Skip to main content

Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs Based on Cayley Graphs

  • Conference paper
Parallel and Distributed Processing and Applications (ISPA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3358))

Abstract

Static DHT topologies influence important features of such DHTs such as scalability, communication load balancing, routing efficiency and fault tolerance. While obviously dynamic DHT algorithms which have to approximate these topologies for dynamically changing sets of peers play a very important role for DHT networks, important insights can be gained by clearly focussing on the static DHT topology as well. In this paper we analyze and classify current DHTs in terms of their static topologies based on the Cayley graph group-theoretic model and show that most DHT proposals use Cayley graphs as static DHT topologies, thus taking advantage of several important Cayley graph properties such as vertex/edge symmetry, decomposability and optimal fault tolerance. Using these insights, Cayley DHT design can directly leverage algebraic design methods to generate high-performance DHTs adopting Cayley graph based static DHT topologies, extended with suitable dynamic DHT algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38, 555–566 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Sabidussi, G.: Vertex–transitive graphs. Monatsh. Math. 68, 426–438 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  3. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: Hypercup - hypercubes, ontologies and efficient search on p2p networks. In: Intl. Workshop on Agents and Peer-to-Peer Computing, Bologna, Italy (2002)

    Google Scholar 

  4. Shen, H., Xu, C., Chen, G.: Cycloid: A constant-degree and lookup-efficient p2p overlay network. In: Intl. Parallel and Distributed Processing Symposium, Santa Fe (2004)

    Google Scholar 

  5. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact of dht routing geometry on resilience and proximity. In: ACM Annual Conference of the Special Interest Group on Data Communication, Karlsruhe, Germany (2003)

    Google Scholar 

  6. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: Annual Conference of the ACM Special Interest Group on Data Communications, San Diego, CA, USA (2001)

    Google Scholar 

  7. Oehring, S.R., Sarkar, F., Das, S.K., Hohndel, D.H.: Cayley graph connected cycles: A new class of fixed-degree interconnection networks. In: 28th Annual Hawaii Intl. Conference on System Sciences, Hawaii, USA (1995)

    Google Scholar 

  8. Heydemann, M.C., Ducourthial, B.: Cayley graphs and interconnection networks. Graph Symmetry, Algebraic Methods and Applications,“NATO ASI C” 497, 167–226 (1997)

    Google Scholar 

  9. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the butterfly. In: 21st ACM Symposium on Principles of Distributed Computing (PODC 2002), Monterey, California, USA (2002)

    Google Scholar 

  10. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: Annual Conference of the ACM Special Interest Group on Data Communications, San Diego, CA, USA (2001)

    Google Scholar 

  11. Aberer, K., Datta, A., Hauswirth, M.: Peer-to-Peer-Systems and Applications Ch. 21. In: P-Grid: Dynamics of self-organization in structured P2P systems. LNCS. Springer, Heidelberg (2004)

    Google Scholar 

  12. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In: IFIP/ACM Intl. Conference on Distributed Systems Platforms (Middleware), Heidelberg, Germany (2001)

    Google Scholar 

  13. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communications 22 (2004)

    Google Scholar 

  14. Alspach, B.: Cayley graphs with optimal fault tolerance. IEEE Trans. Comput. 41, 1337–1339 (1992)

    Article  MathSciNet  Google Scholar 

  15. Berthom, T.P., Ferreira, A., Perennes, S.: Optimal information dissemination in star and pancake networks. IEEE Tran. on Parallel and Distrubuted Systems 7 (1996)

    Google Scholar 

  16. Mader, W.: Eine Eigenschaft der Atome endlicher Graphen. Arch. Math (Basel) 22, 333–336 (1971)

    Google Scholar 

  17. Mader, W.: Über den Zusammenhang symmetrischer Graphen. Arch. Math (Basel) 21, 331–336 (1970)

    Google Scholar 

  18. Watkins, M.E.: Connectivity of transitive graphs. J. Combinatorial Theory 8, 23–29 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  19. Boesch, F., Tindell, R.: Connectivity and symmetry in graphs. In: Graphs and applications (Boulder, Colo., 1982), pp. 53–67. Wiley-Intersci. Publ. Wiley, New York (1985)

    Google Scholar 

  20. Boesch, F., Tindell, R.: Circulants and their connectivities. J. Graph Theory 8, 487–499 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Curran, S.J., Gallian, J.A.: Hamiltonian cycles and paths in Cayley graphs and digraphs—a survey. Discrete Math. 156, 1–18 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dally, W.J.: A VLSI Architecture for Concurrent Data Structures. Kluwer, Hingham (1987)

    Google Scholar 

  23. Manku, G.S.: Routing networks for distributed hash tables. In: 22nd ACM Symposium on Principles of Distributed Computing (PODC 2003), Boston, USA (2003)

    Google Scholar 

  24. Datar, M.: Butterflies and peer-to-peer networks. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, p. 310. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Exploiting network proximity in distributed hash tables. In: Intl. Workshop on Future Directions in Distributed Computing, Bertinoro, Italy (2002)

    Google Scholar 

  26. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., Löser, A.: Super-peer-based routing and clustering strategies for rdf-based peer-to-peer networks. In: 12th Intl. World Wide Web Conference, Budapest, Hungary (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qu, C., Nejdl, W., Kriesell, M. (2004). Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs Based on Cayley Graphs. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds) Parallel and Distributed Processing and Applications. ISPA 2004. Lecture Notes in Computer Science, vol 3358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30566-8_105

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30566-8_105

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24128-7

  • Online ISBN: 978-3-540-30566-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics