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Abstract. Visual attention refers to the ability of a vision system to
rapidly detect visually salient locations in a given scene. On the other
hand, the selection of robust visual landmarks of an environment rep-
resents a cornerstone of reliable vision-based robot navigation systems.
Indeed, can salient scene locations provided by visual attention be useful
for robot navigation? This work investigates the potential and effective-
ness of the visual attention mechanism to provide pre-attentive scene in-
formation to a robot navigation system. The basic idea is to detect and
track the salient locations, or spots of attention by building trajectories
that memorize the spatial and temporal evolution of these spots. Then, a
persistency test, which is based on the examination of the lengths of built
trajectories, allows the selection of good environment landmarks. The se-
lected landmarks can be used for feature-based localization and mapping
systems which helps mobile robot to accomplish navigation tasks.

1 Introduction

Visual attention is the natural ability of the human visual system to quickly
select within a given scene specific parts deemed important or salient by the
observer. In computer vision, a similar visual attention mechanism designates
the first low-level processing step that allows to quickly selecting in a scene
the points of interest to be analyzed more specifically and in-depth in a second
processing step.

The computational modeling of visual attention has been a key issue in ar-
tificial vision during the last two decades [1-3]. First reported in 1985 [4], the
saliency-based model of visual attention is largely accepted today [5] and gave
rise to numerous soft and hardware implementations [5,6]. In addition, this
model has been used in several computer vision applications including image
compression [7] and color image segmentation [8].
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In visual robot navigation, the detection, tracking, and selection of robust
visual landmarks represent the most challenging issues in building reliable nav-
igation systems [9,10]. Numerous previous works have pointed to the visual
attention paradigm in solving various issues in active vision in general [11,12]
and visual robot navigation in particular [13].

This work proposes a visual attention-based approach for visual landmark
selection. The proposed approach relies on an extended version of Itti’s et al.
model of visual attention [5] in order to detect the most visually salient scene
locations; the spots of attention. More specifically, these spots of attention are
deduced from a saliency map computed from multiple visual cues including cor-
ner features. Then, the spots of attention are characterized using a feature vector
that represents the contribution of each considered feature to the final saliency of
the spot. Once characterized, the spots of attention are easily tracked over time
using a simple tracking method that is based on feature matching. The tracking
results reveal the persistency and thus the robustness of the spots, leading to a
reliable criterium for the selection of the landmarks.
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Fig. 1. Overview of the attention-based landmark selection approach.

The navigation phase, which has not been fully tested yet consists in using the
selected environment landmarks for feature-based Simultaneous Localization and
Mapping (SLAM) on a mobile robot [14]. A schematic overview of the landmark
selection approach as well as its integration into a general visual robot navigation
system are given in Figure 1.

The remainder of this paper is organized as follows. Section 2 describes the
saliency-based model of visual attention. Section 3 presents the characterization
and tracking of spots of attention. The persistency test procedure that allows
the selection and the representation of the landmarks is exposed in Section 4. In
Section 5, a landmark recognition method is described. Section 6 reports some
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experiments carried out on real robot navigation image sequences in order to
assess the approach proposed in this paper. Finally, the conclusions and some
perspectives are stated in Section 7.

2 Attention-based landmark detection

2.1 Saliency-based model of visual attention

The saliency-based model of visual attention, which selects the most salient parts
of a scene, is composed of four main steps [4, 5].

1) First, a number of features are extracted from the scene by computing the so
called feature maps F};. The features most used in previous works are intensity,
color, and orientation. The use of these features is motivated by psychophysical
studies on primate visual systems. In particular, the authors of the model used
two chromatic features that are inspired from human vision, namely the two
opponent colors red/green (RG) and blue/yellow (BY).

2) In a second step, each feature map F; is transformed in its conspicuity map
C;. Each conspicuity map highlights the parts of the scene that strongly differ,
according to a specific feature, from its surrounding. This is usually achieved by
using a center-surround-mechanism which can be implemented with multiscale
difference-of-Gaussian-filters. It is noteworthy that this kind of filters have been
used by D. Lowe for extracting robust and scale-invariant features (SIFT) from
grey-scale images for object recognition, stereo matching but also for robot nav-
igation [10,15].

3) In the third stage of the attention model, the conspicuity maps are inte-
grated together, in a competitive way, into a saliency map S in accordance with
equation 1.

J
S= N (1)
j=1

where N() is a normalization operator that promotes conspicuity maps in which
a small number of strong peaks of activity are present and demotes maps that
contain numerous comparable peak responses [5].

4) Finally the most salient parts of the scene are derived from the saliency map
by selecting the most active locations of that map. A Winner-Take-All network
(WTA) is often used to implement this step [4].

2.2 Extension of the model to corner features

In the context of vision-based robot navigation, corner features are considered
as highly significant landmark candidates in the navigation environment [9, 16].
This section aims at extending the basic model of visual attention to consider
also corner features. To do so, a corner map C, which highlights the corner points
in the scene, is first computed. Then, this corner map is combined together with
the color and intensity-based conspicuity maps into the final saliency map.
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Fig. 2. Example of the Conspicuity maps, the saliency map and the corresponding
spots of attention computed with the corner-extended model of visual attention.
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Multi-scale Harris corner detector [17,18]. Practically, the proposed
multiscale method computes a corner pyramid P.. Each level of the corner pyra-
mid detects corner points at a different scale. Formally, P, is defined according
to Equation 2.

P.(i) = Harris(Py(i)) (2)

where Harris(.) is the Harris corner detector as defined in [17] and Py, is a
gaussian pyramid defined as follows [19]:

Py(0) =1
Py(i) <L 2)(Py(i = 1) £ G) 3)

ere I is a grey-scale version of the input image, G is a gaussian filter and
@ refers to the down-sampling (by 2) operator.

Corner conspicuity map C.. Given the corner pyramid P., C. is computed
in accordance with Equation 4.

Smax

Co=Y_ Pels) (4)

Note that the summation of the multiscale corner maps P.(s) is achieved
at the coarsest resolution. Maps of finer resolutions are lowpass filtered and
downsampled to the required resolution. In our implementation $,,q4; is set to 4,
in order to get a corner conspicuity map C, that has the same resolution as the
color- and intensity-related conspicuity maps.

Integration of corner feature into the model. The final saliency map
S of the extended model is computed in accordance with Equation 5.

J+1
S=> N(C)) (5)
j=1
where
Cri=C. (6)

Selection of the spots of attention. The maxima of the saliency map
represent the most salient spots of attention. Once a spot is selected, a region
around its location is inhibited in order to allow the next most salient spot to be
selected. The total number of spots of attention can be either set interactively
or automatically determined by the activity of the saliency map. For simplicity,
the number of spots is set to five in our implementation.

Figure 2 shows an example of the four conspicuity maps, saliency map and the
spots of attention computed by the corner-extended model of visual attention.

3 Spot Characterization and Tracking

3.1 Spot characterization

The spots of attention computed by means of the extended model of visual
attention locate the scene features to be tracked. In addition to location, each



6 N. Ouerhani et al.

| RG BY Corner

(a) Feature representation

(b) Original image (c) Saliency map (d) Characterized spots of
attention

Fig. 3. Characterization of spots of attention. The five most salient spots of attention
are detected and characterized using four visual features, namely intensity (I), red-
green (RG) and blue-yellow (BY') color components, and corners.

spot x is also characterized by a feature vector f :

fi
f=1. (7)
fi
where J is the number of the considered features in the attention model and f;
refers to the contribution of the feature j to the detection of the spot x. Formally,
fj is computed as follows:

_ N(C(x)
fi= TS (8)

Note that Z;]:l(fj) =1

Let N be the number of frames of a sequence and M the number of spots
detected per frame, the spots of attention can be formally described as
P = (Xmn, fm,n), where m € [1..M], n € [1..N], X, ,, is the spatial location
of the spot, and f,, ,, its characteristic feature vector. Figure 3 illustrates an
example of the characterization of spots of attention.

3.2 Spot tracking

The basic idea behind the proposed algorithm is to build a trajectory for each
tracked spot of attention. Each point of the trajectory memorizes the spatial
and the feature-based information of the tracked spot at a given time.
Specifically, given the M spots of attention computed from the first frame,
the tracking algorithm starts with creating M initial trajectories, each of which
contains one of the M initial spots. The initial spots represent also the head
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elements of the initial trajectories. A new detected spot P, , is either appended
to an existing trajectory (and becomes the head of that trajectory) or gives rise
to a new trajectory, depending on its similarity with the head elements P of
already existing trajectories as described in Algorithm 1. Note that a spot of
attention is assigned to exactly one trajectory (see the parameter marked/] in
Algorithm 1) and a trajectory can contain at most one spot from the same frame.
In a simple implementation, the condition that a spot P, ,, must fulfil in order
to be appended to a trajectory T' with a head element P" = (x3, f;) is given by:

Pon €T if ||Xmn—Xn| < ex & |[fmn — ]| <ef 9)

where ex and e can be either determined empirically or learned from a set of
image sequences.

In the absence of ground-truth data, the evaluation of the tracking algorithm
can be achieved interactively. Indeed, a human observer can visually judge the
correctness of the trajectories, i.e. if they track the same physical scene con-
stituents. Figure 4 gives some examples of trajectories built from a set of spots
of attention using the tracking algorithm described above.

In a more advanced version of the tracking algorithm, Kalman filter is ex-
pected to enhance the tracking performance. Indeed, in the presence of different
sources of information such as images and odometry, Kalman filter becomes an
intuitive framework for tracking. In addition, the predictive nature of the filter
decreases the probability of feature loss during tracking.

(a) frame 14 (b) frame 33 (c) frame 72

Fig. 4. Examples of trajectories built from a set of spots of attention.

4 Landmark selection and representation

This step of the approach is part of the learning phase and aims at selecting,
among all detected spots of attention, the most robust as visual landmarks of
the environment. The basic idea is to examine the trajectories built while track-
ing spots of attention. Specifically, the length of the trajectories reveals the
robustness of the detected spots of attention. Thus, during the learning phase
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the cardinality (Card(T)) of a trajectory directly determines whether the corre-
sponding spots of attention are good landmarks. Thus, a landmark L is created
for each trajectory 77, that satisfies the described robustness criterium.

In addition, the cardinality of the trajectories can be used as measure to com-
pare the performance of different interest points detectors, as stated in Section
6, but also of different tracking approaches.

Algorithm 1 Attention-based object tracking

Image sequence I(n) (1..n..N)

Number of detected spots of attention per frame: M
Boolean appended

Boolean marked| ]

Trajectory set {T'} = 0

forn=1..N do
Detect & characterize the M spots of attention Prm,n = (Xm,n, fm,n)
for k=1..card({T}) do
marked[k] = 0
end for
form=1..M do
appended = 0
for k=1..card({T}) do
if (markedk] == 0) then
if d(Pp,n, PI') <e * then
append( P n, Tk)
appended = 1
marked[k] =1
break
end if
end if
end for
if (appended == 0) then
newTraject(Tearac{ry)+1)
append(Pm,n, Tcard({T}H‘l)
{T} ={T} U {Tearaciry)+1}
end if
end for
end for
* d() is given by Equation 9

Once selected, the landmarks should be then represented in an appropriate
manner in order to best describe the navigation environment. In this work, two
attributes are assigned to each landmark L: spatial attribute and feature-based
attribute. Regarding the spatial attribute, the height of the scene constituents
is constant since the robot is navigating on flat ground and the camera is fixed
on the robot. Thus, the y-coordinate of the selected landmarks is independent of
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the robot orientation and varies only slightly. Therefore, the y-coordinates yr, as
well as its maximum variation Ay, are considered as landmark attributes. For
the feature-based attributes, the mean feature vector uy of all spots belonging
to the landmark-related trajectory as well as its standard deviation o, are the
two attributes assigned to a landmark L. py and o are defined in accordance
with Equation 10.

1
nr = C’CLT(TL) Z (fm,n)

m,n|Pm n€TL

o= o Y (B — pn)? (10)

Card(Ty,) ol €Ty

To summarize, a landmark L is described by a four component vector (yr,, Ayr, i, or)7 .

Figure 6 shows the landmarks that have been automatically selected and repre-
sented from a lab navigation environment.

(d) Lio..12 (e) Lis.17 (f) Lis..20

Fig. 5. The selected landmarks and their attributes computed from sequence 1. The
red arrow indicates the increasing index of the landmarks L;.
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5 Landmark recognition

During navigation, a robot has to detect and identify previously learned land-
marks in order to localize itself in the environment. In this work, we propose
a landmark recognition method that relies on characterized spot matching sim-
ilar to the one described in Section 3. Specifically, given a set of landmarks
Li(yr,, Ayr, pr,,0r,)) learned during the exploration phase and a detected spot
of attention Py, (X n, fm,n) (With Xm0 = (Tmon, Ym,n)), then the landmarks
that correspond to this spot are those L; that satisfy the following criteria:

|yLi - ym,n| < k- AyL && (11)
‘ <k- oL;

H,ULi - fm,n

where k is a control parameter for the tolerance/strictness of the matching.
Setting k € [1.5 .. 2] leads to satisfying results. Note that our recognition method
uses a soft matching scheme, e.i. a spot of attention can be matched to more
than one landmark.

In future work, we are intending to exploit the spatial relationships between
single spots but also between landmarks, in order to remove false matchings.
For instance, the spatial order constraints of landmarks presented in [20] is a
possible solution for this problem.

6 Results

This section presents some experiments that aim at assessing the presented land-
mark selection approach. The tests have been carried out with four sequences
acquired by a camera mounted on a robot that navigates in an indoor envi-
ronment over a distance of about 10 meters (see Figure 3). The length of the
sequences varies between 60 and 83 frames. Two groups of results are presented
here. Qualitative results regarding the robustness of the detection and tracking
algorithms and quantitative results that point to the superiority of the corner-
extended model of attention over the classic one.

Regarding the first group of results, Figure 6 illustrates the trajectories built
from each sequence. The trajectories are plotted in 3D (x,y,t) in order to better
visualize their temporal extent.

In the first sequence (Figure 6(a)), the most robustly detected and tracked
landmark is the entrance of the differently illuminated room toward which the
robot is moving. The trajectory built around this landmark has a length of 83,
which means that the spot has been detected in each frame of the sequence.
In addition, the red-colored door frames (especially their corners) and a fire
extinguisher have been tracked over a large number of frames. Ceiling lights
figure also between the detected and tracked features.

Like the first example, the three others ((b) light switched off, (¢) front door
closed, and (d) other corridor) tend to show, qualitatively, the ability of the
proposed approach to robustly detect and track certain visual features of the
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navigation environment over a large period of time and under different condi-
tions. For instance, the door frames and the fire extinguisher figure among those
features that can be considered as environment landmarks. A more quantita-
tive and in-depth evaluation of the robustness of the proposed approach towards
view angle changes and changing in lighting conditions is required, in order to
definitely validate our landmark selection method.

Table 1, which resumes the second group of results, shows the advantage of
the corner-extended model over the basic model regarding the stability of the
detected spots of attention over time. For each of the four image sequences the
total number of trajectories, their minimum, maximum, and mean cardinality
(length) are represented. It can be seen that the integration of the corner features
has leaded to more consistent trajectories.

7 Conclusions and future work

This work presents an attention-based approach for selecting visual landmarks
in a robot navigation environment. An extended version of the saliency-based
model of visual attention that considers also corners has been used to extract
spatial and feature-based information about the most visually salient locations
of a scene. These locations are then tracked over time. Finally, the most robustly
tracked locations are selected as environment landmarks. One of the advantages
of this approach is the use of a multi-featured visual input, which allows to
cope with navigation environments of different natures, while preserving, thanks
to the feature competition, a discriminative characterization of the potential
landmarks. Qualitative results show the ability of the method to select good
environment landmarks, whereas the quantitative results confirm the superiority
of the corner-extended model of attention over the classic one, regarding the
consistency of the detected spots of attention over time.

In future work, the rather simple tracking algorithm will be improved, essen-
tially by introducing predictive filters such as Kalman and particle filters [21]. A
quantitative evaluation of the landmark recognition method is one of the next
steps to be done. In addition, we are planning to apply the proposed approach
to solve some problems related to Simultaneous Localization and Map building
(SLAM) in real robot navigation tasks.
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