.

In [21] a ZAP is presented under the assumption that non-interactive zero-
knowledge proofs exist, thus the existence of ZAPs is implied by the existence
of one-way trapdoor permutations.

Since we will need ZAPs to be secure with respect to subexponentially strong
adversaries, we need subexponentially strong versions of these assumptions.

4 Three-Round Arguments in the cPK Model

In the cPK model we show that there exist three-round arguments of member-
ship for all NP languages that are concurrently sound and black-box resettable
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zero knowledge. We stress that a concurrently sound resettable zero-knowledge
argument in the BPK model requires at least four rounds (see [14]) while the pre-
viously presented three-round protocols require stronger models than the cPK
model (see [17, 18]).

Our construction assumes the existence of η-secure signature schemes, γ-
secure commitment schemes, pseudo-random family of functions (which can be
constructed assuming the existence of one-way functions) and the existence of
ZAPs secure with respect to subexponential-time adversaries. We use subex-
ponentially strong cryptographic primitives since we crucially use complexity
leveraging for our result.

We then show how to obtain three-round arguments of knowledge for all
polynomial-time relations that are concurrently sound and black-box concurrent
zero-knowledge under standard complexity assumptions. We stress that black-
box resettable zero-knowledge arguments of knowledge are not possible [22, 14],
that concurrent soundness needs four rounds in the BPK model, and that three
rounds is optimal for zero-knowledge in any public-key model.

4.1 Three-Round RZK Argument of Membership in the cPK Model

In this section we present our construction for the three-round argument of
membership for all NP in the cPK that is concurrently sound and resettable
zero-knowledge. Throughout the section, L will be a fixed NP language.

Our proof system will follow the FLS paradigm for zero knowledge [23] and
we next define the auxiliary language Λ = Λ(L) that we are going to use.

Definition 7. The 8-tuple τ = (x, c, ã1, ã2, b̃1, b̃2, k, pk) belongs to the language
Λ if

– x ∈ L or
– there exist a1, a2, α1, α2, b1, b2, β1, β2 such that

1. pk is a public key in the output space of G(1k);
2. a1 �= a2;
3. (ã1, α1) = Com(a1, 1k) and (ã2, α2) = Com(a2, 1k);
4. (b̃1, β1) = Com(b1, 1k) and (b̃2, β2) = Com(b2, 1k);
5. Ver(a1 ◦ c, b1, pk) = 1 and Ver(a2 ◦ c, b2, pk) = 1.

Informally speaking, τ = (x, c, ã1, ã2, b̃1, b̃2, k, pk) belongs to Λ if x belongs to
L or if, for i = 1, 2, b̃i is the commitment of a valid signature bi (with respect to
pk) of the concatenation of message ai committed to by ãi concatenated with c.

Assumptions. In our construction we assume the existence of the following cryp-
tographic tools.

1. an η-secure digital signature scheme SS = (G, Sig, Ver);
2. a γ-secure commitment scheme (Com, Dec);
3. a pseudo-random family of functions F ;
4. a ZAP (ZG,ZV,ZP ) for the language Λ.
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High-Level Overview. Let k be the security parameter. The public entry of a
verifier contains a public key pk for a secure signature scheme and the first
message z of ZAP for Λ. The actual proof that x ∈ L consists of a first round
where the prover sends a random message m to the verifier. The verifier replies
with the current value c (in unary) of the counter and a signature m̂ of m ◦
c. The prover first verifies that m̂ is a valid signature and then constructs 4
commitments ã1, ã2, b̃1, b̃2 of 0k. Finally the prover computes the second message
of the ZAP in which he proves that x ∈ L or that b̃1 and b̃2 are the commitments
of valid signatures b1, b2 of messages a1 ◦ c and a2 ◦ c such that a1 �= a2 and a1
and a2 are the messages committed in ã1 and ã2.

