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Abstract. Association rule mining is a data mining technique that reveals inter-
esting relationships in a database. Existing approaches employ different parame-
ters to search for interesting rules. This fact and the large number of rules make it
difficult to compare the output of confidence-based association rule miners. This
paper explores the use of classification performance as a metric for evaluating
their output. Previous work on forming classifiers from association rules has fo-
cussed on accurate classification, whereas we concentrate on using the properties
of the resulting classifiers as a basis for comparing confidence-based associa-
tion rule learners. Therefore, we present experimental results on 12 UCI datasets
showing that the quality of small rule sets generated by Apriori can be improved
by using the predictive Apriori algorithm. We also show that CBA, the standard
method for classification using association rules, is generally inferior to standard
rule learners concerning both running time and size of rule sets.

1 Introduction

Association rule mining is a widely-used approach in data mining. Association rules are
capable of revealing all interesting relationships in a potentially large database. How-
ever, a major problem in association rule mining is its complexity. Even for moderate-
sized databases it is intractable to find all the relationships. This is why a mining ap-
proach defines an interestingness measure to guide the search and prune the search
space. Therefore, the result of an association rule mining algorithm is not the set of all
possible relationships, but the set of all interesting ones. The definition of the term in-
teresting, however, depends on the application. The different interestingness measures
and the large number of rules make it difficult to compare the output of different associ-
ation rule mining algorithms. There is a lack of comparison measures for the quality of
association rule mining algorithms and their interestingness measures. In this paper we
focus on confidence-based association rule mining. Here the term ‘confidence-based’
refers to those association rule learners that use the confidence (i.e. accuracy) of a rule
as the interestingness measure.

Association rule mining algorithms are often compared using time complexity. That
is an important issue of the mining process, but the quality of the resulting rule set is ig-
nored. On the other hand there are approaches that investigate the discriminating power
of association rules and use them to solve classification problems. This research area is



called classification using association rules. An important aspect of classification using
association rules is that it can provide quality measures for the output of the underlying
mining process. The properties of the resulting classifier can be the basis for compar-
isons between different confidence-based association rule mining algorithms. A certain
mining algorithm is preferable when the mined rule set forms a more accurate, compact
and stable classifier in an efficient way.

The introduction of these quality measures—particularly the accuracy of the classi-
fier—kills two birds with one stone. First, we are interested in the comparison of the
quality of different confidence-based mining algorithms. Therefore, we use classifi-
cation using association rules. Secondly, classification using association rules can be
improved itself by using a mining algorithm that prefers highly accurate rules. In this
paper we compare two different rule mining strategies combined with several different
approaches to classification using association rules.

The rest of the paper is organised as follows. In Section 2 we explain the mining,
pruning, and classification algorithms used for our study. Section 3 describes our exper-
imental methodology, followed by a discussion of results. We present our conclusions
in Section 4.

2 Algorithms

The algorithmic approach for classification using association rules can be divided into
three fundamental parts: association rule mining, pruning, and classification.

2.1 Association rule mining

We used two different methods for rule mining—the Apriori algorithm introduced by
Agrawal and Srikant [1] that has become a standard approach and the predictive Apriori
algorithm published by Scheffer [11]. The most significant difference between the two
relates to how the interestingness of an association rule is measured. Although both
are confidence-based, the confidence is estimated differently. Both algorithms start the
same way by building frequent item sets. An item set is called frequent when its support
is above a predefined minimum support. It is possible to construct frequent item sets in
reasonable time because of their support-based downward closure. An item set X of
length k is frequent if and only if all subsets of X with length k − 1 are frequent. This
property allows the search space to be pruned substantially.

Rule discovery using Apriori is straightforward. For every frequent item set f and
every non-empty subset s of f , Apriori outputs a rule of the form s ⇒ (f − s) if and
only if the confidence of that rule is above the user-specified threshold. The confidence
is simply the accuracy of the rule. The rules are ranked according to this confidence
value. If two or more rules share the same confidence they are ordered using their sup-
port and secondly the time of discovery. Hence Apriori’s interestingness measure is the
confidence of a rule.

The interestingness measure of predictive Apriori suits the requirements of a clas-
sification task. It tries to maximise the expected accuracy of an association rule instead
of the accuracy on the training data (as measured by the simple confidence measure in



Apriori). The probability of a correct prediction given the database under consideration
is called the predictive accuracy. Scheffer [11] defines it in the following way:

Let D be a database whose individual records r are generated by a static pro-
cess P , let X ⇒ Y be an association rule. The predictive accuracy c(X ⇒ Y ) =
Pr(r satisfies Y |r satisfies X) is the conditional probability of Y ⊆ r given that X ⊆ r
when the distribution of r is governed by P [11].

The confidence ĉ(X ⇒ Y ) of an association rule X ⇒ Y is the relative frequency
of a correct classification in the training database. Hence the confidence value is op-
timistically biased. However, it can be corrected using the support of the rule under
consideration by computing the expected predictive accuracy E(c(r)|ĉ(r), s(X)) of a
rule r X ⇒ Y given its confidence ĉ and the support of the rule body s(X). Schef-
fer [11] calculates it as

E(c(r)|ĉ(r), s(X)) =
∫

cB[c, s(X)](ĉ(r))P (c)dc
∫

B[c, s(X)](ĉ(r))P (c)dc

using Bayes formula and exploiting the fact that the likelihood P (ĉ(r)|c(r), s(X)) can
be modeled by the binomial distribution B[c, s(X)](ĉ(r)). P (c) is the prior distribution.
We use discretisation to approximate these integrals. Scheffer suggests dividing the
predictive accuracy c into 100 discrete intervals and using the midpoint of each interval
for calculation.1 Because of discretisation the above integrals become sums over all
possible (100) values of c. The second problem to cope with is the prior distribution.
In order to estimate it, for each discretised predictive accuracy value, the fraction of
association rules which have this accuracy is counted. Thus, to derive the real prior
distribution we would have to investigate the space of all association rules which is
intractable. The solution is to draw many association rules at random under the uniform
distribution. Scheffer suggests drawing 1000 random association rules for each possible
length.1 In addition, predictive Apriori has an inherent pruning strategy that prefers
more general rules. Therefore it searches for the n best rules according to the following
criteria:

1. the predictive accuracy of the rule is among the n best and
2. it is not subsumed by a rule with at least the same predictive accuracy

The parameter n is user specified. These criteria differ slightly from the ones published
in the predictive Apriori paper [11] where all n best rules are not subsumed by any other
rule in that list. This version of the predictive Apriori algorithm originates from an un-
published manuscript by Scheffer [10]. In our opinion it better suits the requirements of
a classification task, because highly accurate rules which are subsumed by less accurate
ones remain part of the output.

In contrast to Apriori, predictive Apriori uses an increasing support threshold. Out
of each frequent item set rules are generated and added to the best n rules so far if the
above conditions apply. If one rule has to be deleted out of the list of the best n because
of subsumption, we have to recursively re-run the rule generating procedure because
another rule which previously did not make it into the best n could now qualify for
inclusion.

1 In personal communication via e-mail.



1. Input: rule set sorted according to interestingness measure
2. For all rules r in sorted order DO:
3. For all training instances d DO:
4. If r covers d Then
5. mark d.
6. If r classifies d correctly Then
7. mark r.
8. If r is marked Then
9. delete all instances d that are marked.
10. insert r into an intermediate classifier C
11. select the majority class label out of the training instances d as default.
12. For all training instances DO:
13. classify using C and count the total number of errors made by C .
14. Else
15. delete all marks from each training instance d.
16. Find the rule rmin with the lowest number of errors.
17. From rmin accept all subsequent rules as long as the error does not increase. The last rule accepted is rstop.
18. Delete all rules after rstop.
19. The default class associated with rstop is the default class of the classifier.

Fig. 1. The CBA pruning algorithm. The scheme is an adapted version of Liu et al. [6]

Note that association rules in their general form cannot be used directly for a clas-
sification task. The head Y of an association rule X ⇒ Y (with rule body X) has
to be restricted to one attribute-value-pair. The attribute of this attribute-value-pair is
consequently the class attribute. An association rule of this form is called a class as-
sociation rule. We have adapted both algorithms to mine class association rules. For
Apriori, we used the method described by Liu et al. [6]. The training data is divided
into n subsets—one for each class. Frequent item sets are then found for each subset
separately. For each frequent item set a rule is generated by appending a consequent
which is the class label of the subset from which it was mined.

Predictive Apriori constructs rules out of frequent item sets generated from all the
data (after the class attribute has been deleted) and considers generating a rule for each
value of the class attribute for every frequent item set. As before, a rule is kept if its
expected predictive accuracy is among the n best. In addition, the prior distribution has
to be estimated for class association rules.

2.2 Pruning

Pruning is an essential step in classification using association rules and a crucial dif-
ference between existing approaches. A very simple strategy is to bound the number
of rules without any closer inspection of the rules themselves. An advantage of this
strategy in a comparative study of association rule mining algorithms is that it does not
change the sort order induced by the rule miner.

The second pruning approach used in this paper is the pruning method introduced by
Liu et al. [6] in their CBA algorithm. It consists of an obligatory and an optional pruning
step. The obligatory pruning step is summarised in Figure 1. Our implementation of
CBA cannot reproduce all the results from the CBA paper [6]. However, using the
algorithmic step in line 17 of Figure 1 (deleting all rules after r stop and not after rmin

as described in the CBA paper [6]) we were able to reproduce some of the results. The
optional pruning step is based on the pessimistic error-rate-based pruning as introduced
by Quinlan [8]. It works the following way: for every mined rule r X ⇒ Y where



X = x1∧ . . .∧xn is a conjunction of items xi, the algorithm checks to see if removing
any single item from rule r results in a reduction of the pessimistic error rate. If so, r
is pruned. When used, error-based pruning is always performed as a preprocessing step
before the obligatory pruning step.

2.3 Classification

For a set of classification rules there are two fundamental approaches to using them for
classification: a weighted vote algorithm or a decision list classifier.

The simplest voting scheme is a majority vote where each rule r is equally weighted
with weight ω(r) = 1. In addition we explored a weighting scheme using the inverse
function f(x) = 1

x for weighting. For each rule r its weight ω(r) is calculated using:

ω(r) =
1

rank(r)
where rank(r) ∈ {1, . . . , R} and R is the number of rules.

This weighting scheme emphasises the difference between the top-ranked rules and the
bottom-ranked ones, because rules at the bottom of the sorted list only get a little weight
and so only have a small influence.

The standard classifier for classification using association rules—the CBA algo-
rithm [6]—is a decision list classifier. Compared to pruning, classification is very sim-
ple in CBA. It just searches the pruned and ordered list for the first rule that covers the
instance to be classified. The prediction is the class label of that classification rule. If
no rule covers the instance, CBA uses the default class calculated during pruning (see
Figure 1). If the decision list is empty, the majority class of the training instances will
be assigned to each test instance as default. CBA uses a rule limit. It stops the search
for association rules after investigating 80000 rules regardless whether they fulfil the
requirements of the minimum support and confidence or not. In our experiments we
did not use this cutoff—instead we varied the number of rules mined in order to better
explore the behaviour of the association rule learners.

3 Experiments

For our experiments we used 12 datasets from the UCI repository [2], shown in Table
1. A rule mining strategy is preferable if it allows a compact and accurate classifier to
be formed from the mined set of rules. Therefore we used the following performance
measures:

– the percentage of instances correctly classified in the test set,
– the average rank of the first rule that covers and correctly predicts a test instance,
– the number of mined rules generated by a class association rule miner,
– the number of rules after the pruning step,
– the time required for mining, and
– the time required for pruning.



Dataset Instances Numeric Binary Nominal Classes Missing
attributes attributes attributes values (%)

balance 625 4 0 0 3 0.0
breast-w 699 0 0 9 2 0.3
ecoli 336 7 0 0 8 0.0
glass 214 9 0 0 6 0.0
heart-h 294 6 3 4 2 20.4
iris 150 4 0 0 3 0.0
labor 57 8 3 5 2 35.7
led7 1000 0 7 0 10 0.0
lenses 24 0 0 4 3 0.0
pima 768 8 0 0 2 0.0
tic-tac-toe 958 0 0 9 2 0.0
wine 178 13 0 0 3 0.0

Table 1. The UCI datasets used for the experiments and their properties. In the led7 dataset 10%
of the instances are noisy.

In every experiment the support threshold smin of Apriori was set to 1% of all
instances and the confidence threshold ĉmin was set to 0.5—the standard thresholds for
support and confidence. When indicated, we restricted the number n of mined rules for
Apriori and predictive Apriori (the only input parameter for predictive Apriori).

Class association rule mining as well as association rule mining in general is only
possible for nominal attributes.2 Therefore we needed to discretise the numeric at-
tributes in our datasets for these methods. We used Fayyad and Irani’s [4] maximum
entropy method for discretisation. To process missing values at classification time,
they were treated as different from all other attribute values. All experimental results
were obtained using one ten-fold stratified cross-validation. We report statistically sig-
nificant results at the 5% significance level using the corrected resampled t-test pro-
posed by Nadeau and Bengio [7] and applying a Bonferroni adjustment as suggested
by Salzberg [9]. In addition we show the standard deviation for each result. All algo-
rithms used in the experiments were implemented within the WEKA machine learning
framework [12].3

3.1 Compactness of rule sets

As Table 2 shows, Apriori mines considerably more rules than predictive Apriori but
most of them are pruned in the final set of classification rules. The advantage of predic-
tive Apriori is that it generates fewer rules right from the start.

