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Abstract. We propose a novel application-level virtual network archi-
tecture called VIOLIN (Virtual Internetworking on OverLay INfrastruc-
ture). VIOLINSs are isolated virtual networks created on top of an over-
lay infrastructure (e.g., PlanetLab). Entities in a VIOLIN include virtual
end-hosts, routers, and switches implemented by software and hosted by
physical overlay hosts. Novel features of VIOLIN include: (1) a VIOLIN
is a “virtual world” with its own IP address space. All its computa-
tion and communications are strictly confined within the VIOLIN. (2)
VIOLIN entities can be created, deleted, or migrated on-demand. (3)
Value-added network services not widely deployed in the real Internet
can be provided in a VIOLIN. We have designed and implemented a
prototype of VIOLIN in PlanetLab.

1 Introduction

Current Internet only provides basic network services such as IP unicast. In
recent years, overlay networks have emerged as application-level realization of
value-added network services, such as anycast, multicast, reliable multicast, and
active networking. While highly practical and effective, overlays have the follow-
ing problems: (1) Application functions and network services are often closely
coupled in an overlay, making the development and management of overlays com-
plicated. (2) The development of overlay network services is mainly individual
efforts, leading to few standards and reusable protocols. Meanwhile, advanced
network services [1][2][3][4][5] have been developed but not widely deployed. (3)
It is hard to isolate an overlay from the rest of the Internet, making it easy for
a compromised overlay node to attack other Internet hosts.

In this paper, we propose a novel virtual network architecture called VIOLIN
(Virtual Internetworking on OverLay INfrastructure), motivated by recent ad-
vances in virtual machine technologies [6][7]. The idea is to create virtual isolated
network environments on top of an overlay infrastructure. A VIOLIN! consists of
virtual routers, LANs, and end-hosts, all being software entities hosted by over-
lay hosts. The key difference between VIOLIN and application-level overlay is
that VIOLIN re-introduces system(OS)-enforced boundary between applications

1 'With a slight abuse of terms, VIOLIN stands for either the virtual network technique
or one such virtual network.



and network services. As a result, a VIOLIN becomes an “advanced Internet”
running value-added network-level protocols for routing, transport, and manage-
ment.

The novel features of VIOLIN include: (1) Each VIOLIN is a “virtual world”
with its own IP address space. All its computation and communications are
strictly confined within the VIOLIN. (2) All VIOLIN entities are software-based,
leading to high flexibility by allowing on-demand addition/deletion/migration/
configuration. (3) Value-added network services not widely deployed in the real
Internet can be provided in a VIOLIN. (4) Legacy applications can run in a
VIOLIN without modification, while new applications can leverage the advanced
network services provided in VIOLIN.

We expect VIOLIN to be a useful complement to application-level overlays.
First, VIOLIN can be used to create testbeds for network-level experiments.
Such a testbed contains more realistic network entities and topology, and pro-
vides researchers with more convenience in experiment setup and configuration.
Second, VIOLIN can be used to create a service-oriented (virtual) IP network
with advanced network services such as IP multicast and anycast, which will
benefit distributed applications such as video conferencing, on-line community,
and peer selection.

We have designed and implemented a prototype of VIOLIN in PlanetLab.
A number of distributed applications have also been deployed in VIOLIN. The
rest of the paper is organized as follows. Section 2 provides an overview of VI-
OLIN. Section 3 justifies the design of VIOLIN and its benefit to distributed
applications. Section 4 describes the implementation and ongoing research prob-
lems of VIOLIN. Section 5 presents preliminary performance measurements in
PlanetLab. Section 6 compares VIOLIN with related works. Finally, section 7
concludes this paper and outlines our ongoing work.

2 VIOLIN Overview

The concept of VIOLIN is illustrated in Figure 1. The low-level plane is the real
IP network; the mid-level plane is an overlay infrastructure such as PlanetLab;
and the top-level plane shows one VIOLIN created on the overlay infrastructure.
All entities in the VIOLIN are hosted by overlay hosts; and there are three types
of entities like in the real network: end-host, LAN, and router.

— A wirtual end-host (vHost) is a virtual machine running in a physical over-
lay host. Meanwhile, it is possible that one physical overlay host supports
multiple vHosts belonging to different VIOLINS.

— A virtual LAN (vLAN) is constructed by creating one virtual switch (vSwitch,
not shown in Figure 1) that connects multiple vHosts.

— A wirtual router (vRouter) is also a virtual machine with multiple virtual
NICs (vNICs). A vRouter interconnects two or more vLANs.

Figure 2 shows a simple VIOLIN we create in PlanetLab. Two vLANs are
interconnected by one vRouter (vRouterl hosted by planetlabl.cs.purdue.edu):
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Fig. 1. VIOLIN, overlay infrastructure, and underlying IP network

One vLAN comprises vHost1, vHost2, and vSwitchl; while the other one com-
prises vHost3, vHost4, and vSwitch2. The links between these entities emulate
cables in the real world. The IP address space of the VIOLIN is completely inde-
pendent. Therefore, it can safely overlap the address space of another VIOLIN
or the real Internet.

3 VIOLIN Design Justification

In this section, we make the case for VIOLIN and describe how applications
(including network experiments) can benefit from VIOLIN.

3.1 Virtualization and Isolation

Analogous with the relation between virtual machine and its host machine, VI-
OLIN involves network virtualization and leads to isolation between a VIO-
LIN and the underlying IP network. Virtualization makes it possible to run
unmodified Internet protocols in VIOLINs. Furthermore, entities in a VIOLIN
are decoupled from the underlying Internet. For example, if we perform tracer-
oute from vHost1 (hosted by planetlab-1.cs.princeton.edu) to vHost3 (hosted by
planetlab01.cs.washington.edu) in Figure 2, we will only see vRouterl as the
intermediate router and the hop count is two, although the PlanetLab hosts at
Princeton and at UW are many more hops apart in the actual Internet. More
interestingly, it is potentially feasible to repeat such virtualization recursively:
a level-n VIOLIN can be created on a level-(n — 1) VIOLIN, with level-0 being
the real Internet.
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Fig. 2. A VIOLIN in PlanetLab (with names of physical PlanetLab hosts and virtual
IP addresses)

Network isolation is with respect to (1) administration: the owner of a VIO-
LIN has full administrator privilege - but only within this VIOLIN; (2) address
space and protocol: the IP address spaces of two VIOLINs can safely overlap
and the versions and implementations of their network protocols can be differ-
ent - for example, one running IPv4 while the other running IPv6; (3) attack
and fault impact: any attack or fault in one VIOLIN will not affect the rest
of the Internet; (4) resources: if the underlying overlay infrastructure provides
QoS support [8][9], VIOLIN will be able to achieve resource isolation for local
resources (such as CPU and memory [10]) of VIOLIN entities and for network
bandwidth between them.

Benefit to applications System-level virtualization and isolation provide
a confined and dedicated environment for untrusted distributed applications
and risky network experiments. From another perspective, applications requir-
ing strong confidentiality can use VIOLIN to prevent both internal information
leakage and external attacks.

3.2 System-Enforced Layering

Contrary to application-level overlays, VIOLIN enforces strong layering in or-
der to disentangle application functions and network services. In addition, OS-
enforced layering provides better protections to network services after the appli-
cation level software is compromised. We note that layering itself does not incur
more performance overhead compared with application-level overlays. We also
note that layering is between application and network functions, not between
network protocols. In fact, VIOLIN can be used as a testbed for the protocol
heap architecture [11].

Benefit to applications Application developers will be able to focus on ap-
plication functions rather than network services, leading to clean design and easy



implementation. In addition, legacy applications can run in a VIOLIN without
modification and re-compilation.

3.3 Network Service Provisioning

VIOLIN provides a new opportunity to deploy and evaluate advanced network
services. There exist a large number of well-designed network protocols that are
not yet widely deployed. Examples include IP multicast, scalable reliable multi-
cast [2][4], IP anycast [3], and active networking [1][5]. There are also protocols
that are still in the initial stage of incremental deployment (e.g., IPv6). VIOLIN
is a platform to make these protocols a (virtual) reality.

Benefit to applications VIOLIN allows applications to take full advantage
of value-added network services. For example, in a VIOLIN capable of IP mul-
ticast, applications such as publish-subscribe, layered media broadcast can be
more conveniently developed than in the real Internet. We further envision the
emergence of service-oriented VIOLINs, each with high-performance vRouters
and vSwitches deployed at strategic locations (for example, vRouters close to
Internet routing centers, vSwitches close to domain gateways), so that clients
can connect to the VIOLIN to access its advanced network services.

3.4 Easy Reconfigurability

Based on all-software virtualization techniques, VIOLIN achieves easy reconfig-
urability. Different from a physical network, vRouters, vSwitches, and vHosts
can be added, removed, or migrated dynamically. Also, vNICs can be dynam-
ically added to or removed from vHosts or vRouters; and the number of ports
supported by a vSwitch is no longer a hardware constraint.

Benefit to applications The easy reconfigurability and hot vINIC plug-and-
play capability of VIOLIN is especially useful to handle the dynamic load and/or
membership of distributed applications. Not only can a VIOLIN be created/torn
down on-demand for an application, its scale and topology can also be adjusted in
a demand-driven fashion. For example, during a multicast session, a new vLAN
can be dynamically grafted on a vRouter to accommodate more participants.

4 VIOLIN Implementation

4.1 Virtual Machine

All VIOLIN entities are implemented as virtual machines (VMs) in overlay hosts.
We adopt User-Mode Linux (UML) [12] as the VM technology. UML allows most
Linux-based applications to run on top of it without any modification. Based on
ptrace mechanism, UML - the guest OS for a virtual machine, performs system
call redirection and signal handling to emulate a real OS. More specifically, the
guest OS will be notified when an application running in the virtual machine
issues a system call, the guest OS will then redirect the system call into its own



implementation and nullify the original call. One important feature of UML is
that it is completely implemented at user level without requiring host OS kernel
modifications.

Unfortunately, the original UML has a serious limitation: both virtual NICs
and virtual links of virtual machines are restricted within the same physical host.
Inter-host virtual links, which are essential to VIOLIN, have not been reported
in current VM projects [6][7][13]. To break the physical host boundary, we have
performed non-trivial extension to UML and introduced transport-based inter-
host tunneling.

More specifically, we use UDP tunneling in the Internet domain to emulate
the physical layer in the VIOLIN domain. For example, to emulate the physical
link between a vHost and a vSwitch, the guest OS for the vHost opens a UDP
transport connection for the vNIC and obtains a file descriptor - both in the host
OS domain. To receive data from the vSwitch, SIGIO signal will be generated
by the host OS for the file descriptor whenever data are available. The vSwitch
maintains the IP address and UDP port number (in the Internet domain) for
the vNIC of the vHost, so that the vSwitch can correctly emulate data link layer
frame forwarding. Such virtualization is transparent to the network protocol
stack in the guest OS. Finally, inter-host tunneling enables hot plug-and-play of
vNICs (Section 3.4); and it does not exhibit MTU effect as in the EtherIP [14]
and IP-in-IP [15] approaches.

4.2 Virtual Switch

A vSwitch is created for each vLAN and is responsible for packet forwarding at
the (virtual) data link layer. Figure 3 shows a vSwitch which connects multiple
vHosts. vSwitch is emulated by a UDP daemon in the host OS domain. The
poll system call is used to poll the arrival of data and perform data queuing,
forwarding, or dropping. More delicate link characteristics may also be imple-
mented in the UDP daemon. The poll system call also notifies the UDP daemon
of the arrival of a connect request from a new vHost joining the vLAN, so that
a new port can be created for the vHost, as shown in Figure 3.

4.3 Virtual Router

Interestingly, there is no intrinsic difference in implementation between vHost
and vRouter, except that the latter has additional packet forwarding capability
and user level routines for the configuration of packet processing policies. Linux
source tree makes it possible to accommodate versatile and extensible packet
processing capabilities.

When a UML is bootstrapped, a recognizable file system will be located and
mounted as root file system. Based on UML, the vRouter requires kernel-level
support for the capability of packet forwarding, as well as user-level routines,
namely route, iproute2, ifconfig for the configuration of interface addresses and
routing table entries. Beyond the packet forwarding capability, it is also easy to
add firewall, NAT, and other value-added services to the UML kernel. In the
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Fig. 3. vSwitch and steps of port creation

VIOLIN implementation, we adopt the zebra [16] open-source routing package,
which provides a comprehensive suite of routing protocol implementations. Re-
cently, to enable active network services, we have also incorporated Click [17] as
an optional package for vRouters.

5 VIOLIN Performance

We have implemented a VIOLIN prototype and deployed it in PlanetLab. To
evaluate the performance of VM communications in a VIOLIN, we have per-
formed end-to-end throughput and latency measurement between VMs. Figures
4(a) and 4(b) show a set of representative results. Two VMs are hosted by Plan-
etLab nodes planetlab8.lcs.mit.edu and planetlab6.cs.berkeley.edu, respectively.
We measure the TCP throughput and ICMP latency between the VMs, with and
without the vSwitches performing UDP payload encryption. As a comparison,
we also measured the TCP throughput and ICMP latency between the two Plan-
etLab hosts. Our measurement results show that VIOLIN introduces an average
of 5% degradation in TCP throughput, compared with the TCP throughput be-
tween the two underlying physical hosts. The addition degradation due to VM
traffic encryption is 5% on the average. The degree of ICMP latency degradation
(increase) is even less than that of TCP throughput.

To demonstrate VIOLIN’s support for advanced network services, we run
WaveVideo, a legacy video streaming application, in VIOLIN. WaveVideo re-
quires IP multicast and therefore is not runnable in PlanetLab. However, Wave-
Video is able to execute in a VIOLIN with 9 VMs. The VM hosted by planet-
lab2.cs.wisc.edu is the source of the video multicast session. It streams a short
300-frame video clip using (virtual) IP multicast address 224.0.0.5. The other 8
VMs are all receivers in three different domains: Princeton, Purdue, and Duke.
The average peak signal noise ratios (PSNR) of video frames observed by VMs
in the three domains are shown in Figure 5.
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6 Related Work

VIOLIN is made possible by PlanetLab [18], which itself provides resource vir-
tualization capability called slicing. Netbed [19] is another wide-area testbed
for network and distributed system experiments. Because of its high portability,
VIOLIN can also be deployed in Netbed.

Application-level overlays have achieved significant success in recent years.
For example, RON [20] achieves robust routing and packet forwarding for appli-
cation end-hosts; and the Narada protocol [21] brings high network efficiency to
end system multicast. VIOLIN is proposed as an alternative and complement to
application-level overlays, especially for legacy applications or untrusted appli-
cations that require strong network confinement.

Machine virtualization has recently received tremendous attention. VMware
[13] fully virtualizes the PC hardware, while Denali [7] and Xen [6] take the
paravirtualization approach by creating a virtual machine similar (instead of
identical) to the physical machine. Inspired by machine virtualization, VIOLIN
is our initial effort toward network virtualization.



The X-Bone [15] provides automated deployment and remote monitoring of
overlays, and allows network entities (hosts, routers) to participate in multiple
overlays simultaneously. By taking the two-layer “IP-in-IP” tunneling approach,
X-Bone makes real Internet IPs visible to entities in the overlay domain, leading
to a lower degree of isolation and confinement than VIOLIN.

7 Conclusion and Ongoing Work

We present VIOLIN as a novel alternative and useful complement to application-
level overlays. Based on all-software virtualization techniques, VIOLIN creates
a virtual internetworking environment for the deployment of advanced network
services, with no modifications to the Internet infrastructure. The properties of
isolation, enforced-layering, and easy reconfigurability make VIOLIN an excel-
lent platform for the execution of high-risk network experiments, legacy appli-
cations unaware of overlay APIs, as well as untrusted and potentially malicious
applications. Our ongoing work includes:

— Performance evaluation and comparison VIOLIN involves virtualization tech-
niques and is based on the overlay infrastructure. How to evaluate the per-
formance, resilience, and adaptability of VIOLIN, compared with the real
Internet and with application-level overlays? Especially, to match the perfor-
mance of application-level overlays, how much additional computation and
communication capacity need to be allocated? Our video multicast appli-
cation in VIOLIN demonstrates performance comparable to its counterpart
in an application-level overlay. However, more in-depth evaluation and mea-
surement are needed before these questions can be answered.

— Refinement of network virtualization technique Our inter-host tunneling im-
plementation is initial and there is plenty of room for refinement and im-
provement. For example, how to improve the reliability of virtual links?
Should we adopt another transport protocol (such as TCP), or integrate
error correction (such as FEC) into UDP, or simply let the transport pro-
tocols in the VIOLIN domain to achieve reliability? To monitor the status
of virtual links, is it possible to leverage the routing underlay [22] for better
Internet friendliness?

— Topology planning and optimization Our implementation provides mecha-
nisms for dynamic VIOLIN topology setup and adjustment. However, we
have not studied the the problem of VIOLIN topology planning and opti-
mization. More specifically, given the overlay infrastructure, where to place
the vRouters and vSwitches, in order to achieve Internet bandwidth effi-
ciency and satisfactory application performance? How should a VIOLIN re-
act to the dynamics of Internet condition and application workload using its
dynamic reconfigurability (Section 3.4)?
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