Let us now informally argue the properties of our construction. For the con-
current soundness we observe that even if the prover opens polynomially many
concurrent sessions with the verifier, he will receive signatures of messages rel-
ative to different values of the counter. In particular, the prover will never see
the signature of two messages with the same value of the counter as suffix. We
will use a γ-secure commitment scheme along with a ZAP in order to show that
a prover that proves false statements can be used by a superpolynomial-time
algorithm in order to break a subexponentially strong assumption. Such a tele-
scopic use of the hardness of different cryptographic assumptions is referred to as
complexity leveraging and its power is gaining interest. The use of an extractable
commitment along with a ZAP is also discussed and used in [20].

For the resettable zero knowledge property, the simulator while interacting
with the verifier V ∗ will try, by rewinding V �, to get signatures for two messages
with the same value of the counter as suffix. More precisely, to simulate the proof
that x ∈ L, the simulator will first ask for the signature of message m ◦ c (where
c is the current value of the counter), then he starts a look-ahead (by rewinding
V �) in order to obtain the signature of a new message m′ ◦ c. Once the signature
is obtained, the look-ahead ends and the simulator goes back to the previous
original execution since it is now able to successfully run the third round.

The crucial observation to show that the simulation ends in expected polyno-
mial time is that the values of the counters cannot be greater than the running
time of the adversarial verifier (since V � sends the value of the counter in unary).
More precisely, each look-ahead starts after the first signature corresponding to
a given counter value and to a given public key has been received by S. Since the
number of public keys is polynomially bounded (the size of the public file does not
change after the preprocessing stage) and the running-time of an (s, t)-resetting
verifier is bounded by the polynomial t, we have that the number of look-aheads
is polynomial. Moreover, each look-ahead starts because a given counter value
has been sent by V � on input a given transcript. Therefore, the expected number
of rewinds that will be needed in order to obtain again the same counter (in the
look-ahead the corresponding signature is asked for a different message) is the
inverse of the probability that V � plays such a value. Finally, by observing that
the simulation between two rewinds can be run by S in polynomial time, we
have that the simulator runs in expected polynomial-time.
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Formal Description. Let k be the security parameter. The verifier runs the key
generator G for the η-secure signature scheme on input 1k obtaining the pair
(pk, sk). Moreover, the verifier runs ZG on input 1k and obtains z that will be
used as the first round of the ZAP for the language Λ. The entry of the verifier
in the public file consists of the pair (pk, z). The private key sk associated with
pk is kept secret by the verifier. Moreover, the verifier initializes her counter c
by setting c = 0. The protocol is found in Figure 1.

Common input: security parameter k, public file F{(pk, z)} and instance x.
P’s private input: a witness y for x ∈ L.
V’s private input: private key sk and a counter c.

P-round-1:

1. randomly pick seed s;
2. compute w = F(s, x ◦ y ◦ pk) and use w as randomness;
3. randomly pick m← {0, 1}k and sends it to V ;

V-round-2:

1. increment c;
2. compute m̂c = Sig(m ◦ c, sk);
3. send (1c, m̂c) to P ;

P-round-3:

1. verify that Ver(m ◦ c, m̂c, pk) = 1;
2. randomly pick seed s′;
3. compute w′ = F(s′, x ◦ y ◦ pk ◦ m̂c ◦ c) and use w′ as randomness;
4. use a γ-secure commitment function Com to compute commitments

ã1, ã2, b̃1, b̃2 where ãj = Com(0k, 1k1) and b̃j = Com(0k, 1k1) for j = 1, 2;
5. compute Z = ZP ((x, c, ã1, ã2, b̃1, b̃2, k, pk), y, z);
6. send ã1, ã2, b̃1, b̃2 and Z to V ;

V-decision: verify that the ZAP is valid by running ZV on input instance
τ = (x, c, ã1, ã2, b̃1, b̃2, k, pk), initial ZAP-message z and ZAP-reply Z.

Fig. 1. The 3-round concurrently sound rZK argument for NP in the cPK model. The
value k1 is chosen based on η, γ and k (see the proof of concurrent soundness)

Theorem 1. If, for some positive η and γ, there exist an η-secure digital signa-
ture scheme, a γ-secure commitment scheme and sub-exponentially strong ZAPs
for all NP languages then there exists a 3-round concurrently sound resettable
zero-knowledge argument system for any language L ∈ NP in the cPK model.

Proof. Consider the protocol in Figure 1. Completeness follows by inspection.
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Concurrent Soundness. Assume by contradiction that the protocol is not con-
currently sound; then there exists a malicious prover P � that in a concurrent
attack has a non-negligible probability of making verifier V accept x for some
x �∈ L.

We assume we know the session j� of the verifier in which the prover will
succeed in cheating. This assumption will be later removed. In order to obtain
a contradiction we show an algorithm A running in time o(2kη

) that breaks
the η-secure digital signature scheme SS used in the construction. Algorithm A
receives a signature public key pk, obtained by running G on input 1k, has access
to P � and to a signing oracle O for a public key pk and outputs a signature of
a message for which the oracle had not been queried.

We now describe algorithm A. On input challenge public key pk, A performs
the set-up procedure and builds the public entry of the verifier as (pk, z) where
z is the output of algorithm ZG on input 1k. Algorithm A starts the interaction
with the prover P � and, for all sessions j constructs the message to be sent in the
second round of the protocol by following the verifier’s algorithm and by resorting
to the oracle O to compute signatures of messages m◦c, for messages m received
from P �. At the end of session j�, since x �∈ L then, by the soundness of the ZAP
(ZG,ZP,ZV ), it must be the case that P � has exhibited commitments ã1, ã2
of two different messages a1, a2 and commitments b̃1, b̃2 of two signatures b1, b2
such that, b1 is a signature of a1 and b2 is a signature of a2. Moreover, messages
a1 and a2 have the value of the counter chosen by P � for the j�-th session as
suffix. Then A in time O(POLY(k1) ·2k1

γ

) breaks the secrecy of the commitments
and obtains the two messages along with their corresponding signatures. Now,
A has queried the oracle for public key pk once for each value of the counter
(we remind the reader that the adversary P �, for each value of the counter, is
allowed to run the verifier at most once) and thus A has not queried the oracle
for at least one of a1 ◦ c or a2 ◦ c. By picking k1 such that kγ

1 < kη, we have that
A runs in time o(2kη

) and we have reached a contradiction.
In our proof we assumed that A knows the value j�. If this is not the case that

A can simply guess the value and the same analysis applies since this decreases
only by a polynomial factor the probability of breaking the digital signature
scheme. Moreover A can also try to break all the commitments of all sessions,
since the running time will still be o(2kη

).

Resettable Zero Knowledge. Let V � be an (s, t)-resetting verifier. We next de-
scribe a probabilistic polynomial-time algorithm S ≡ SV �

that has black-box
access to V � and whose output is computationally indistinguishable from the
view of the interactions between P and V �.

The simulator S receives from V � requests that can be described wlog by
a quadruple (x, i, r, v), where x denotes the input instance for language L, i
denotes the index of the public key with respect to which the interaction has
to be simulated, r is the index of the random tape that must be used in the
simulation, v is the index of the message that S must send (and, for our specific
protocol, v = 1 or v = 3). We remark that the resetting adversary V � is allowed
to reset the prover to any previous state and even request that a different random
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tape has to be used (however, V � is not allowed to feed the prover with a random
tape of its choice).

Simulator S maintains several data structures which will be implicitly used
in its description below and performs all the consistency checks requested by
the protocol (for example, that the signatures received are valid). In addition,
S also builds a table S(i, c) of signatures with entry (i, c) holding signatures of
messages with suffix c computed with respect to the i-th public key.

The interaction between V � and S consists of essentially four types of re-
quests. Indeed, two rounds of the argument system are played by the prover and
we distinguish two cases depending on whether or not the same round has been
requested since the last rewind by the verifier.

1. The request is (x, i, r, 1) and it is the first such request since last rewind.
In this case, S follows exactly the prover’s algorithm using the r-th random
tape as source of randomness.

2. The request is (x, i, r, 1) and such request has already been presented to S
by V � since last rewind.
In this case, S re-plays the same message used in the previous round.

3. The request is (x, i, r, 3) and S has already received such a request since the
last rewind.
In this case, S re-plays the same message used in the previous round.

4. The request is (x, i, r, 3) and S has not received such a request since the last
rewind. Let c be the value of the counter declared by V � in the message just
preceding the request. We have two sub-cases:
(a) S(i, c) contains two (or more) signatures.

In this case S uses two signatures from S(i, c) as witness to compute the
last message of the ZAP.

(b) S(i, c) contains one signature.
S has obtained the signature in the second round played by V � (the case
in which |S(i, c)| = ∅ and S has to play the third round cannot happen).
In this case S needs to obtain a second signature with suffix c in order
to be able to compute the last message of the ZAP. Thus, S starts a
look-ahead for (i, c). More precisely, S rewinds V � to the state just after
he has sent the first request (x, i, r, 1) (notice that since V � is a resetting
adversary, there could be several such requests) and uses a new random
string r′ instead of r. S will repeat such a rewind strategy until a rewind
ends by appending a second entry to (i, c).
As we shall argue, the simulation will halt in expected polynomial-time
as the number of pairs (i, c) (and thus the number of look-aheads) is
bounded by s(n)t(n) which is a polynomial (we are considering by defi-
nition an (s, t)-resetting verifier).

The Views Are Indistinguishable. The first message played by S in each session
has exactly the same distribution of the one played by the prover since S simply
runs the prover’s algorithm. We stress that even though after each rewind S
changes one randomness rg for a given g ∈ {1, . . . , s(n)}, V � is not aware of such
an update since its view does not go back with respect to the last rewind.



Improved Setup Assumptions for 3-Round Resettable Zero Knowledge 541

The third round played by S has the following two differences with respect
to the one played by the prover.

1. The prover commits to junk bits (the 0k strings) while the simulator com-
mits to a pair of different messages with the same suffix, along with their
signatures with respect to a given public key. By the computational hiding
of the commitment scheme, V � does not distinguish the commitments of S
from the commitments of the prover. More formally, if V � distinguishes with
non-negligible probability the commitments of S from the commitment of
P , then V � can be used to contradict the hiding of the commitment scheme.

2. The prover uses y such that (x, y) ∈ RL in order to compute the auxiliary
witness for running ZP on input the auxiliary statement “τ ∈ Λ”. Instead,
the simulator uses his knowledge of the different messages with c as suffix
along with their signatures to compute the auxiliary witness for “τ ∈ Λ”.
Both the prover and S follows the honest prover algorithm for the ZAP by
running ZP on a good witness for the auxiliary statement. Therefore, an
adversarial verifier V � that distinguishes the witness used by the simula-
tor from the one used by an honest prover can be used to contradict the
witness-indistinguishability of the ZAP. Note that in our implementation of
the ZAP the prover uses as randomness a pseudorandom string of both z and
the message sent by the verifier. Therefore, as remarked in [21, 22], this imple-
mentation of ZAP preserves witness-indistinguishability even in case of reset
attacks, i.e., the implemented ZAP is a resettable witness-indistinguishable
proof system.

The Simulation Ends in Polynomial Time. S has to compute two messages for
each session. Note that for the first message, S always performs a straight-line
simulation since the first round of a session is played by running the prover
algorithm, and since no witness is needed, it can be computed by S without
rewinding V �.

The analysis is more complicated for the second message. First of all, observe
that the simulator starts a new look-ahead procedure only after receiving a
request (x, i, r, 3). Such a request is immediately preceded by a message from V �

containing one valid signature for a pair (i, c) for which S(i, c) was empty before
the request (for otherwise, no look-ahead procedure would be started since S has
at least 2 valid signatures). In other words, the simulator starts a look-ahead
procedure only after receiving a useful signature. However, observe that both the
number of entries in the public file (and thus the number of possible values of
i) and the number of possible values of the counter are bounded by the running
time of the adversary V � that is assumed to be polynomially bounded. Next, we
argue that the contribution of each entry to the expected work of the simulator
is also polynomially bounded. Roughly speaking, the contribution of each pair
(i, c) is equal to the probability that counter c appears in a session with public
key pki times the number of rewinds needed to have a new session with the same
public key and the same value of the counter in which we ask for the signature of
a different message. It is easy to see that this quantity is polynomially bounded.
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4.2 Three-Round CZK Argument of Knowledge in the cPK Model

In this section we present a three-round concurrently-sound concurrent zero-
knowledge argument of knowledge in cPK for any language L ∈ NP under stan-
dard intractability assumptions.

The argument of knowledge that we present is derived from the argument
of membership of the previous section by replacing the ZAP with a 3-round
witness-indistinguishable proof system to prove a statement of the form “α∨β”
where α is known at the beginning of the protocol while β is known only in
the last round. Additionally, we need witness extraction with respect to α. An
implementation of this primitive can be given by using a variation of the protocol
presented in [25] (this is also used in [26]).

To prove the properties of our construction, we assume the existence of sig-
nature and commitment schemes secure with respect to polynomial-time ad-
versaries, and the existence of the mentioned 3-round witness-indistinguishable
proof system of membership π for any NP language (which can, in turn, be based
on the existence of one-way permutations). We use this proof system as a black
box and denote the messages computed in it as (wi1, wi2, wi3), where wi1 is sent
by the prover, wi2 is sent be the verifier and wi3 is sent by the prover again.
Note that in order to prove that x ∈ L, for some NP language L, the message
wi1 can be computed in polynomial time given only the length value |x| (that
is, neither x nor a witness for it is necessary).

The Public File. Let k be the security parameter. The i-th entry of the public
file F consists of a randomly generated public key pk with security parameter
k for the secure signature scheme SS and of the first round of a two-round
computationally-binding perfectly-hiding commitment scheme.

Private Inputs. For the statements “x ∈ L”, the private input of the prover
consists of a witness y for x ∈ L. The private input of the verifier consists of the
private key sk corresponding to the public key pk and a counter c.

The Protocol. Suppose that the prover wants to prove that x ∈ L and that the
verifier knows the private key sk of the i-th public key pk of the public file F .

In the first round P randomly picks string m of length k, computes wi1
according to the proof system π, and sends the pair (m, π) to V . Then V in-
crements c and uses the private key sk to compute a digital signature m̂c of
m ◦ c, computes message wi2 and sends the triplet (1c, m̂c, wi2) to P . In the
last round P verifies that m̂c is a valid signature of m ◦ c with pk and computes
the commitments ã1, ã2, b̃1, b̃2 of 0k. Then P computes message wi3 according
to proof system π by using instance (x, c, ã1, ã2, b̃1, b̃2, k, pk) and string y as the
input and witness for π, respectively. P sends wi3, ã1, ã2, b̃1, b̃2 to V . Finally, V
verifies that (wi1, wi2, wi3) is valid by running the verifier’s accepting predicate
in proof system π, using as input the instance (x, c, ã1, ã2, b̃1, b̃2, k, pk).
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Theorem 2. If there exist one-way permutations, then there exists a three-
round concurrently-sound concurrent zero-knowledge argument of knowledge for
NP in the cPK model.

The proof of Theorem 2 is omitted from this extended abstract.

5 Conclusion

In this paper we have presented a 3-round concurrently-sound resettable zero-
knowledge argument system in the cPK model that improves the previous works
of Micali and Reyzin [17] and Zhao et al. [18]. The cPK model is only a slight
variation of the BPK model, and we have shown that it can be used to go beyond
the barrier of four rounds needed for concurrent soundness in the BPK model. Our
result makes a big step for closing the gap between a public-key model that ad-
mits three-round concurrently-sound resettable zero-knowledge arguments and
the BPK model. Moreover, we have shown a 3-round concurrently-sound concur-
rent zero-knowledge argument of knowledge in the cPK model under standard
intractability assumptions.
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