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Abstract. Speech recognition technique is expected to make a great impact on 
many user interface areas such as toys, mobile phones, PDAs, and home appli-
ances. Those applications basically require robust speech recognition immune 
to environment and channel noises, but the dialogue pattern used in the interac-
tion with the devices may be relatively simple, that is, an isolated-word type. 
The drawback of small-vocabulary isolated-word recognizer which is generally 
used in the applications is that, if target vocabulary needs to be changed, acous-
tic models should be re-trained for high performance. However, if a phone 
model-based speech recognition is used with reliable unseen model prediction, 
we do not need to re-train acoustic models in getting higher performance. In 
this paper, we propose a few reliable methods for unseen model prediction in 
flexible vocabulary speech recognition. The first method gives optimal thresh-
old values for stop criteria in decision tree growing, and the second uses an  
additional condition in the question selection in order to overcome the over-
balancing phenomenon in the conventional method. The last proposes two-
stage decision trees which in the first stage get more properly trained models 
and in the second stage build more reliable unseen models. Various vocabulary-
independent situations were examined in order to clearly show the effectiveness 
of the proposed methods. In the experiments, the average word error rates of 
the proposed methods were reduced by 32.8%, 41.4%, and 44.1% compared to 
the conventional method, respectively. From the results, we can conclude that 
the proposed methods are very effective in the unseen model prediction for vo-
cabulary-independent speech recognition. 

1   Introduction 

The potential application areas using voice interface are enormous. Voice control of 
consumer devices such as audio/video equipments in home has both commercial po-
tential and well defined functionality that could benefit in user interface. Automotive 
applications also form a very important area of interest, where the convenience and 
safety issues play an important role on the choice of the user interface. In addition, 
user interface using speech recognition is expected to make a great impact on toys, 
mobile phones, PDAs, and so on. Those applications basically require robust speech 
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recognition immune to environment and channel noises, but the dialogue pattern used 
in the interaction with the devices will be relatively simple, that is, an isolated-word 
type. The most straightforward way to implement small vocabulary isolated-word 
recognizers, which seem to be widely used in the practical applications, is to use 
speaker-dependent technology. However, training a specific user’s speech before the 
real use could be too inconvenient. Hence, speaker-independent technology is often 
used, especially when the vocabulary size increases. Even though we may use 
speaker-independent technology, we cannot avoid changing the target vocabulary oc-
casionally, for example, adding new words or replacing the recognition vocabulary. 
In this case, we usually have to re-train acoustic models in order to achieve high per-
formance. But, if a reliable unseen model prediction is possible, we do not need to re-
train acoustic models to get higher performance. 

In this paper, we propose a few reliable methods based on modified binary deci-
sion trees for unseen model prediction. Many recognition systems have used binary 
decision trees for state tying and unseen model prediction. Binary decision trees 
with splitting questions attached to each node provide an easy representation to in-
terpret and predict the structures of given data set[1]. For more accurate tree-based 
state tying and unseen model prediction, several factors such as stop criteria, ques-
tion sets, and question selection in each node should be considered. Of these fac-
tors, our approaches focus on stop criterion and question selection, and then we de-
vice a new hybrid construction scheme for decision tree combining two approaches. 
For the stop criterion, we tried to determine an optimal threshold value which al-
lows getting a proper tree size for state tying and unseen model prediction. For the 
question selection, we added a new condition that enables candidate question to use 
sufficient training data and to guarantee higher log-likelihood on YES nodes. By us-
ing two-stage scheme for decision trees, firstly we can get fairly trained models, 
and then make the models more effective in the aspects of state tying and more effi-
cient in the aspects of unseen model prediction. 

In Chapter II, we briefly review the state tying process based on decision tree. In 
Chapter III, we present the three proposed methods for accurate unseen model predic-
tion and state tying. Then, the baseline system, the experiments and results are given 
in Chapter IV and Chapter V. Finally, in Chapter VI, we summarize this work and 
present ideas for future work. 

2   Decision Tree-Based State Tying 

Although many other split criteria could be used in decision trees, most of decision 
tree-based state tying algorithms have used two fundamental criteria, which are like-
lihood and entropy criteria [2],[3],[4]. The similar probability distributions have to be 
shared or merged since the basic aim of tree-based state tying is to reduce the number 
of model parameters and to make the shared parameters more robust. Therefore, the 
triphone states, whose estimated probability distributions are close to each other in a 
viewpoint of a distance measure, are tied together. In this paper, we use a log-
likelihood gain as the distance measure. The log-likelihood gain is obtained by using 
the following equation [5]. 
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Here AB is the parent node of nodes A and B in the binary decision tree, therefore 
A and B are the child nodes of the parent node AB. Xn  is the number of training vec-
tors assigned to node X, and Xd ,σ  is the variance of component d of node X. 

The formula for the log-likelihood gain can be easily rewritten in a form which 
only contains sum and squared sum of the observation vector components together 
with the observation counts. Therefore the equations for computing means and vari-
ances of training vectors in each node can be expressed as 
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where s is a state index, Xd ,
~µ  is the mean of component d of node X, sd ,µ  is the mean 

of component d of state s, and sn  is the number of training vectors in the state s. 2
,

~
Xdσ  

and 2
,sdσ  are the variances of component d of the node X and the state s, respectively. 

By means of these equations, the re-training computation for each tree construction 
can be simplified. 

3   The Proposed Methods for Unseen Model Prediction 

3.1   Modified Stop Decision (MSD) for Optimal Tree Growing 

In tree-based unseen model prediction, the tree size becomes a very important factor 
deciding the accuracy of the predicted models. As the size of tree is larger, the tree 
has finer resolution due to many leaf nodes. And, if there are many unseen models to 
be predicted, it is desirable for the tree to get fine resolution. On the other hand, if 
there are many seen models in the state pool of root node, the probability of observ-
ing unseen models will be low. At that time, the size of trees may be reduced because 
decision trees do not need to get fine resolution. 

There is another stop criterion, using minimum number of training vectors of node 
[6]. In a viewpoint of unseen model prediction, the criterion is not proper because it 
does not consider whether the probability of observing unseen models is low or not. 
To overcome those defects, we propose a method that determines optimal threshold 
value for stop criteria. The method reflects the probability of observing unseen mod-
els on the threshold. Then, the threshold values will make trees to get optimal size for 
more accurate unseen model prediction. A new function for determining optimal 
threshold values in the state pool of each tree is defined as 
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where η  is a weighting factor to control the number of tied sates, seenN  is the number of 
seen models in the state pool, normLL  is the normalized log-likelihood of the training vec-
tors in the state pool, D is the dimension of feature vectors, and 2

dσ  is the variance of 
component d of feature vectors. In Eq. (5), seenN  controls the threshold value for reliable 
unseen model prediction. That is, as seenN  is larger, the threshold value becomes higher. 
This is motivated from the fact that, if there are many seen models in the state pool, the 
probability of observing unseen models to be predicted will be smaller and the tree does 
not need to get fine resolution for unseen model prediction. On the other hand, if seenN  
is small, the threshold value must be lower, since the probability of observing unseen 
models will be higher and the tree needs to get high resolution. On the other hand, 

normLL  is determined by the variance of feature vectors in the state pool, and it controls 
the threshold value in the aspect of state tying. That is, as the variance in the state pool 
becomes larger, the threshold value will be lower. If the state pool has a larger variance, 
the decision trees should have lots of tied states as possible. This is reasonable for robust 
state tying because, as the variance of state pool is larger, we need a larger tree and the 
threshold value must be lower. In conclusion, seenN  and normLL  mutually compensate 
for reliable unseen model prediction and state tying. 

3.2   Reliable Question Selection (RQS) Focused on the YES Node 

In the tree-based state tying with the likelihood-based framework, the common crite-
rion[5],[7],[8] of choosing a question is formulated as 

)),((maxarg* BAGQ
Q

=  (7) 

where G(A,B) is the log-likelihood gain in node AB. G(A,B) is expressed in Eq. (1). 
The drawback of using Eq. (7) is that this does not guarantee sufficient training vec-
tors nor higher log-likelihood in the YES node even though the chosen question has 
the maximum log-likelihood gain. In binary tree-based unseen model prediction, the 
YES node is more important than the No node because the YES node reflects the con-
text effect of the question itself better than that of the NO node. From the fact, it 
seems to be desirable that we choose the question providing sufficient training vectors 
to the YES node and having higher log-likelihood in the node for accurate unseen 
model prediction. 

Thus we propose a new criterion of choosing the question to provide sufficient 
training vectors and higher log likelihood to the YES node as follows. 

aveA
Q

nnifBAGQ >=       )),((maxarg*  (8) 
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where An  is the number of training vectors in the YES node, aven  is the average num-
ber of the training vectors for states in the state pool, and N is the total number of 
states in the state pool. In Eq. (9), aven  is the number of training vectors in states that 
are included in the confidence interval 95%. Here we assume that the number of the 
training vectors in states has a Gaussian distribution. So, we do not use too large or 
too small number of training vectors in states to get aven . 

By using this technique, decision trees can guarantee that YES nodes have a suffi-
cient number of training vectors and higher log-likelihood. In result, we can precisely 
predict unseen models by using the reliable question selection. 

3.3   Two-Stage Decision Tree (TSDT) Combining the RQS and MSD Algorithms 

When we use triphone models as acoustic models, it is very difficult to construct a 
training database so that all the possible triphone models have a similar number of 
training vectors in each model. If the numbers of training vectors in models are sig-
nificantly different from one another, the decision tree would not be constructed pre-
cisely because the likelihood of models may be very sensitive to how many models 
are trained as shown in Eq. (1) and Eq. (7). In other words, as models are better 
trained, the likelihood of models is higher. Thus the decision tree using the likelihood 
framework will be too much dependent on the given training database. In the result, 
the accuracy of the unseen model prediction for vocabulary-independent speech rec-
ognition will be degraded severely. 

To overcome this problem, we propose a method that the state of each model has 
the same number of training vectors as possible. We design a two-stage decision tree: 
at first we generate a tree from the RQS method with zero threshold value, and next 
we construct the final tree from the MDS method. In stage 1, we construct a decision 
tree with RQS method, and assign the probability distribution of shared state in each 
leaf node to the probability distribution of original states in the leaf node. So, the 
original models become evenly trained models. Finally at stage 2 we can construct the 
decision tree which is less dependent on the training database. The two-stage decision 
tree algorithm is summarized as follows (see also Figure 1). 

TSDT Algorithm 

•   Step 1: Cluster states of seen models by using the RQS method with the threshold   
zero. 

•   Step 2: Assign fairly trained states to original states in each leaf node. 
•   Step 3: Reconstruct thes decision trees by using the MSD method. 

Thus Step 1 and Step 2 construct evenly trained acoustic models. Step 3 makes re-
liable tied models for unseen model prediction by using models sufficiently trained 
from previous steps. 
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Fig. 1. The process of the TSDT method 

4   Baseline System 

At first, the input speech is pre-emphasized using the first order FIR filter with a coef-
ficient of 0.97. The samples are blocked into overlapping frames of 20ms and each 
frame is shifted at a rate of 10ms. Each frame is windowed with the Hamming win-
dow. Every frame is characterized by the total 39th order feature vectors. The feature 
vectors are composed of 13 mel frequency cepstral coefficients (MFCC), their first-
order temporal regression coefficients (∆MFCC), and their second-order temporal re-
gression coefficients (∆∆ MFCC). Hidden Markov model-based triphones are trained 
with 3 states left-to-right structure for acoustic modeling. 

One decision tree is constructed for every states of each center phone, and all 
triphone models with the same center phone are clustered into the corresponding root 
node according to the state position. To get tied states, a decision tree is built using a 
top-down procedure starting from the root node of the tree. Each node is split accord-
ing to the phonetic question that results in maximum increase in the likelihood on the 
train data from Eq. (1). Different phone questions have been investigated in [9],[10], 
but we have used only simple phone questions because the focus in this work is not 
on those variations. The likelihood gain due to a node split can be calculated effi-
ciently from pre-calculated statistics of the reconstructed states by using Eq. (2), 
Eq(3), and Eq (4). The process is repeated until the likelihood gain falls below a 
threshold. In baseline system, we used a same threshold for each decision tree. After 
this process is done, states reaching the same leaf node of each decision tree are re- 
 



Reliable Unseen Model Prediction for Vocabulary-Independent Speech Recognition 605 

garded as similar and so tied. Fig. 2(a) shows this procedure. The resulting clusters 
 of tied states are then retrained and multiple-mixture Gaussian distribution HMMs 
are estimated. 
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(b) The process of predicting the unseen models 

Fig. 2. An example of decision tree structure in case of center states 

 
When unseen models are observed due to new words added to the vocabulary in-

recognition process, the unseen models are predicted by answering to the phonetic 
questions which already determined in training process and traversing the decision 
tree from the root node to a final leaf node as shown in Fig. 2(b). The most similar 
leaf node determined by the decision tree is used as the unseen models. 
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5   Evaluation 

5.1   Speech Data 

Speech database used in this work is composed of the PBW(Phonetically Balanced 
Words) 452 DB and the FOW(Frequently Observed Words) 2000 DB. The PBW 
452 DB consists of 452 isolated Korean words, each of which is uttered twice by 
70 speakers including 38 males and 32 females. The FOW 2000 DB consists of 
2,000 isolated Korean words, each of which is spoken once by two speakers includ-
ing one male and one female. The FOW 2000 DB includes all the 452 words that 
are vocabulary of the PBW 452 DB, and the other 1,548 words are different from 
the words of the PBW 452 DB. These speech data are sampled at 16 kHz and quan-
tized in 16 bit resolution. We used the PBW 452 DB for training and the FOW 
2000 DB for test. 

For various experiments of vocabulary-independent speech recognition, we estab-
lished four different test situations from FOW 2000 DB as follow. 

• Case 1: The test vocabulary is totally different from the training vocabulary. 
• Case 2: The test vocabulary is different from the training vocabulary by 75 %. 
• Case 3: The test vocabulary is different from the training vocabulary by 50 %. 
• Case 4: The test vocabulary is different from the training vocabulary by 25 %. 

The number of words in the test vocabulary for each case is shown in Table 1 
where the number of distinct words in the training vocabulary is 452. 

Table 1. Number of test words in each case 

 S D Total distinct words 

Case 1 0 1,548 1,548 
Case 2 452 1,356 1,808 
Case 3 452 452 904 
Case 4 452 151 603 

In Table 1, S represents the number of words which are the same as the training 
vocabulary, D represents the number of words which are different from the training 
vocabulary. 

5.2   Performance Comparison of the Conventional Algorithm and the Proposed 
Methods 

In this experiment, we compared the performances of the baseline algorithm and the 
proposed methods. The baseline algorithm gets a number of tied states according to 
the same log-likelihood gain values as the threshold values of trees, and the proposed 
methods get the number of tied states according to the control factor η  in Eq. (5). 
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Table 2. Word recognition accuracies(%) of the baseline and the proposed methods in case 1 

# of states Baseline MDS RQS+ MDS TSDT 

1,261 90.31 91.21 91.80 92.18 
1,338 89.92 91.21 91.60 91.67 
1,397 89.86 91.60 92.18 92.18 
1,465 90.05 91.80 91.99 92.25 
1,531 89.66 91.67 92.44 92.51 

Table 3. Word recognition accuracies(%) of the baseline and the proposed methods in case 2 

# of states Baseline MDS RQS+ MDS TSDT 

1,261 92.48 93.03 93.25 93.81 
1,338 92.20 92.98 93.58 93.58 
1,397 92.37 93.20 94.14 93.92 
1,465 92.48 93.36 93.86 93.92 
1,531 92.15 93.14 94.08 94.19 

Table 4. Word recognition accuracies(%) of the baseline and the proposed methods in case 3 

# of states Baseline MDS RQS+ MDS TSDT 

1,261 96.79 97.23 97.23 97.68 
1,338 97.35 96.79 97.57 97.68 
1,397 97.12 97.01 97.46 97.90 
1,465 97.35 97.23 97.35 97.79 
1,531 96.90 97.68 97.68 98.23 

Table 5. Word recognition accuracies(%) of the baseline and the proposed methods in case 4 

# of states Baseline MDS RQS+ MDS TSDT 

1,261 98.84 99.50 99.00 99.34 
1,338 99.00 99.50 99.17 99.50 
1,397 99.00 99.34 99.34 99.50 
1,465 99.34 99.34 99.34 99.67 
1,531 99.17 99.34 99.34 99.67 

The following tables show the word recognition accuracies of the baseline and the 
proposed methods in each vocabulary-independent situation. After the tree-based 
clustering procedure that is based on single Gaussian mixture models, the number of 
mixture components of all pdfs in all experiments was enlarged to 7 Gaussians per 
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HMM state. That is, all of the following recognition accuracies were obtained on 7 
Gaussians per state. 

These results show that the proposed methods have higher or comparable recogni-
tion performances when they are compared to the baseline system. Especially, the 
two-stage decision tree (TSDT) method outperforms other methods in whole cases. 
To show the effects of the proposed methods in vocabulary-independent speech rec-
ognition, the average ERR (Error Reduction Rate) of each case is given in Table 6. 

Table 6. Average ERR (%) of the proposed methods 

 Case 1 Case 2 Case 3 Case 4 

MDS 15.3 10.5 3.0 35.9 

RQS+ MDS 20.3 18.9 12.3 17.6 

TSDT 21.9 20.2 26.0 50.0 

6   Conclusion 

In this paper, we proposed three effective methods to construct decision trees for reli-
able unseen model prediction in vocabulary-independent speech recognition. The 
MDS method determines the optimal threshold values for accurate state tying and un-
seen model prediction, the RQS+ MDS method chooses a question guaranteeing suf-
ficient training vectors and higher log-likelihood in the YES nodes, and the TSDT 
method is a type of model compensation that aligns the new probability distributions 
to the original models in order to make original ones fairly trained. From experimen-
tal results, we could know that these methods were more effective on realistic vo-
cabulary-independent speech recognition corresponding to case 4. The TSDT method 
was effective on all cases of test environments. 
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