3.2 Rule ranking

In this section we investigate whether highly accurate and general rules are preferred
by the ranking system of the mining algorithms. To this end we measured the average
rank of the first rule that covered an instance and predicted it correctly. For this com-
parison, both association rule mining algorithms mined the 100 highest ranked rules for
every dataset. We calculated a default class which is the majority class in the training

2 Association rule mining for numeric-valued attributes is still an open area of research.
3 WEKA is available from http://www.cs.waikato.ac.nz/ml/weka.



Dataset Apriori Pred. Apriori
balance 72.2 ± 13.07 78.7 ± 10.29•
breast-w 5124.9 ± 65.50 906.8 ±325.34◦
ecoli 888.2 ± 152.35 304.4 ± 22.51◦
glass 6055.2 ± 454.27 472.1 ±144.56◦
heart-h 19886.8 ± 757.08 324.9 ± 18.71◦
iris 96.5 ± 14.25 29.8 ± 8.34◦
labor 96084.3 ±5569.42 228.9 ± 21.79◦
led7 510.6 ± 13.50 1565.9 ± 20.44•
lenses 121.8 ± 3.52 28.8 ± 10.03◦
pima 3311.4 ± 311.11 179.5 ± 43.16◦
tic-tac-toe 7642.5 ± 42.23 6289.6 ±105.04◦
wine 87427.9 ±5066.97 1034.2 ±714.36◦

◦, • statistically significant improvement
or degradation

(a)

Dataset Apriori Pred. Apriori
balance 28.9 ± 2.23 50.9 ± 2.85•
breast-w 2975.9 ± 105.44 137.9 ± 46.91◦
ecoli 333.2 ± 24.52 221.2 ± 16.45◦
glass 1661.6 ± 161.29 307.6 ± 93.20◦
heart-h 1242.2 ± 62.28 188.4 ± 10.31◦
iris 28.4 ± 3.27 13.5 ± 1.35◦
labor 79371.8 ±4747.00 62.0 ± 7.90◦
led7 330.5 ± 15.76 1053.3 ± 22.18•
lenses 31.4 ± 2.91 10.6 ± 4.43◦
pima 461.0 ± 46.47 87.0 ± 18.05◦
tic-tac-toe 1180.8 ± 17.84 1731.9 ± 28.83•
wine 36396.5 ±3710.72 554.3 ±383.79◦

◦, • statistically significant improvement
or degradation

(b)
Dataset Apriori Pred. Apriori
balance 14.1 ±0.57 14.1 ± 0.57
breast-w 103.5 ±4.84 37.8 ±11.28◦
ecoli 19.8 ±2.35 20.3 ± 1.83
glass 27.3 ±2.45 22.7 ± 2.87◦
heart-h 38.8 ±3.39 33.1 ± 2.85◦
iris 5.6 ±0.84 5.6 ± 0.70
labor 26.7 ±2.45 8.7 ± 1.83◦
led7 60.4 ±3.24 62.0 ± 2.91•
lenses 20.2 ±1.03 2.6 ± 2.76◦
pima 39.7 ±6.62 39.0 ± 6.63
tic-tac-toe 155.8 ±5.92 166.6 ± 6.52•
wine 30.7 ±5.06 7.6 ± 5.27◦
◦, • statistically significant improvement

or degradation
(c)

Table 2. The compactness of the rule sets mined by different association rule mining algorithms.
Table (a) compares the number of mined rules when we do not restrict their number. The number
of rules left after error-based pruning is shown in (b) and (c) shows the size of the final rule set
used by CBA when it receives the rules from Table (b) as input.

instances. If no rule covered a test instance and the default class predicted the instance
correctly, the count was set to the number of mined rules incremented by one, otherwise
it was set to the number of mined rules incremented by two. The results are summarised
in Figure 2. Predictive Apriori outperforms Apriori in two third of the datasets. This
fact indicates that predictive Apriori tends to rank high quality rules higher. The prob-
lem with using Apriori’s confidence-based ordering without a support-based correction
is that rules with low support tend to have high confidence. These rules are very specific
and prone to noise.

3.3 Accuracy

In the context of a comparison of mining algorithms a weighted classifier with non-
uniform weights emphasises the importance of a good rule ranking induced by the min-
ing algorithms. This is because the higher the ranking of a rule is, the more strongly
weighted is its prediction. The overall accuracy on a test set is higher for that mining
algorithm that has a better sorting of the mined rules according to their accuracy. Figure
3 illustrates the results.



Fig. 2. The differences in the rule ranking between the mining algorithms. Apriori and predictive
Apriori both mine the best 100 rules. The figure shows the average rank of the first rule that
covers and correctly predicts a test instance. All differences except for breast-w, pima and wine
are significant at the 5% level.

Fig. 3. The accuracies for different association rule mining algorithms using inversely weighted
classifiers. The number n of mined rules was restricted to 100. Differences for breast-w, ecoli,
heart-h, pima and tic-tac-toe are significant at the 5% level.

The predictive Apriori algorithm with an inversely weighted classifier outperforms
Apriori on every data set except for balance. For both algorithms the number of mined
rules was restricted to 100. The inverse weighting function relies on the discriminative
power of the top ranked rules, because the classifier assigns much higher weights to
them. This fact indicates that the predictive Apriori algorithm tends to rank high-quality
rules at the top.

The next classification algorithm we used to compare our rule mining strategies is
the majority vote algorithm. The main focus in this comparison is different than in the
previous case. Here we are not interested in the individual ordering. A majority vote
algorithm cannot provide any insights into this, because every rule has the same weight
independent of the ranking. Instead, the majority vote algorithm can be used to evaluate
how many rules are necessary to build an accurate classifier. The results can be found
in Table 3. They reveal an interesting property. For a small number of mined rules the
accuracy using predictive Apriori is higher than that for Apriori. To build a comparable



Data Set Pred. Apriori Apriori Pred. Apriori Apriori Pred. Apriori Apriori
n = 10 n = 100 n = 200

balance 73.92± 5.20 74.40± 6.63 73.29± 5.41 76.46± 4.81 73.29± 5.41 76.46± 4.81
breast-w 65.47± 0.47 65.47± 0.47 88.65± 8.65 65.47± 0.47• 90.94± 9.24 65.47± 0.47•
ecoli 68.14± 7.72 42.56± 1.21• 76.81± 2.85 43.44± 2.56• 73.23± 5.32 68.12± 5.09
glass 49.09± 3.53 50.04± 9.11 61.06± 8.38 48.59± 5.80• 71.04± 7.88 46.71±11.90•
heart-h 77.52± 5.29 63.95± 1.43• 82.00± 6.34 63.95± 1.43• 84.38± 7.28 63.95± 1.43•
iris 90.67± 9.00 90.00±12.67 91.33± 9.45 92.67± 7.34 91.33± 9.45 92.00± 7.57
labor 80.67±15.46 64.67± 3.22• 86.67±15.32 73.33±15.07• 90.00±14.05 81.00±17.36
led7 27.60± 2.59 23.90± 2.51• 56.20± 4.57 56.10± 3.78 67.40± 5.19 64.40± 4.88•
lenses 70.00±28.11 63.33±32.20 68.33±33.75 68.33±33.75 68.33±33.75 68.33±33.75
pima 65.89± 1.71 65.11± 0.36 73.96± 4.18 65.11± 0.36• 72.93± 5.31 67.18± 4.76•
tic-tac-toe 74.21± 2.48 65.34± 0.43• 92.48± 3.09 65.34± 0.43• 85.38± 3.86 67.22± 1.51•
wine 65.36±21.14 65.23±10.53 77.71±26.79 66.90± 7.90 78.82±27.65 52.97±13.27•
Data Set Pred. Apriori Apriori Pred. Apriori Apriori Pred. Apriori Apriori

n = 500 n = 700 n = 1000
balance 73.29± 5.41 76.46± 4.81 73.29± 5.41 76.46± 4.81 73.29± 5.41 76.46± 4.81
breast-w 92.51± 9.95 65.90± 1.51• 91.65± 9.83 85.11± 3.76 90.36± 9.69 88.55± 4.03
ecoli 77.08± 6.04 74.98± 4.75 77.08± 6.04 79.18± 4.09 77.08± 6.04 79.77± 2.25
glass 63.9o± 7.56 60.24± 7.30 61.15± 4.94 63.10± 6.30 61.15± 4.94 63.48± 7.62
heart-h 82.34± 8.54 71.85±10.34• 82.34± 8.54 79.99± 5.42 82.34± 8.54 83.02± 6.35
iris 91.33± 9.45 92.00± 7.57 91.33± 9.45 92.00± 7.57 91.33± 9.45 92.00± 7.57
labor 80.67±17.34 76.00±20.05 80.67±17.34 77.67±24.09 80.67±17.34 76.00±17.69
led7 69.80± 4.42 72.40± 4.38◦ 74.60± 5.36 72.40± 4.50• 74.20± 5.07 72.40± 4.50
lenses 68.33±33.75 68.33±33.75 68.33±33.75 68.33±33.75 68.33±33.75 68.33±33.75
pima 74.49± 6.30 72.14± 4.51 74.49± 6.30 72.53± 4.91 74.49± 6.30 70.71± 3.59
tic-tac-toe 76.62± 2.39 97.91± 1.64◦ 75.79± 2.26 97.39± 1.80◦ 72.55± 1.49 98.01± 1.67◦
wine 77.71±26.92 65.13±11.47 73.79±24.64 66.34±11.89 70.39±22.11 69.64±18.40

◦, • statistically significant improvement or degradation
Table 3. The accuracies of different mining algorithms using a majority vote classifier. The num-
ber n of mined rules was varied. The information about statistical significance is calculated sep-
arately for each n.

classifier with Apriori’s rules the majority vote classifier needs more classification rules.
A compact rule set built by predictive Apriori is better than a compact one built with
Apriori. Apriori is able to catch up when the number of rules is increased. Using the best
1000 rules, Apriori has one significant win over predictive Apriori and no significant
losses.

We also used a CBA decision list instead of majority voting. In this case—when
the main focus is on different mining algorithms—we used CBA without error-based
pruning. We observed the same behaviour as for the majority vote algorithm. For a
small number of rules predictive Apriori outperforms Apriori as shown in Table 4.

3.4 Comparison with standard classification techniques

We compared CBA to three standard techniques—one decision tree learner and two rule
learners. The standard decision tree inducer C4.5 [8] was used. Every path in the tree
from the root to a leaf node is considered as a rule. We also included JRip, WEKA’s
implementation of Cohen’s RIPPER algorithm [3], and the PART algorithm for con-
structing decision lists from partial trees [5]. All three algorithms used their default
parameters. In this section we compare the compactness and the accuracy of class as-
sociation rules to that of the standard techniques.

Table 5 shows the results for the compactness, i.e. the number of rules used for clas-
sification. Even though using predictive Apriori results in a slightly smaller set of rules,



Data Set Pred. Apriori Apriori Pred. Apriori Apriori Pred. Apriori Apriori
n = 10 n = 100 n = 200

balance 66.73± 7.77 68.15± 4.74 71.50± 5.97 71.50± 5.97 71.50± 5.97 71.50± 5.97
breast-w 93.97± 3.40 89.40± 3.51• 94.25± 3.55 90.10± 4.32• 93.11± 3.20 94.97± 3.29
ecoli 68.72± 8.98 61.91± 2.63• 80.37± 2.43 62.79± 3.54• 80.07± 2.72 74.99± 5.31•
glass 47.66± 5.24 51.41± 8.60 70.56± 7.94 51.45± 5.79• 71.97± 8.77 49.11±11.21•
heart-h 77.86± 4.47 64.98± 1.19• 81.66± 7.03 68.36± 5.39• 79.94± 7.12 65.67± 3.86•
iris 90.67±10.04 93.33± 5.44 92.67± 6.63 92.67± 6.63 92.67± 6.63 92.67± 6.63
labor 67.00±12.81 70.00 ±11.86 81.00±20.61 74.00 ±19.93 79.00±19.50 72.67±16.54
led7 27.50± 2.59 23.90± 2.51• 62.40± 4.01 61.10± 4.72• 71.40± 5.50 68.70± 5.21•
lenses 68.33±33.75 61.67±28.38 63.33±32.20 66.67±30.43 63.33±32.20 66.67±30.43
pima 65.89± 1.71 65.11± 0.36 73.44± 4.81 65.11± 0.36• 74.09± 4.18 68.23± 5.62•
tic-tac-toe 100.00± 0.00 69.84± 2.49• 100.00± 0.00 74.85± 5.31• 100.00± 0.00 100.00± 0.00
wine 76.05±19.91 78.10±12.45 76.60±20.88 87.03± 7.61 79.38±21.25 86.05±10.21
Data Set Pred. Apriori Apriori Pred. Apriori Apriori Pred. Apriori Apriori

n = 500 n = 1000 n not restricted
balance 71.50± 5.97 71.50± 5.97 71.50± 5.97 71.50± 5.97 71.50± 5.97 71.50± 5.97
breast-w 93.11± 3.26 95.40± 3.53◦ 93.97± 3.55 95.55± 2.92◦ 93.97± 3.55 95.13± 3.03
ecoli 80.07± 2.72 79.47± 7.12 80.07± 2.72 80.65± 3.24 80.07± 2.72 80.65± 3.24
glass 71.97± 8.77 57.08± 7.77• 71.97± 8.77 61.26±10.88• 71.97± 8.77 71.97± 8.77
heart-h 80.29± 6.39 76.60± 9.10 80.29± 6.39 80.97± 7.51 80.29± 6.39 80.63± 7.20
iris 92.67± 6.63 92.67± 6.63 92.67± 6.63 92.67± 6.63 92.67± 6.63 92.67± 6.63
labor 79.00±19.50 68.00± 8.64 79.00±19.50 77.67±19.88 79.00 ±19.50 79.00±19.50
led7 72.00± 5.16 72.30± 5.10 72.00± 5.16 72.30± 5.10 72.00± 5.16 72.30± 5.10
lenses 63.33±32.20 66.67±30.43 63.33±32.20 66.67±30.43 63.33±32.20 66.67±30.43
pima 74.09± 4.18 71.23± 3.83 74.09± 4.18 74.09± 4.81 74.09± 4.18 74.10± 4.48
tic-tac-toe 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 98.85± 1.44 99.06± 1.25
wine 79.38±21.25 87.12± 9.05 79.38±21.25 91.60± 7.08 79.38±21.25 93.82± 6.71

◦, • statistically significant improvement or degradation
Table 4. The accuracies of different mining algorithms using CBA without error-based prun-
ing. The number n of mined rules was varied. The information about statistical significance is
calculated separately for each n.

the result of the comparison to the standard techniques is clear. The three algorithms
C4.5, JRip and PART generate fewer rules than CBA. However, with respect to accu-
racy, Table 6 shows that CBA achieves results comparable to the standard rule learners.

3.5 Time complexity

Pruning a rule set output by predictive Apriori takes less time than pruning one output
by Apriori, because predictive Apriori prunes away many rules during the search using
its inherent pruning strategy (see Section 2.1). Nonetheless, predictive Apriori is much
slower during mining. Table 7 shows the results. In comparison to standard learners, it
also shows that learning classifiers based on class association rules involves consider-
ably more computation. The numbers are seconds of runtime on a 2.60 GHz Pentium(R)
4 with 1 GB of memory.

4 Conclusions

This paper has provided a comparative study of classification using association rules. In
particular we have shown how to use this classification approach to evaluate the quality
of a set of association rules generated by a confidence-based miner.



Dataset CBA + C4.5 JRip PART CBA +
Apriori pred. Apriori

balance 14.10±0.57 39.60±6.00• 12.20±2.53 37.69±4.17• 14.10± 0.57
breast-w 103.50±4.84 28.00±6.00◦ 12.60±1.35◦ 10.10±3.03◦ 37.80±11.28◦
ecoli 19.80±2.35 18.30±1.89 9.00±1.41◦ 13.60±2.17◦ 20.30± 1.83
glass 27.30±2.45 22.60±2.76◦ 8.20±0.92◦ 14.50±1.27◦ 22.70± 2.87◦
heart-h 38.80±3.39 5.40±2.55◦ 3.30±0.67◦ 7.20±1.55◦ 33.10± 2.85◦
iris 5.60±0.84 4.70±0.48◦ 3.90±0.74◦ 3.80±1.32◦ 5.60± 0.70
labor 26.70±2.45 3.60±1.43◦ 3.60±0.52◦ 3.40±0.84◦ 8.70± 1.83◦
led7 60.40±3.24 29.10±2.51◦ 15.20±1.55◦ 28.60±1.65◦ 62.00± 2.91•
lenses 20.20±1.03 3.60±0.52◦ 3.00±0.00◦ 3.60±0.52◦ 2.60± 2.76◦
pima 39.70±6.62 19.20±6.53◦ 3.30±0.67◦ 7.50±1.18◦ 39.00± 6.63
tic-tac-toe 155.80±5.92 90.60±4.50◦ 10.60±1.43◦ 40.20±3.77◦ 166.60± 6.52•
wine 30.70±5.06 5.40±0.70◦ 3.90±0.57◦ 4.60±0.70◦ 7.60± 5.27◦

◦, • statistically significant improvement or degradation
Table 5. The compactness of CBA compared to standard techniques. CBA performed error-based
pruning and did not restrict the number of rules output by the association rule miner.

Dataset CBA + C4.5 JRip PART CBA +
Apriori pred. Apriori

balance 71.50± 5.97 76.65± 3.77◦ 80.80± 3.56◦ 83.54± 4.93◦ 71.50± 5.97
breast-w 94.12± 3.55 94.69± 2.46 94.13± 2.73 94.26± 3.79 92.25± 3.92•
ecoli 81.26± 3.08 84.23± 7.51 82.16± 6.63 83.60± 6.36 80.96± 2.78
glass 70.13± 9.19 66.75± 7.94 68.66± 8.74 68.14± 7.21 68.25± 8.02
heart-h 79.98± 8.26 81.07±11.22 78.95± 9.30 81.02± 7.55 79.97± 9.03
iris 94.00± 5.84 96.00± 5.62 94.67± 6.13 94.00± 5.84 94.00± 5.84
labor 81.33±21.44 73.67±22.52 77.00±19.53 78.67±17.58 79.33±18.84
led7 72.30± 5.10 72.40± 4.55 71.90± 5.04 72.80± 4.85 72.20± 5.18
lenses 50.00±26.06 81.67±33.75◦ 75.00±32.63◦ 81.67±33.75◦ 66.67±38.49
pima 74.36± 4.83 73.83± 5.66 75.14± 3.68 75.27± 3.93 72.79± 3.78
tic-tac-toe 79.85± 1.84 85.07± 4.49◦ 97.81± 1.81◦ 94.47± 3.15◦ 78.70± 2.01•
wine 94.44± 5.86 93.86± 5.52 91.57± 9.27 93.27± 5.80 76.11±26.97

◦, • statistically significant improvement or degradation
Table 6. The accuracy of CBA compared to standard techniques. CBA performed error-based
pruning and did not restrict the number of rules output by the association rule miner.

More specifically, we applied this methodology to the comparison of Apriori with
predictive Apriori. Concerning the quality of the mined rule set, predictive Apriori is
able to mine a high quality set of association rules. Its ranking metric—the expected
predictive accuracy—makes sure that high-quality rules are ranked closer to the top.
The rule ordering induced by the predictive accuracy outperforms Apriori’s confidence-
based ordering. The results also show that the rule set needed to build an accurate clas-
sifier is smaller when predictive Apriori is used. However, our experiments have shown
that the time complexity of predictive Apriori is worse.

In addition, we have provided some benchmarks for the standard classifier in this
research area—the CBA algorithm. Liu et al. [6] compare their algorithm to C4.5. We
extended the comparison by including other state-of-the-art rule learners. In our opin-
ion, CBA (in its standard combination with Apriori as class association rule mining al-
gorithm) has comparable accuracy to standard techniques. However, CBA needs more
rules and is slower than the standard techniques. We also found that CBA with pre-
dictive Apriori is slightly less accurate than CBA with Apriori. However, this is only



Dataset CBA + C4.5 JRip PART CBA +
Apriori pred. Apriori

balance 0.28( 0.23) 0.05◦ 0.48 0.09◦ 2.42( 0.24)•
breast-w 28.90( 27.06) 0.01◦ 0.31◦ 0.02◦ 283.56( 1.40)•
ecoli 0.85( 0.62) 0.02◦ 0.10◦ 0.04◦ 8.66( 0.31)•
glass 5.82( 2.93) 0.03◦ 0.10◦ 0.05◦ 46.81( 0.34)•
heart-h 29.28( 14.04) 0.02◦ 0.04◦ 0.04◦ 297.26( 1.02)•
iris 0.03( 0.02) 0.00◦ 0.01◦ 0.00◦ 0.78( 0.03)•
labor 344.49(198.14) 0.00◦ 0.00◦ 0.00◦ 370.19( 0.06)•
led7 5.23( 4.21) 0.03◦ 0.22◦ 0.05◦ 50.05( 5.37)•
lenses 0.02( 0.02) 0.00◦ 0.00◦ 0.00◦ 0.26( 0.00)•
pima 6.54( 4.90) 0.05◦ 0.19◦ 0.06◦ 50.16( 1.59)•
tic-tac-toe 23.89( 15.60) 0.02◦ 0.44◦ 0.06◦ 2342.79(17.31)•
wine 170.23( 48.30) 0.01◦ 0.03◦ 0.01◦ 2908.09( 0.21)•

◦, • statistically significant improvement or degradation
Table 7. The time complexity of the three standard machine learning techniques and CBA during
training. CBA performed error-based pruning and did not restrict the number of rules. The times
in brackets are the times for CBA’s pruning method including error-based pruning.

true if a large number of association rules is generated. Predictive Apriori can improve
classification using association rules when it is used to generate a small set of rules.
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