Skip to main content

Fast Algorithms for Comparison of Similar Unordered Trees

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3341))

Abstract

We present fast algorithms for computing the largest common subtree (LCST) and the optimal alignment when two similar unordered trees are given. We present an O(4K n) time algorithm for the LCST problem for rooted trees, where n is the maximum size of two input trees and K is the minimum number of edit operations to obtain LCST. We extend this algorithm to unrooted trees and obtain an O(K 4K n) time algorithm. We also show that the alignment problem for rooted and unordered trees of bounded degree can be solved in linear time if K is bounded by a constant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Akutsu, T.: A Polynomial Time Algorithm for Finding a Largest Common Subgraph of Almost Trees of Bounded Degree. IEICE Trans. on Information and Systems E76-A, 1488–1493 (1992)

    Google Scholar 

  3. Akutsu, T., Halldórsson, M.M.: On the approximation of largest common subtrees and largest common point sets. Theoretical Computer Science 233, 33–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aoki, K.F., Yamaguchi, A., Okuno, Y., Akutsu, T., Ueda, N., Kanehisa, M., Mamitsuka, H.: Efficient tree-matching methods for accurate carbohydrate database queries. Genome Informatics 14, 134–143 (2003)

    Google Scholar 

  5. Chin, K., Yen, H.: The symmetry number problem for trees. Information Processing Letters 79, 73–79 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cole, R., Hariharan, R.: Tree pattern matching to subset matching in linear time. SIAM J. Computing 32, 1056–1066 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jansson, J., Lingas, A.: A fast algorithm for optimal alignment between similar ordered trees. Fundamenta Informaticae 56, 105–120 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Jiang, T., Wang, L., Zhang, K.: Alignment of trees — an alternative to tree edit. Theoretical Computer Science 143, 137–148 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching. J. Algorithms 10, 157–169 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Matula, D.W.: Subtree isomorphism in O(n 5/2). In: Alspach, B., Hell, P., Miller, D.J. (eds.) Algorithmic Aspects of Combinatorics, Ann. Discrete Math, vol. 2, pp. 91–106. North-Holland, Amsterdam (1978)

    Chapter  Google Scholar 

  12. Shamir, R., Tsur, D.: Faster subtree isomorphism. J. Algorithms 33, 267–280 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shasha, D., Zhang, K.: Fast algorithms for the unit cost editing distance between trees. J. Algorithms 11, 581–621 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tai, K.C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Valiente, G.: Algorithms on trees and graphs. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  16. Yamaguchi, A., Mamitsuka, H.: Finding the maximum common subgraph of a partial k-tree and a graph with a polynomially bounded number of spanning trees. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 58–67. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Zhang, K., Jiang, T.: Some max snp-hard results concerning unordered labeled trees. Information Processing Letters 49, 249–254 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Computing 18, 1245–1262 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang, K., Statman, R., Shasha, D.: On the Editing Distance Between Unordered Labeled Trees. Information Processing Letters 42, 133–139 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fukagawa, D., Akutsu, T. (2004). Fast Algorithms for Comparison of Similar Unordered Trees. In: Fleischer, R., Trippen, G. (eds) Algorithms and Computation. ISAAC 2004. Lecture Notes in Computer Science, vol 3341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30551-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30551-4_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24131-7

  • Online ISBN: 978-3-540-30551-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics