Skip to main content

Polynomial Deterministic Rendezvous in Arbitrary Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3341))

Abstract

The rendezvous problem in graphs has been extensively studied in the literature, mainly using a randomized approach. Two mobile agents have to meet at some node of a connected graph. We study deterministic algorithms for this problem, assuming that agents have distinct identifiers and are located in nodes of an unknown anonymous connected graph. Startup times of the agents are arbitrarily decided by the adversary. The measure of performance of a rendezvous algorithm is its cost: for a given initial location of agents in a graph, this is the number of steps since the startup of the later agent until rendezvous is achieved. Deterministic rendezvous has been previously shown feasible in arbitrary graphs [16] but the proposed algorithm had cost exponential in the number n of nodes and in the smaller identifier l, and polynomial in the difference τ between startup times. The following problem was stated in [16]: Does there exist a deterministic rendezvous algorithm with cost polynomial in n, τ and in labels L 1, L 2 of the agents (or even polynomial in n, τ and log L 1, log L 2)? We give a positive answer to both problems: our main result is a deterministic rendezvous algorithm with cost polynomial in n, τ and log l. We also show a lower bound Ω (n 2) on the cost of rendezvous in some family of graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proc. 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223.

    Google Scholar 

  2. Alpern, S.: The rendezvous search problem, SIAM J. SIAM J. on Control and Optimization 33, 673–683 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49, 256–274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpern, S., Gal, S.: The theory of search games and rendezvous. In: Int. Series in Operations research and Management Science, Kluwer Academic Publisher, Dordrecht (2002)

    Google Scholar 

  5. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alpern, S., Gal, S.: Rendezvous search on the line with distinguishable players. SIAM J. on Control and Optimization 33, 1270–1276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)

    Article  MathSciNet  Google Scholar 

  8. Anderson, E., Essegaier, S.: Rendezvous search on the line with indistinguishable players. SIAM J. on Control and Optimization 33, 1637–1642 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symp. on Computational Geometry (1998)

    Google Scholar 

  10. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49, 107–118 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Res. Log. 48, 722–731 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. Journal of Algorithms 8(5), 385–394 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted graphs, and applications to on-line algorithms. In: Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC 1990), pp. 369–378.

    Google Scholar 

  15. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. on Discrete Math. 6, 363–374 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for estimating volumes of convex bodies. In: Proc. 21st Annual ACM Symposium on Theory of Computing (STOC 1989), pp. 375–381.

    Google Scholar 

  18. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)

    Article  MATH  Google Scholar 

  20. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proc. 9th Annual ACM Symposium on Principles of Distributed Computing (PODC 1990), pp. 119–131.

    Google Scholar 

  21. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd International Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599 (2003)

    Google Scholar 

  22. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)

    Google Scholar 

  24. Thomas, L.: Finding your kids when they are lost. Journal on Operational Res. Soc. 43, 637–639 (1992)

    MATH  Google Scholar 

  25. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Proc. International Colloquium on Automata, Languages, and Programming (ICALP 1996). LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kowalski, D.R., Pelc, A. (2004). Polynomial Deterministic Rendezvous in Arbitrary Graphs. In: Fleischer, R., Trippen, G. (eds) Algorithms and Computation. ISAAC 2004. Lecture Notes in Computer Science, vol 3341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30551-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30551-4_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24131-7

  • Online ISBN: 978-3-540-30551-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics