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Abstract 

In bioinformatics, biochemical signal pathways can be modeled by many differential 
equations. It is still an open problem how to fit the huge amount of parameters of the 
equations to the available data. Here, the approach of systematically obtaining the 
most appropriate model and learning its parameters is extremely interesting.  
One of the most often used approaches for model selection is to choose the least 
complex model which “fits the needs”. For noisy measurements, the model which 
has  the smallest mean squared error of the observed data  results in a model which 
fits too accurately to the data – it is overfitting. Such a model will perform good on 
the training data, but worse on unknown data. 
This paper propose as model selection criterion the least complex description of the 
observed data by the model, the minimum description length. For the small, but im-
portant example of inflammation modeling the performance of the approach is 
evaluated. 
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1. Introduction 
In living organisms many metabolisms and immune reactions depend on specific, loca-

tion-dependent interactions. Since the interactions occur in a timed transport of matter and 
molecules, this can be termed as a network of biochemical pathways of molecules. In 
Bioinformatics, these pathways or signal interactions are modeled by many differential 
equations. For complicated systems, differential equations systems (DES) with up to 
7,000 equations and 20,000 associated parameters exist and model reality. The motivation 
for life science industry to use such systems is evident: A prediction of reactions and 
influences by simulated models helps avoiding time -consuming, expensive animal and 
laboratory experiments, decrease the high costs for developing new drugs and therefore 
may save millions of Euros. For small signal transduction networks, this has already been 
done by estimating the parameters by data-driven modeling of expression profiles of 
DNA microarrays, see e.g. [2],[3],[4]. Interestingly, no problems were reported fitting the 
models to the data. 

Although the basic idea is quite seducing, the practical problems associated with the 
simulation approach are difficult to solve: How do we know that our selected model is 
valid and how can all parameters be set to the correct values? And if all parameters are 
different for each individual, how can they be adapted to the real values based only on a 
small set of measured data per organism?  

In this paper we will try to answer some of theses questions for the example of the 
small but important problem of inflammation and septic shock.  

2. The differential equation neural network of inflammation and septic shock 

The symptoms of septic shock contain low blood pressure, high ventilation and high 
heart rates and may occur after an  infection or a trauma (damage of tissue). The septic 
shock research has no convincing results yet; there is still a high mortality of about 50% 
on the intensive care units (ICU) and nobody knows why. It is only possible to predict the 
outcome for a patient in advance just for 3 days, see [5] . In 1999, about 250,000 death 
were associated with sepsis in the USA. 
The septic shock state is produced by a confusing myriad of immune pathways and mole-
cules. For studying the basic problems we restrict ourselves first to a simplified but still 
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functional version of the model which uses only three variables and 12 constant parame-
ters [6]. Let P be the pathogen influence, M the immunological response, e.g. the macro-
phages involved and D the obtained cell damage. Then, using some basic assumptions 
[7], we might combine them into a coupled system of three first order differential equa-
tions: 

 P'(t)  = a1(1–P)P  + a2MP (1) 

 M'(t) = a3M +a4M(1–M)P + a5M(1–M)D (2) 

 D'(t)  = a6D + a7 h( (M–a9)/a8) (3) 

 
The plot of the time course for the three outputs (three variables) for the set of parameters 
shown in Tab. 1 is shown in Fig. 1. For this, the differential equations were numerically 
integrated using the Runge-Kutta method. 

 
a1 =   0.054 a3 = -1.0 a6 = -0.01 
a2 = –0.2155 a4 =  5.0 a7 = 0.00384 
a9 = 0.2018 a5 = 1.0 a8 = 0.1644 

Tab. 1 The constant parameter values 

It can be concluded that an infection (P) causes cell damage (D) and a delayed activity of 
the macrophages (M). The infection is defeated by the macrophages which decrease to a 
sufficient level afterwards. In this case (parameter regime), the infection remains chroni-
cally and the cell damage reaches a stable level. 

 
Fig. 1 The time dynamics of the equations (4),(5) and (6). 

 
Now, how can the parameters, which correspond to the weights of the second layer, be 

learned? It is well known that the non-linear transfer function of deterministic chaotic 
systems can be efficiently be learned in order to predict a chaotic time series, see for in-
stance [8]. Therefore, all dynamics which evolve by recurrent influence may be modeled 
by recurrent neural nets containing delayed signals, implemented e.g. in the discrete case 
by delay elements like tapped delay lines. In this case, the learning can be done by simple 
error reducing algorithms. 

In the next section let us regard the adaptation of the parameters more closely. 

3. Learning the Parameters 
Generally, the biochemical pathways are very complex. It is not clear, which influ-

ences are important and which are not important. For the analytical description by equa-
tions this means that the number of terms (“model selection”) and the values of its pa-
rameters (“model adaptation”) are not given a priori, but have to be estimated (“learned”) 
by the real observed data. How can this be done? 
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First, we are troubled by the fact that we do not have the full data set of Fig. 1 but only 
the small set of observed data given in table 2. 
This situation is different from the previous one of learning the unknown parameters: the 
time scales of the observed training data and of the iteration cycles are different. For in-
stance, the dynamics of inflammation might be in the reach of hours, whereas the ob-
served data is taken once each day. 
 

Time step P M D 
0 0.050000 0.001000 0.150000 

100 0.201215 0.206079 0.254347 
200 0.183751 0.206844 0.342027 
300 0.177270 0.206750 0.374282 
400 0.174876 0.206680 0.386141 
500 0.173995 0.206649 0.390500 

Tab. 2 The observed sparse data 

In Fig. 2 this situation is shown. Here, the variable y(t) changes after each time tick, 
but it is only measured at time points t i. 

 
   

y ( t )  

t i m e  t i c k s t 1  t 2  t 3  t 4  
 

 
Fig. 2 The different time intervals for the differential equation and the observations 

The different time scales will change heavily the approximated coefficients and difference 
equations, see [7] . Therefore, if we ignore the time steps between the observations and 
assume that system iterates once for one observation we will not be able to predict the 
best fitting parameters ai for the difference equations that have several time steps between 
the observations.  
Now, how can we proceed to approximate the unknown parameters from sparse observa-
tions? Obviously, the direct approach of a gradient descend for reducing the mean 
squared error between a simulated time sequence and an observed one used for instance 
in chaotic time sequence parameter estimation [8]  is not possible here because we have 
no knowledge of the intermediate samples.  
Instead, let us consider a variant of the classical evolutionary approach as it was intro-
duced by Rechenberg 1973 [7], see [10].  

(i) Generate a new set of random weights numerically by incrementing the old 
value with a random number, e.g. a Gaussian deviation. 

(ii) test it: does it decrease the objective function? 
(iii) If no, inverse the sign of the increment and test it: does it decrease the objective 

function? 
(iv) If no, take the old weight values and choose another weight set. 
(v) Continue until the error has sufficiently decreased or the number of iterations 

has exceeded a predefined maximum. 

In order to avoid getting stuck in a suboptimum, the whole process might be repeated 
several times using different random starts. 
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The advantage of this approach is its independency of the complexity of the objective 
function. The disadvantage is its high computational burden: we have to recompute the 
objective function each time we change only one parameter, and we can not adapt the step 
width in advance. Nevertheless, for a given DES and given observed data this approach 
shows good performance, see [7]. 

For a given model, this is fine. If the model is not given we are in trouble: How should we 
select the model and adapt the parameters at the same time? The initial idea of first adapt-
ing the parameters and then selecting the model by pruning all terms that has very small 
parameter values might work. Consider for instance our model of eqs. (1),(2),(3). We 
might add the following ideas: 

(1) If the pathogen influence (microbes) is present at the location where cell damage 
occurs, the pathogen influence will be increased: P’ ~ PD 

(2) Macrophages will die due to toxic influence of microbes, proportional to the co-
occurrence probability and the microbe concentration : M’ ~ –P2M 

These two possible extensions of the model will be translated into the modified differen-
tial equations 

 P'(t)   = a1(1–P)P  + a2MP + a10PD    (4) 

 M'(t) = a3M +a4M(1–M)P + a5M(1–M)D + a11P2M (5) 

 D'(t)  = a6D + a7 h( (M–a9)/a8) (6) 

On the other hand, we might have a more simple model in reality than we expect. For 
instance, we might have a model without influence of variable D to variable M, i.e. a5 = 0, 
or a changed model with both a10,a11≠0 and a5 = 0. 

With these ideas, we have now four different possible models. How can we decide 
which model is implemented by reality? How can we choose the best model? 

4. Model selection 
The choice of the model is important for all diagnosis and therapies of the septic process. 
First, we have to discuss several possibilities for selecting the appropriate model and then 
we will select one strategy of our choice. 

4.1 Model selection by parameter pruning 
As the first, naïve approach let us consider the case where we have the pure differential 
equations (1),(2),(3) or  (4),(5),(6) encountering no noise and we have recorded observa-
tion samples. How do we know which model is the right one for the observations? In this 
case, we might expect that the additional terms produce an error in modeling the observa-
tions. In the other way, reducing the error in the parameter adaptation process might result 
in setting the unnecessary parameters to zero, if they exist: the describing model is auto-
matically tailored to the observed data. 

Strategy 1: Adapt the parameters of the most complex model. All unnecessary parame-
ters will automatically become zero and can be pruned. 

Let us make an experiment to review this approach. For a  time series produced by equa-
tions (1),(2),(3) we start the adaptation process, once for the small model of equations 
(1),(2),(3) and once for the augmented model of or  equations (4),(5),(6). Now, what pa-
rameter values will we encounter for the new parameters a10 and a11? We expect them to 
become zero. For good starting points and short approximation runs, this is true. Even for 
k = 1000 cycles the deviations are not huge: in Table 1 the mean squared error is shown 
for a certain number of cycles, once with the additional terms clamped to zero (i.e. with-
out the terms) and once with the terms. 
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k MSE a10 a11 
1,000 2.4633 E-7 0.0 0.0 

 7.6321 E-7 0,006796 0,645184 
10,000 2.2348 E-9 0.0 0.0 

 3.9750 E-7 0,004453 0,549848 
 

Table 1 The modeling error and the development of additional parameter terms  

We observe that in the long run the approximation with additional terms does not im-
prove while the correct model does. How can this be explained? The additional interac-
tions that are caused by the additional parameters a10 and a11 in the augmented model will 
produce small disturbances that will deviate the approximation process: the approxima-
tion will slow down in relation to the non-augmented model which fits well to the ob-
served data. This is shown in Fig. 3. 

   

augmented model 

small model  
Fig. 3 The error development with and without additional terms  

This might inspire us to the second strategy: 

Strategy 2 : Adapt the parameters of all models. Select the model, which converges best. 

Do we have discovered a good selection criterion for the model? The answer is no: the 
additional interactions slow the convergence down, but the inverse is also true for too 
simple models which can not approximate the observed samples well, but initially con-
verge faster than the true model.  
Additionally, in nearly almost all natural systems we encounter noise that is not consid-
ered in this approach. So, we have to relay on other approaches. 

4.2 Model selection by minimum description length 
In the previous section we have seen that the convergence of the parameters cannot auto-
matically replace the model selection process. Instead, we have to evaluate the perform-
ance of each model, i.e. each form of DES separately related to the observed time course 
samples. What kind of performance measure should we choose? We know that the devia-
tion of the samples to the predicted values, the mean squared error, is not a good ap-
proach: by the additional parameters the more complex models will tend to overfit on 
adapting to the observed values perfectly whereas the best model will produce sample 
differences within the variance of the samples. This leads to our  

Strategy 3: Adapt the parameters of all models to fit the observed data. Select the model 
which gives the shortest description of the observed data, on average and as-
ymptotically. 

So, we are looking for a model which neither fits too good nor too bad and needs only a 
small amount of information to describe the observations. How do we evaluate this? 
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Let us formalize our problem: For each of the k subjects and each variable, we observe 
values at different time steps t1, t2, …,tn. For example as shown in Fig. 4, we might meas-
ure the dynamics at four times. All the four samples of one subject might be grouped 
together in one set. The set of observations for one subject is called a sample x = 
(x1,…,xn ) of all possible observations {x}. Each model m  which has been fit to the sample 
also produces by simulation a sample f = (f1,…,fn) for the designated n time steps.  

  f(t) 
 
 
 
 
 
 
 
 
 
 
 
 

t1  t2  t3  t4 t 

model 1 

model 2 

 
Fig. 4 Selecting the best fitting model 

The deviation of the i-th observed sample x(i) from its adapted model f(i) of the same 
type is for all time steps t = 1…N  its empirical variance [11] 
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Observing S subjects, the variance for all subjects from their approximated models  is  
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Since each sample of each subject contain measurements at the same time period, we 
might draw these samples together in one chart as it is done in Fig. 4.  
Assuming that the deviations at each time step are differently distributed, i.e. time de-
pendent, we might compute the variance for one time step t for the set of all observed 
subjects to all models i by 
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Now, we might analyze the system by two different approaches: 
a) Either we have only one model for all subjects. Then, all samples are random devia-

tions of the true model sample f. We select as best model the one which best “fits the 
data “. Biologically, the approach of only one fixed model is improbable. 

b) Or we assume a different model f(i) for each subject i. This means that either the 
parameters of m  are different or even the basic model type m  might be different. 
Then, each observed sample x(i) deviate slightly from the best fitting model sample 
f(i). As best model m* we might select the one which, after the individual parameter 
adaptation, “fits best” for all subjects. 

 
Now, in order to evaluate the fitting of the model we have to compute the description 
length L of the data, given the model. This is the average information of the data. It can 
be shown that the description length L, is bounded below by the entropy of the probability 
distribution of the data set X 

 L > H(X)  

Thus, the minimal description length of the data is obtained for the model which provides 
the smallest entropy of the observed data. For normally distributed data according to [13], 
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we know that for the compound random variable X  we have 

 H(X) = ln XX
n Cdet)e2( π   

For uncorrelated samples x we have  

 det CXX = ∏σ
t

2
t   

and therefore  

 
H(X,m) = ½ ln (2πe)n + ½ ln ∏σ

t

2
t )m(  = A + ½ ∑

=

σ
n

1t

2
t )m(ln  (10) 

Therefore, the best model m* is the one which minimizes H(X,m), i.e. which has the 
smallest variances for all time steps.  
The information can be measured for two  cases: the situation for training and the situation 
for testing. For training, we have the mean squared error between the observations of the 
training sample and those of the model sample, averaged over all variables  v and all mo d-
els k  of the same type  
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For the test case, we compare the model sample with all other possible observations, i.e. 
the rest of the training set, also averaged over all variables and all models of the same 
type  
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For the two cases, the information of eq.(10) is averaged over all models k  of same type m 
and variables v and becomes  
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Therefore, we get for the averaged information H of a model of type m  
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5. Evaluating the data simulations 
For the simulation, we generated four data files for two different model types and M = 10 
subjects. The M individually generated time courses start with the same initial values, but 
differentiate in the following aspects: 
a) All subjects have the same standard model parameters and all observations are the 

same.  
b) All subjects have the same standard model parameters, but the observations have 

random deviations (N(0,0.02) distribution) of the true values. 
c) All subjects have individual, different model parameters (N(0,0.001) distribution); 
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the observations are the true values. 
d) All subjects have individual, different model parameters; but the observations have 

random deviations of the true values. 
These four model assumptions are used to generate four observation files. Each set of 
observations contain n = 5 sampled values of all three variables for each of the M = 10 
subjects.  
The four data files of observations are analyzed by four different model types: 

m1) The smaller model with a5 = 0. 

m2) The “standard” model with a5 ≠ 0 and a10,a11 = 0. 

m3) The augmented model with a5,a10,a11≠0. 
m4) The changed (dropped and added terms) model with a10,a11≠0 and a5 = 0. 

 
Each of the four observation files is used to adapt the parameters of each of the M = 10 
subjects of the same model type to the observations by the evolutionary method described 
in section 3. So, we get 16 result sets for 10 subjects each.  
For each adaptation try we use 100 cycles of adapting all parameters in order to minimize 
the mean squared error R between the model prediction and the observations. For each 
subject, 10 tries are performed and the one with the smallest R is recorded in order to 
avoid getting stuck in a suboptimum. After adaptation, the performance of the models was 
evaluated by computing the minimum description length, i.e. entropy H for the model 
adaptations. The evaluated values for the entropy H for the four model types m1, m2, m3, 
m4 adapting to the data of the four observed situations a),b),c) and d) are presented in 
table 1. The results of the standard model is shown in bold face. 

Table 1 The evaluated observations for N = 6 samples 

Simulation Model MSE train MSE test H train H test 
a)       1 1 1.4686 E-4 1.4686 E-4 3.3993 3.2162 

2 2 4.6640 E-4 4.6640 E-4 3.5141 3.3310 
3 3 2.4891 E-3 2.4891 E-3 4.5359 4.3528 
4 4 4.8081 E-2 4.8081 E-2 5.4169 5.2338 

b)       5 1 2.0826 E-3 2.2171 E-3 4.3146 4.2963 
6 2 8.2153 E-4 1.0491 E-3 4.2346 4.2163 
7 3 4.2131 E-2 4.2006 E-2 4.7925 4.7742 
8 4 1.0672 E-2 1.0916 E-2 4.9448 4.9264 

c)       9 1 2.7123 E-4 5.3854 E-3 3.5523 3.3692 
10 2 2.5080 E-3 7.5664 E-3 3.7953 3.6122 
11 3 3.5737 E-3 8.4245 E-3 4.2872 4.1041 
12 4 3.0380 E-2 3.3430 E-2 5.1236 4.9405 

d)      13 1 1.3788 E-2 2.3057 E-2 5.4111 5.3744 
14 2 1.3771 E-2 2.3096 E-2 5.4219 5.3853 
15 3 4.9014 E-2 5.9496 E-2 5.3382 5.3016 
16 4 6.9419 E-2 7.7748 E-2 5.5937 5.5571 

 
What can we conclude by these results? 
Keeping in mind that m2 is the standard model type that was used to produce all data, we 
see that this model type has the smallest entropy of all other models in the context of 
cases a) and b) – it turns out as the best model to select. Therefore, our model selection 
criterion is valid in our example.  
For cases c) and d) of different parameter regimes and random deviations the smaller 
model fits slightly better to the data. Why? The reason behind is that the random devia-
tions and the systematic deviations are in the same range; for only a small number of 
observations for one individual (N = 6) the difference becomes hard to detect: the pro-
posed method reaches its limits. 

Here we encounter a fundamental problem of data modeling: how do we know that for 
a given observation variance the number of observed data points are sufficient to select a 
model properly? What difference of complexity should be taken as argument for a model 
to be more valid than another one? Theses questions are still open for research. 
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6. Discussion 
Data driven modeling is an important attempt to rationalize the efforts of creating 

models guided not by assumptions but by reality. The paper shows some of the problems 
involved in this kind of modeling and proposes the minimum description length of the 
observed data as selection criterion.  

For the small but important problem of inflammation and septic shock differential 
equations we consider four different models types: a standard model, the model with one 
term dropped, the model with two additional terms and a changed model. These four 
models are confronted with synthetic data, generated by random versions of the standard 
model. Here, all four possible model types converge more or less fast to fit the data; no 
terms can be pruned due to small parameter values; an automatic tailoring of the model to 
the data is not possible.  

Thus, the model selection can neither be based on the convergence speed nor on the 
“complexity” of the formulas (is a multiplication more complex than an addition?) but  
have to be based on another criterion. In this paper we chose the minimum description 
length MDL of the data using the model as performance criterion. Assuming normally  
distributed deviations we computed the entropy as lower limit of the MDL by using the 
observed variance between the adapted models and the observed data. The simulation 
results validated our approach: The analyzing model describes the data with the lowest 
MDL if data generation model type and analyzing model type coincide.  

Nevertheless, for a small amount of observed data, many different parameter regimes 
of the same model type and many random deviations the difference between the models 
cannot be detected by the MDL criterion any more. Here, more problem-specific informa-
tion is needed. 
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