Skip to main content

A New Neighborhood Based on Improvement Graph for Robust Graph Coloring Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3339))

Abstract

In this paper, we propose a new neighborhood structure based on the improvement graph for solving the Robust Graph Coloring Problem, an interesting extension of classical graph coloring. Different from the traditional neighborhood where the color of only one vertex is modified, the new neighborhood involves several vertices. In addition, the questions of how to select the modified vertices and how to modify them are modelled by an improvement graph and solved by a Dynamic Programming method. The experimental results clearly show that our new improvement graph based k-exchange cycle neighborhood improves the accuracy significantly, especially for large scale heuristic search.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthelemy, J.P., Guenoche, A.: Trees and Proximity Representations. John Wiley Sons, New York (1991)

    MATH  Google Scholar 

  2. Brelaz, D.: New methods to color vertices of a graph. Communications of ACM 22, 251–256 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chaitin, G.J.: Register allocation and spilling via graph coloring. In: SIGPLAN 1982 Symposium on Compiler Construction, Boston, Mass, June, vol. 17, pp. 98–105 (1982)

    Google Scholar 

  4. Chams, M., Hertz, A., de Werra, D.: Some experiments with simulated annealing for coloring graphs. European Journal of Operational Research 32, 260–266 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Costa, D., Hertz, A., Dubuis, O.: Embedding a sequential procedure within an evolutionary algorithm for coloring problems. Journal of Heuristics 1, 105–128 (1995)

    Article  MATH  Google Scholar 

  6. Dorne, R., Hao, J.K.: Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization. In: Chapter 6: Tabu search for graph coloring T-colorings and set T-colorings, pp. 77–92. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  7. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithm for graph coloring. Journal of Combinatorial Optimization 3, 379–397 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE Transactions of Vehicular Technology 35(1), 8–14 (1986)

    Article  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computer and Intractability. Freeman, San Francisco (1979)

    Google Scholar 

  10. Halldorsson, M.M.: A still better performance guarantee for approximate graph coloring. Technical Report 91-35, DIMACS, New Brunswick, NJ (1990)

    Google Scholar 

  11. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; part ii, graph coloring and number partitioning. Operations Research 39(3), 378–406 (1991)

    Article  MATH  Google Scholar 

  12. Johnson, D.S., Trick, M.A.: Proceedings of the 2nd DIMACS Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)

    Google Scholar 

  13. Joslin, D.E., Clements, D.P.: Spueaky wheel optimization. In: the National Conference on Artificial Intelligence, AAAI-1998, Edmonton, Alberta, Canada (1998)

    Google Scholar 

  14. Kong, Y., Wang, F., Lim, A., Guo, S.S.: A New Hybrid Genetic Algorithm for the Robust Graph Coloring Problem. In: Proceeding of Australian Conference on Artificial Intelligence 2003, pp. 125–136 (2003)

    Google Scholar 

  15. Korte, B., Vygen, J.: Combinatorial Optimization, 2nd edn. Springer-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  16. Kubale, M., Jackowski, B.: A generalized implicit enumeration algorithm for graph coloring. Communications of the ACM 28, 412–418 (1985)

    Article  Google Scholar 

  17. Opsut, R.J., Roberts, F.S.: On the fleet maintenance, Mobile radio frequency, task assignment and traffic phasing problems. In: The Theory and Applications of Graphs, pp. 479–492. John Wiley Sons, New York (1981)

    Google Scholar 

  18. Pardalos, P.M., Mavridou, T., Xue, J.: The Graph Coloring Problems: A Bibliographic Survey. In: Handbook of Combinatorial Optimization, vol. 2, pp. 331–395. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  19. Yanez, J., Ramirez, J.: The robust coloring problem. European Journal of Operational Research 148(3), 546–558 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, S., Kong, Y., Lim, A., Wang, F. (2004). A New Neighborhood Based on Improvement Graph for Robust Graph Coloring Problem. In: Webb, G.I., Yu, X. (eds) AI 2004: Advances in Artificial Intelligence. AI 2004. Lecture Notes in Computer Science(), vol 3339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30549-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30549-1_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24059-4

  • Online ISBN: 978-3-540-30549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics