
Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3

Nick Howgrave-Graham, Joseph H. Silverman, William Whyte

NTRU Cryptosystems,
5 Burlington Woods, MA 01803.

Abstract. We present, for the first time, an algorithm to choose parameter sets for NTRUEncrypt that
give a desired level of security.

Note: This is an expanded version of a paper presented at CT-RSA 2005.

1 Introduction

Different descriptions of NTRUEncrypt, and different proposed parameter sets, have been in circulation since
1996 [9–11, 5]. However, the method for choosing parameter sets has always been something of a black art.
No single paper has ever described a machine which takes as input a desired security level k and outputs a
parameter set that gives k bits of security.

It is the aim of this paper to provide such a machine. This paper presents a fixed algorithm to generate all
required parameters for NTRUEncrypt with the SVES-3 encryption scheme, starting from a single parameter,
k. Additionally, we present a more flexible framework generalizing the fixed algorithm in order to allow for
architecture and efficiency tradeoffs, while still maintaining security against all known attacks. The fixed
algorithm presented earlier always produces parameters consistent with this framework. We arrive at the
parameter bounds specified in this framework by reviewing the effectiveness of each known attack.

Finally, to demonstrate the flexibility of the general framework, we consider a different set of constraints
and generate a parameter set subject to those constraints.

2 A Specific Algorithm

This section gives a specific instantiation of the parameter generation algorithm for NTRUEncrypt-SVES-3
with binary underlying polynomials and p = 2. The input to this algorithm is the security parameter k. We
denote this algorithm P1

ntru, and denote by P1
ntru(k) the parameter set produced by this algorithm with input

k. Table 2 gives P1
ntru(k) for various common values of k. We present a more general parameter generation

framework later.

1. Set N to be the first prime greater than 3k + 8.
2. Set d to be the smallest integer such that

1√
N

(
N/2
d/2

)
> 2k .

Set dF = dr = d. Set dg = bN/2c.
3. Set dm0 to be the largest integer such that

2N−1
dm0∑

i=0

(
N

i

)
< 2−40 .

If 1√
N

(
N/2
dm0

)
< 2k , increase N to the next largest prime and return to step 2.

4. Set q to be the first prime greater than 4d + 1.
5. Verify that the order of q (mod N) is N − 1 or (N − 1)/2. If it is not, increase q to the next prime value

until a q with a sufficiently high order is found.

6. Calculate c =
√

4πe
√

d(N − d)/N
√

dm0(N − dm0)/N/q. From Table 1, read the values A and B. If

AN −B −max
r


log2


1−

(
1−

d−1∏

i=0

(
1− r

N − i

))N

 + Ar/2


 < k ,

increase N to the next largest prime and return to step 2. Otherwise, output {N , q, p = 2, dF , dr, dg,
dm0} and stop.

The rest of this paper derives and justifies this algorithm.

3 Bit Strength

We quantify security in terms of bit strength k, evaluating how much effort an attacker has to put in to
break a scheme. All the attacks we consider here have variable running times, so we describe the strength of
a parameter set using the notion of cost. For an algorithm A with running time t and probability of success
ε, the cost is defined as

CA = t/ε .

This definition of cost is not the only one that could be used. For example, consider indistinguishability
against adaptive chosen-ciphertext attack. In this attack, an attacker with access to encryption and decryption
oracles chooses two messages M0 and M1, and is given the encryption of one of them. The attacker’s output
is a single bit i ∈ {0, 1}. She wins if Mi was in fact the encrypted message. Here, the relevant measure of
the attacker’s power is the advantage over a random guess, defined as

adv(A(ind)) = 2.(Pr[Succ[A]]− 1/2) .

We will use either measure as appropriate.
Our notion of cost is derived from [19] and related work. An alternate notion of cost, which is the

definition above multiplied by the amount of memory used, is proposed in [28]. The use of this measure would
allow significantly more efficient parameter sets, as the meet-in-the-middle attack described in Section 5.1 is
essentially a time-memory tradeoff that keeps the product of time and memory constant. However, current
practice is to use the measure of cost above.

We also acknowledge that the notion of comparing public-key security levels with symmetric security
levels, or of reducing security to a single headline measure, is inherently problematic — see an attempt
to do so in [24], and useful comments on this in [17]. In particular, extrapolation of breaking times is an
inexact science, the behavior of breaking algorithms at high security levels is by definition untested, and
one can never disprove the existence of an algorithm that attacks NTRUEncrypt (or any other system) more
efficiently than the best currently known method. However, estimates of security have to start somewhere,
and we consider this paper to provide a useful starting point for NTRUEncrypt.

4 The NTRUEncrypt one-way function

An implementation of the NTRUEncrypt encryption primitive is specified by the following parameters:

N Degree Parameter. A positive integer. The associated NTRU lattice has dimension 2N .
q Large Modulus. A positive integer. The associated NTRU lattice is a convolution modular

lattice of modulus q.
p Small Modulus. An integer or a polynomial.

Df ,Dg Private Key Spaces. Sets of polynomials from which the private keys are selected.
Dm Plaintext Space. Set of polynomials that represent encryptable messages. It is the respon-

sibility of the encryption scheme to provide a method for encoding the message that one
wishes to encrypt into a polynomial in this space.

Dr Blinding Value Space. Set of polynomials from which the temporary blinding value used
during encryption is selected.

center Centering Method. A means of performing mod q reduction on decryption.

Definition 1. The Ring of Convolution Polynomials is

R =
Z[X]

(XN − 1)
.

Multiplication of polynomials in this ring corresponds to the convolution product of their associated vectors.
We also use the notation Rq = (Z/qZ)[X]

(XN−1)
.

Definition 2. A polynomial a(X) = a0 + a1X + · · ·+ aN−1X
N−1 is identified with its vector of coefficients

a = [a0, a1, . . . , aN−1]. The centered norm ‖a‖ of a polynomial or vector is defined by

‖a‖2 =
N−1∑

i=0

a2
i −

1
N

(
N−1∑

i=0

ai

)2

. (1)

Definition 3. The width Width(a) of a polynomial or vector is defined by

Width(a) = Max(a0, . . . , aN−1)−Min(a0, . . . , aN−1) .

4.1 Key Generation

NTRUEncrypt key generation consists of the following operations:

1. Randomly generate “small” polynomials f and g in Df , Dg respectively.
2. Invert f in Rq to obtain fq, invert f in Rp to obtain fp, and check that g is invertible in Rq [12].
3. The public key h = p ∗ g ∗ fq (mod q). The private key is the pair (f, fp).

4.2 Encryption

NTRUEncrypt encryption consists of the following operations:

1. Randomly select a “small”polynomial r ∈ Dr.
2. Calculate the ciphertext e as e ≡ r ∗ h + m (mod q).

4.3 Decryption

NTRUEncrypt decryption consists of the following operations:

1. Calculate a ≡ center(f ∗ e), where the centering operation center reduces its input into the interval
[A,A + q − 1].

2. Recover m by calculating m ≡ fp ∗ a (mod p).

To see why decryption works, use h ≡ p ∗ g ∗ fq and e ≡ r ∗ h + m to obtain

a ≡ p ∗ r ∗ g + f ∗m (mod q) . (2)

For appropriate choices of parameters and center, this is an equality over Z, rather than just over Zq.
Therefore step 2 recovers m: the p ∗ r ∗ g term vanishes, and fp ∗ f ∗m = m (mod p).

4.4 The NTRU Hard Problem and One-Way Function

The one-way function underlying NTRU is:

F : Dm ×Dr → Rq

F (m, r) = m + r ∗ h,

where q, N ∈ Z, p ∈ Z[X], h ∈ Rq are given by the output of key generation.

Definition 4. (The P-NTRU problem) For a parameter set P, we denote by Succow
ntru(A,P) the success

probability of any adversary A for finding a preimage of F ,

Succow
ntru(A,P) = Pr

[
(m′, r′) ← A(e, h)
s.t. F (m′, r′) = e

∣∣∣∣∣
(pk = h, sk) ← K, m

R← R̃

r ← genr(ρ), ρ R←Rr, e = F (m, r)

]
.

Assumption 1 (The P1
ntru-NTRU assumption) For every probabalistic polynomial (in k) time algorithm A

there exists a negligible function νA such that for sufficiently large k, we have

Succow
ntru(A,P1

ntru(k)) ≤ νA(k)

.

5 Security of the NTRU one-way function

Most public key cryptosystems, such as RSA [26] or ECC [18, 22], are based on a one-way function for which
there is one best-known method of attack: factoring in the case of RSA, Pollard-rho in the case of ECC. In
the case of NTRU, there are two primary methods of approaching the one-way function, both of which must
be considered when selecting a parameter set.

5.1 Combinatorial Security

Polynomials are drawn from a known space S. This space can best be searched by using a combinatorial
technique originally due to Odlyzko [16], which can be used to recover f or g from h or r and m from e.
We denote the combinatorial security of polynomials drawn from S by Comb[S], and the set of binary
polynomials of degree N − 1 with exactly d coefficients equal to 1 by BN (d). Then

Comb[BN (d)] ≥
(
N/2
d/2

)
√

N
. (3)

5.2 Lattice Security

The NTRU Lattice Lh associated to a polynomial h ∈ R is the lattice

Lh = {(u, v) ∈ R2 : v ≡ h ∗ u/p (mod q)}, satisfying
dim(Lh) = 2N and Disc(Lh) = qN .

Lattice-based attacks may be mounted against a ciphertext e to recover the plaintext, or against a public
key h to recover the private key. This section treats lattice-based attacks on the public key; the analysis for
attacks on a ciphertext is almost identical. More details can be found in [13].

An NTRUEncrypt public key h describes a 2N -dimensional NTRU lattice containing the private key (f,
g). When f is of the form f = 1 + pF. the best lattice attack on the private key involves solving a Close
Vector Problem (CVP).1 Experimentally, it has been found that an NTRU lattice of this form can usefully
be characterized by two quantities

a = N/q, c =
√

4πe‖F‖‖g‖/q .

1 Coppersmith and Shamir [6] propose related approaches which turn out not to materially affect security.

This is to say that for constant (a, c), the experimentally observed running times for lattice reduction behave
roughly as

log(T) = AN + B ,

for some experimentally-determined constants A and B.
Table 1 summarizes results for breaking times from [9, 13], and more recent experiments, giving breaking

times for inhomogenous NTRU lattices with different (a, c) values. We represent the security by the constants
A and B. The breaking time in terms of bit security is AN + B. It may be converted to time in MIPS-years
using the equality 80 bits ∼ 1012 MIPS-years.

c a A B

1.73 0.53 0.3563 −2.263

2.6 0.8 0.4245 −3.440

3.7 2.7 0.4512 +0.218

5.3 1.4 0.6492 −5.436

Table 1. Extrapolated bit security constants depending on (c, a).

For constant (a, c), increasing N increases the breaking time exponentially. For constant (a,N), increasing
c increases the breaking time. For constant (c,N), increasing a decreases the breaking time, although the
effect is slight. More details on this table are given in [13]. We write

Lattice Bit Security blatt ≡ αN + β .

The technique known as zero-forcing [13, 20] can be used to reduce the dimension of an NTRU lattice
problem. The precise amount of the expected performance gain is heavily dependent on the details of the
parameter set; we refer the reader to [13, 20] for more details. In this paper we use the formula2

Gain ∼

1−

(
1−

d−1∏

i=0

(
1− r

N − i

))N

 2αr/2 (4)

to determine the expected gain due to picking a pattern of r zeroes, if f has d non-zero entries, and the lattice
breaking bit security goes as αN + β. This will typically overestimate the gain, but we use this formula for
reasons of prudence.

5.3 Decryption Failure Security

NTRU decryption can fail on validly encrypted messages if the center method returns the wrong value of
A, or if the coefficients of prg + fm do not lie in an interval of width q. Decryption failures leak information
about the decrypter’s private key [14, 25], so a center method must make the chance of a decryption failure
vanishingly small.

The parameter sets recommended in [5] allow a decryption failure probability of about 2−104 for 80-bit
security. In this paper, we will pick parameter sets such that there will be no decryption failure, by selecting
q to be greater than the maximum possible value of prg + fm. Centering then becomes simply a matter of
reducing into the interval [0, q − 1].

5.4 Other Security Considerations

The following parameter selection criteria must also be taken into account, although encryption and decryp-
tion will work even if they are violated.

2 Note that this formula, used in [13], corrects the equivalent formula given in [20].

Choosing N — The degree parameter N must be prime. (See [7].)

N , q and p — The small and large moduli p and q must be relatively prime in the ring R. Equivalently, the
three quantities

p, q, XN − 1

must generate the unit ideal in the ring Z[X]. (As an example of why this is necessary, in the extreme case
that p divides q, the plaintext is equal to the ciphertext reduced modulo p.)

Factorization of XN − 1 (mod q) — If F(X) is a factor of XN − 1 (mod q), and if h(X) is a multiple of
F(X), i.e., if h(X) is zero in the field K = (Z/qZ)[X]/F(X), then an attacker can recover the value of m(X)
in the field K.

If q has order t (mod N), then

XN − 1 ≡ (X − 1)F1(X)F2(X) · · ·F(N−1)/t(X) in (Z/qZ)[X] ,

where each Fi(X) has degree t and is irreducible mod q. If Fi(X) has degree t, the probability that h(X)
or r(X) is divisible by Fi(X) is presumably 1/qt. To avoid attacks based on the factorization of h or r, we
will require that for each prime divisor P of q, the order of P (mod N) must be N − 1 or (N − 1)/2. This
requirement has the useful side-effect of increasing the probability that randomly chosen f will be invertible
in Rq [27].

Information leakage from encrypted messages — The transformation a → a(1) is a ring homomorphism, and
so the ciphertext e has the property that

e(1) = r(1)h(1) + m(1) .

An attacker will know h(1), and for many choices of parameter set r(1) will also be known. Therefore, the
attacker can calculate m(1). The larger |m(1)−N/2| is, the easier it is to mount a combinatorial or lattice
attack to recover the msssage, so the sender should always ensure that ‖m‖ is sufficiently large. This will
double the encryption time, but does not appear to lead to any attacks. One of our inputs into the parameter
generation algorithm will be a lower bound for the probability that a randomly generated m will be too small.

6 Encryption schemes: NAEP

In order to protect against adaptive chosen ciphertext attacks, we must use an appropriately defined en-
cryption scheme. The scheme described in [15] gives provable security in the random oracle model [2, 3]. We
briefly outline it here.

NAEP uses two hash functions:

G : {0, 1}N−l × {0, 1}l → Dr H : {0, 1}N → {0, 1}N

In terms of the security parameter, we wish l = Θ(k), and also N − l = Θ(k).
To encrypt a message M ∈ {0, 1}N−l using NAEP one uses the functions

compress(x) = (x (mod q)) (mod 2),
B2P : {0, 1}N → Dm ∪ “error”, P2B : Dm → {0, 1}N

The function compress puts the coefficients of the modular quantity x (mod q) in to the interval [0, q), and
then this quantity is reduced modulo 2. The role of compress is simply to reduce the size of the input to
the hash function H for gains in practical efficiency.The function B2P converts a bit string into a binary
polynomial, or returns “error” if the bit string does not fulfil the appropriate criteria – for example, if it does
not have the appropriate level of combinatorial security. The function P2B converts a binary polynomial to
a bit string.

The encryption algorithm is then specified by:

1. Pick b
R← {0, 1}l.

2. Let r = G(M, b), m = B2P((M ||b)⊕H(compress(r ∗ h))).
3. If B2P returns “error”, go to step 1.
4. Let e = r ∗ h + m ∈ Rq.

Step 3 ensures that only messages of the appropriate form will be encrypted.
To decrypt a message e ∈ Rq one does the following:

1. Let a = center(f ∗ e (mod q)).
2. Let m = f−1

p ∗ a (mod p).
3. Let s = e−m.
4. Let M ||b = P2B(m)⊕H(compress(P2B(s))).
5. Let r = G(M, b).
6. If r∗h = s (mod q), and m ∈ Dm, then return the message M , else return the string “invalid ciphertext”.

The use of the scheme NAEP introduces a single additional parameter:

l Random Padding Length. The length of the random padding b concatenated with M in
step 1.

The ind game requires an attacker to identify the message encrypted in a single, specific ciphertext.
Therefore, the random padding does not require collision resistance, but it does require preimage resistance.
We therefore set l = k to ensure that attacks based on guessing the random padding have a k-bit cost (where
cost is defined relative to the attacker’s advantage).

6.1 Instantiating NAEP: SVES-3

The EESS#1 v2 standard [5] specifies an instantiation of NAEP known as SVES-3. In SVES-3, the following
specific design choices are made:

– To allow variable-length messages, a one-byte encoding of the message length in bytes is prepended to
the message. The message is padded with zeroes to fill out the message block.

– The hash function G which is used to produce r takes as input M ; b; an OID identifying the encryption
scheme and parameter set; and a string htrunc derived by truncating the public key to length lh bits.

SVES-3 includes htrunc in G so that r depends on the specific public key. Even if an attacker were to
find an (M, b) that gave an r with an increased chance of a decryption failure, that (M, b) would apply only
to a single public key and could not be used to attack other public keys. In the case of the parameter sets
proposed in this document, there are no decryption failures and so no need to input htrunc to G. We will
therefore use SVES-3 but set lh = 0.

7 Selecting Parameter Sets for SVES-3: Framework

Having completed our review of security considerations for NTRU parameter sets, we can now specify an
algorithm that generates a parameter set for NTRUEncrypt-NAEP with a desired bit security level k. First,
we specify our overall framework. Then we apply it to specific sets of constraints on the parameters.

1. Determine µ, the number of bits that must be transported in m. Pick an initial candidate N , a prime
number that allows µ bits to be transported.

2. For this value of N , find values of dF , dg, dr that give the required level of combinatorial security.
3. Using the bound Preject given in Constraint 6, calculate the minimum integer dm0 and the maximum

integer dm1 such that N/2−dm0 = dm1−N/2 and the probability that a randomly chosen binary vector
will have between dm0 and dm1 1s is greater than 1−Preject. If dm0 does not give sufficient combinatorial
security, increase N to the next prime and repeat this step.

4. Calculate the maximum possible width of prg + m + pFm. Set q to be the first prime greater than this
number.

5. Verify that the order of q (mod N) is N − 1 or (N − 1)/2. If it is not, increase q to the next prime value
until a q with a sufficiently high order is found.

6. Verify whether the lattice strength is greater than 2k for the selected N , q, Df , Dg, Dr, Dm. (In the
case of Dm, the check is performed for the m with dm = dm0, or in other words the weakest m that will
occur). If the strength is greater than 2k, terminate. Otherwise, increase N to the next highest prime
number and return to step 2.

The analysis below will explain why this process is likely to terminate after a very small number of
iterations.

7.1 Binary polynomials

We illustrate the method using binary polynomials. In this case, we use the following constraints.

1. Take p = 2. Require q to be prime.
2. f will be of the form 1 + pF.
3. The polynomials F, g, r, m will be binary. Product form polynomials will not be used.
4. F, g, r will have dF , dg, dr 1s respectively.
5. The system must be capable of transporting 2k bits of message.
6. The chance that a message representative m will be rejected due to having insufficient security, Preject,

will be less than 2−40.
7. Subject to the constraints above, minimize bandwidth.
8. Subject to the constraints above, maximize lattice security.

Select N — For k-bit security, we require l ≥ k, as stated in the discussion of the security of NAEP. We also
want to transport 2k bits of message, as stated in constraint 5, and to use 8 bits to encode the length of the
transported message. The total number of bits to be transported in m is therefore 3k + 8. We set N to be
the first prime greater than 3k + 8.

Select polynomial spaces — We select values for dF , dg, dr so that Comb[BN (dF)], Comb[BN (dg)], Comb[BN (dr)] >
2k. The smaller dF , dr are, the faster operations will be. We select dF , dr such that dF = dr = d, d the small-
est value for which Comb[BN (d)] ≥ 2k. The results are shown in table 2. For all values of N in the given
range, d ∼ 0.19N ; in other words d increases (slightly slower than) linearly with N . Therefore, NTRUEncrypt
encryption and decryption times scale roughly as N2 for our parameter sets.

There is no particular advantage, in performance or bandwidth, to taking g to be small, so long as it
is binary. Following constraint 8, we therefore take dg = bN/2c. This is a change from practice in previous
parameter sets, where dg has typically been taken to be the same as df .

Select Dm — Table 2 gives the value of dm0 (and dm1 = N − dm0) for each N that gives a chance of 2−40 of
having to re-encrypt. In all cases, dm0 is comfortably above df , and so m will have sufficient combinatorial
security. If dm0 had been below df , increasing N will both (a) reduce the value of df that gives combinatorial
security and (b) increase the dm0 that gives the desired probability of having to re-encrypt. The process of
increasing N in this step will therefore eventually terminate.

Select q — We select q subject to the requirements

q > Max(Width(prg + fm)) ,

Order(q (mod N)) ≥ (N − 1)/2 .

We now consider how to calculate the width of prg + fm.
Each term in the polynomial obtained by multiplying a polynomial a by a binary polynomial b with db

1s can be thought of as the result of selecting db terms from a and summing them. If b is also binary, with
db 1s, clearly the minimum possible value of any term in a ∗ b is max(0, da + db −N), and the maximum is
min(da, db)3.
3 The maximum width of the product of two binary polynomials is therefore N/2.

In this case dF = dg = dr = d. The number of 1s in m, dm, is variable, but if it is less than dF then
max(Width(F ∗m)) < dF , and if it is greater than dF then max(Width(F ∗m)) = dF . So

max(Width(prg + m + pFm)) = 1 + 2pd = 1 + 4d

⇒ q > 1 + 4d ∼ 0.76N.

Taking q to be the first prime greater than 1 + 4d gives a q with a large enough order (mod N) for
almost all the (d,N) pairs under consideration. The exception is k = 256, N = 787, d = 140, for which the
first q implied, 563, has order only 131 (mod N), and the lowest q that satisfies the order requirement turns
out to be 587. The values of q obtained are given in Table 2.

Check lattice strength — Having calculated d and q, we can now calculate the lattice characteristics (a, c).
For a binary polynomial b with d 1s, the centered norm is given by |b| =

√
d(N − d)/N . and ranges from√

d, when d is small, to
√

d/2, when d = N/2. The thicker f, g, r, m are, the harder the lattice problem
is. We therefore calculate c for lattice attacks on (r,m) when the number of 1s in m is dm0 to give a lower
bound on the lattice security. All the parameter sets under consideration give c ≥ 2.77, so we can use the
c = 2.6, a = 0.8 experimental lattice strengths in Table 1 to extrapolate the strength of (r, m) and (F, g).

For interest, we briefly consider extreme cases. If d = 0.001N , then we have

q ∼ 1 + 0.004N, c ∼ 11.6, a ∼ 250 . (5)

If d = N/2, then we have
q ∼ 2N, c = 2.066, a = 0.5 . (6)

This shows that as d/N increases, c will decrease to a minimum of 2.066.
As table 2 below shows, the suggested parameters clearly give a sufficient level of lattice security, even

taking zero-forcing into account.

Increase N if necessary — If the strength against lattice attacks is insufficient, we increase N . This will
decrease (or at worst not increase) the value of d necessary to give combinatorial security, reducing d/N . As
noted in equations 5 and 6 above, as d/N decreases, c will increase. Even if c were to stay constant, increasing
N would increase the lattice strength; since we increase both c and N , lattice strength will certainly increase,
eventually reaching the desire strength. The process of increasing N will therefore eventually terminate.

Summary — This has rederived and justified the algorithm P1
ntru presented at the start of this paper. Table 2

summarizes the results. For different values of k, we give the corresponding N , d, and q values. These, along
with p = 2, the definition of center as reduction into [0, q−1], and the specification l = k, fully parameterize
the system. For interoperability, other design decisions must be made, such as the exact instantiations of the
random oracles; we do not address that question in this paper.

We also present the lattice bit security blatt, the number of zeroes an adversary should guess when zero-
forcing r, the lattice bit security including zero-forcing bzf

latt, the number of additions required for a convolution
by f or r, the public key size Ndlog2 qe and, for comparison, the sizes of RSA and ECC keys that give a similar
level of security. We also include the number of Adds With Carry required for an ECC point operation at
the same security level: details of how this figure was calculated, and discussion of the appropriate figures to
compare, can be found in Appendix A. The bandwidth given is the minimum bandwidth. In the case where
q is a nine-bit quantity, for example, an implementation may decide to encode each coefficient in 16 bits
rather than 9.

7.2 Product-form polynomials

Next we use the method above to generate parameter sets that make use of product form polynomials for
efficiency advantages. We take F = f1 ∗ f2 + f3, with f1, f2, f3 all random binary with d 1s, r to have the same
form, and g to be binary with dg = bN/2c. Full details of the process are given in Appendix B. Table 3
summarizes the results, including the speedup relative to the parameters for binary polynomials investigated
above, the public key size Ndlog2 qe and the RSA and ECC figures as above.

k N d dm0 q c(f, g) c(r, m) blatt r bzf
latt adds size RSA ECC

ECC
AWC

Speedup
wrt ECC

80 251 48 70 197 2.93 2.77 103.1 29 97.98 12048 2008 1024 163 112210 9.31

112 347 66 108 269 2.94 2.83 143.9 31 138.26 22902 3033 ∼ 2048 224 170356 7.44

128 397 74 128 307 2.93 2.84 165.1 33 159.17 29378 3501 3072 256 277280 9.44

160 491 91 167 367 2.98 2.90 205.0 35 198.75 44681 4383 4096 320 645642 14.45

192 587 108 208 439 2.97 2.91 245.7 37 239.21 63396 5193 7680 384 936618 14.77

256 787 140 294 587 2.95 2.91 330.6 41 323.45 110180 7690 15360 512 1595434 14.48
Table 2. Final Parameter Sets for different values of k using binary polynomials.

k N d q adds
Speedup

wrt binary
size RSA ECC

ECC
AWC

Speedup
wrt ECC

80 251 8 293 6024 2.00 2259 1024 163 112210 18.63

112 347 11 541 11451 2.00 3370 ∼ 2048 224 170356 14.88

128 397 12 659 14292 2.06 3890 3072 256 277280 19.40

160 491 15 967 22095 2.02 4870 4096 320 645642 29.22

192 587 17 1229 29937 2.12 6347 7680 384 936618 31.29

256 787 22 2027 51942 2.12 8459 15360 512 1595434 30.72
Table 3. Final Parameter Sets for different values of k using product form polynomials.

8 Parameter sets generated under different constraints

The algorithm presented in the previous section is designed to ensure the minimum value of N . In this
section, we consider the parameter sets that would be obtained if the constraint was to obtain the minimum
value of N consistent with keeping q below 256. In practice, this means ensuring that q = 251 and, since
d < (q − 1)/4, that d = 62.

By (3), to have Comb[BN (d)] > 2k for constant d, we have

log2(N) > 2k/d + 1

(using the approximation
(
a
b

) ∼ ab for b ¿ a). We therefore expect N to increase exponentially with k, and
this proves to be the case as is demonstrated in Table 4. Details of the parameter generation procedure are
omitted.

k N d q adds size
Speedup
wrt ECC

112 367 62 251 22754 2936 7.49

128 521 62 251 32302 4168 8.58

160 1031 62 251 63911 8248 10.10
Table 4. Final Parameter Sets for different values of k under the constraint q = 251.

Interestingly, the k = 112 parameter sets generated here are faster and result in smaller keys than the
parameter sets generated by requiring the smallest N . This indicates that the parameter generation algorithm
can be refined, which would be an interesting direction for future research.

9 Conclusions

We presented a framework for generation of NTRUEncrypt parameter sets and used it to generate parameter
sets for different levels of bits security. The framework is robust and adaptable: if future developments in
lattice analysis significantly affect breaking times, it will be possible to calculate new parameter sets that

give an appropriate level of security. With different inputs to the framework, different parameter sets would
be possible. For example, one might take p = 2+X and q a power of 2 for efficiency in performing reductions;
one might require q < 256, increasing N as necessary, for use on 8-bit processors; one might consider an
alternate encryption scheme that transported fewer bits to save bandwidth. We have also demonstrated that
NTRUEncrypt remains more efficient than other well-studied cryptosystems, and shown that for increasing
security levels the bandwidth required for NTRUEncrypt is less than for RSA.

This paper is merely a contribution to the systematic study of how to generate NTRUEncrypt parameter
sets, but we hope a useful one.

10 Acknowledgements

We would like to thank the anonymous referees of the conference version of this paper for their comments,
and Philip Hirschhorn for his help with lattice reduction experiments.

References

1. ANSI X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA), 1999.

2. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Proc. of Eurocrypt ’94, volume 950 of LNCS,
pages 92–111. IACR, SpringerVerlag, 1995.

3. D. Boneh, Simplified OAEP for the RSA and Rabin functions, In proceedings of Crypto ’2001, Lecture Notes in
Computer Science, Vol. 2139, Springer-Verlag, pp. 275-291, 2001

4. M. Brown, D. Hankerson, J. López, and A. Menezes, Software Implementation of the NIST Elliptic Curves Over
Prime Fields, CT-RSA 2001, D. Naccache (Ed.), LNCS 2020, 250–265, Springer-Verlag, 2001.

5. Consortium for Efficient Embedded Security, Efficient Embedded Security Standard #1 version 2, available from
http://www.ceesstandards.org.

6. D. Coppersmith and A. Shamir, Lattice Attack on NTRU, Advances in Cryptology - Eurocrypt’97, Springer-
Verlag

7. C. Gentry, Key recovery and message attacks on NTRU-composite, Advances in Cryptology —Eurocrypt ’01,
LNCS 2045. Springer-Verlag, 2001

8. D. Hankerson, J. Hernandez, A. Menezes, Software implementation of elliptic curve cryptography over binary
fields, Proceedings of CHES 2000, Lecture Notes in Computer Science, 1965 (2000), 1-24

9. J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryptosystem, in Algorithmic Number
Theory (ANTS III), Portland, OR, June 1998, Lecture Notes in Computer Science 1423 (J.P. Buhler, ed.),
Springer-Verlag, Berlin, 1998, 267–288. See also http://www.ntru.com.

10. J. Hoffstein and J. H. Silverman. Optimizations for NTRU. In Publickey Cryptography and Computational
Number Theory. DeGruyter, 2000. Available at [4].

11. J. Hoffstein and J. H. Silverman, Random Small Hamming Weight Products With Applications To Cryptography,
Discrete Applied Mathematics, to appear, Available from http://www.ntru.com.

12. J. Hoffstein and J. H. Silverman. Invertibility in truncated polynomial rings. Technical report, NTRU Cryptosys-
tems, October 1998. Report #009, version 1, available at http://www.ntru.com.

13. J. Hoffstein, J. H. Silverman, W. Whyte, Estimated Breaking Times for NTRU Lattices, Technical report, NTRU
Cryptosystems, June 2003 Report #012, version 2, available at http://www.ntru.com.

14. N. A. Howgrave-Graham, P. Nguyen, D. Pointcheval, J. Proos, J. H. Silverman, A. Singer, W. Whyte, The
Impact of Decryption Failures on the Security of NTRU Encryption, Advances in Cryptology—Crypto 2003,
Lecture Notes in Compputer Science 2729, Springer-Verlag, 2003, 226-246.

15. N. Howgrave-Graham, J. H. Silverman, A. Singer and W. Whyte. NAEP: Provable Security in the Presence of
Decryption Failures IACR ePrint Archive, Report 2003-172, http://eprint.iacr.org/2003/172/

16. N. A. Howgrave-Graham, J. H. Silverman, W. Whyte, A Meet-in-the-Middle Attack on an NTRU Private key,
Technical report, NTRU Cryptosystems, June 2003. Report #004, version 2, available at http://www.ntru.com.

17. B. Kaliski, Comments on SP 800-57, Recommendation for Key Management, Part 1: General Guidelines. Available
from http://csrc.nist.gov/CryptoToolkit/kms/CommentsSP800-57Part1.pdf.

18. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48, pages 203–209, 1987.

19. A. K. Lenstra, E. R. Verheul, Selecting cryptographic key sizes, Journal of Cryptology vol. 14, no. 4, 2001, 255-293.
Available from http://www.cryptosavvy.com.

20. A. May, J.H. Silverman, Dimension reduction methods for convolution modular lattices, in Cryptography and
Lattices Conference (CaLC 2001), J.H. Silverman (ed.), Lecture Notes in Computer Science 2146, Springer-
Verlag, 2001

21. T. Meskanen and A. Renvall. Wrap Error Attack Against NTRUEncrypt. Proc. of WCC ’03.

22. V. Miller. Uses of elliptic curves in cryptography. In Advances in Cryptology: Crypto ’85, pages 417–426, 1985.

23. NIST, Digital Signature Standard, FIPS Publication 186-2, February 2000.

24. NIST Special Publication 800-57, Recommendation for Key Management, Part 1: General Guideline, January
2003. Available from http://csrc.nist.gov/CryptoToolkit/kms/guideline-1-Jan03.pdf.

25. J. Proos Imperfect Decryption and an Attack on the NTRU Encryption Scheme, IACR ePrint Archive, report
02/2003. http://eprint.iacr.org/2003/002/.

26. R. Rivest, A. Shamir, L. M. Adleman, A method for obtaining digital signatures and public-key cryptosystems,
Communications of the ACM, 21 (1978), 120-126.

27. J. H. Silverman, Invertibility in Truncated Polynomial Rings, Technical report, NTRU Cryptosystems, October
1998 Report #009, version 1, available at http://www.ntru.com.

28. Robert D. Silverman, A Cost-Based Security Analysis of Symmetric and Asymmetric Key Lengths. RSA Labs
Bulletin 13, April 2000. available from http://www.rsasecurity.com/rsalabs.

A Comparing ECC times to NTRUEncrypt times

In this section we give a comparison, in terms of basic operations, of elliptic curve point multiplication and
NTRUEncrypt polynomial operations. The speed of elliptic curve point multiplications (in software) for the
prime fields given in [1, 23] is analyzed in [4]. The analysis in [4] is most complete for the smallest NIST
prime field Fp192, where p192 = 2192 − 264 − 1. The prime p192 is slightly less than a power of 232 (a typical
machine word size) and has a sparse bit representation, yielding added efficiencies for various operations
such as modular reduction.

The first three columns of Table 5 appear in [4, Table 10] and give the number of basic operations required
for an average point multiplication on the NIST p192 elliptic curve. The authors of [4] note that “95.4% of
the total execution time was spent on these basic operations.”

Operations in the first three columns of Table 5 are modulo p. We denote by AWC. the amount of time
it takes to perform a single 32 bit addition-with-carry, and estimate the time for an elliptic curve point
multiplication in terms of AWC. For example, a single addition modulo p192 takes 6 AWC.4

To estimate AWC numbers for other security levels, we follow [4, Table 9], which gives running times for
point multiplications for all the recommended fields. The estimated number of AWC for field pi is simply
the number of AWC for p192 times the ratio of the running times for pi and p192. The results are shown in
Table 6. Our figures are based on the figures of [4] that do not use precomputation, as ECC encryption and
decryption typically involve one point multiplication on an arbitrary base point for which precomputation
cannot have been performed.5

The NTRUEncrypt performance figures given are the time for a single convolution, calculated as

Time = dN (Binary polynomials) ,

Time = 3dN (Product-form polynomials) .

This slightly underestimates the time for a convolution, in which each of the N coefficients is produced by
a combination of d additions (without carry) and 1 to d reductions mod q. However, the overhead due to
the reductions is not great; on a 32-bit machine, for example, each reduction can be accomplished in log2(d)
subtractions. We therefore consider the figures presented to be a good first-order approximation to the actual
running times.
4 Plus potentially one subtraction of p, which we consider free due to the form of p192.
5 Signing is more likely to use precomputation, increasing speeds about 3.5-fold.

Field # of Percentage of AWC per Number of
operation calls total time call AWC

Addition (Alg 1) 1137 5.8% 6.00 6822.00

Subtraction (Alg 2) 1385 7.4% 6.28 8703.93

Integer multiplication (Alg 3) 1213 38.3% 37.14 45048.72

Integer squaring (Alg 4) 934 28.20% 35.5 33169.03

Fast reduction (Alg 7) 2147 14.8% 8.11 17407.86

Modular inversion (Alg 8) 1 0.9% 1058.59 1058.59

Total 95.4% 112210.14
Table 5. Average number of function calls and percentage of time spent on the basic field operations in executions
of [4, Algorithm 10] for elliptic curve point multiplication for the p192 curve. Data in first three columns is from [4,
Table 10]. The algorithm numbers in Table 5 refer to the algorithms described in [4].

Field Time AWC

p192 2144 112210

p224 3255 170356

p256 5298 277280

p384 17896 936618

p521 30484 1595433

Table 6. Estimated number of AWC for each of the NIST recommended finite fields, derived from [4, Table 9].

In summary, NTRUEncrypt convolution operations with binary polynomials are 7.5 − 15 times faster,
and NTRUEncrypt convolutions with product-form polynomials are 15 − 30 times faster than ECC point
multiplications, at the same security level. This figure leaves out the time required for any hash function
operations. For encryption, ECC requires an additional point multiplication to a known base point, which
increases encryption times by a factor of 1.3− 2. For decryption, NTRUEncrypt-NAEP requires an additional
encryption operation for the consistency, increasing decryption times by a factor of 2.

B Details of Product Form Calculations

B.1 Combinatorial Security of Product-form Polynomials

Product-form polynomials [10, 11] are polynomials of the form a1 ∗ a2 or a1 ∗ a2 + a3. The advantage of
polynomials of this form is that they can be specified more compactly, and multiplied by more quickly, than
binary polynomials with the same level of combinatorial security, though at the cost of requiring more RAM.

In this paper we will only consider the combinatorial security of polynomials of the form a = a1 ∗ a2 + a3,
where a1, a2, a3 are all binary with da1 , da2 , da3 1s respectively, da1 = da2 = da3 = da, and there are no
further constraints on a. If PN (d) is the set of all polynomials of this form, then Comb[PN (d)] ≥ min

(

(
N−dN/de

d−1

)2
, max

((N−dN
d e

d−1

)(N−d N
d−) e

d−2

)
,
(

N
2d

))
, max

((
N
d

)(
N

d−1

)
,
(N−d N

2d e
2d−1

)))
.

Previous parameter sets [5] have suggested using product-form polynomials a = a1 ∗ a2 + a3, where
the product polynomial a is constrained to be binary. However, this increases the time to generate those
polynomials, and more so as the security parameter k increases. For reasons of efficiency the parameter
generation algorithm in this paper does not require binary output polynomials.

B.2 Parameter Set Generation

We work from the same constraints as in section 7.1, except that:

1. F will be of the form f1 ∗ f2 + f3, with f1, f2, f3 all random binary.
2. r will be of the form r1 ∗ r2 + r3, with r1, r2, r3 all random binary.
3. f1, f2, f3, r1, r2, r3 will have d 1s; g will have dg 1s.

As before, we set N to be the first prime greater than 3k+8. The parameter set generation then proceeds
as follows.

Select polynomial spaces — Select the smallest d that gives the desired level of combinatorial security, and
take dg = N/2 to give the greatest possible lattice security. Table 7 shows the resulting values for d and
the corresponding Hamming weight of F, Hw(F)(= Hw(r)). For all values of N , dF = dr ∼ 0.03N . As in the
previous section, d increases slightly slower than linearly with N , so NTRUEncrypt encryption and decryption
times scale approximately as N2. The value obtained for dm0 only depends on N and does not change.

Select q — Select the smallest prime q such that Order(q (mod N)) ≥ (N − 1)/2 and q > Max(Width(prg +
fm)). For both f ∗ m and r ∗ g, one of the operands is binary but the other is product-form, so the width of
the product a ∗ b is no longer bounded by min(Hw(a, b)). However, since one of the operands is binary, the
width is certainly bounded by Hw(a), where a is the non-binary input polynomial. Therefore,

max(Width(prg + m + pfm)) = 1 + 2pd(d + 1) = 1 + 4d(d + 1)
⇒ q > 1 + 4d(d + 1) ⇒ q ∼ cN2.

Applying the requirement that the order of q (mod N) be large, we increase q(N = 397) and q(N = 491).
The other values of q are unaffected.

Check lattice strength — We now calculate the lattice characteristics (a, c). For g we use the standard
centered norm. For f, the situation is more complicated. Roughly speaking, centered norms obey the pseudo-
multiplicative and pseudo-additive rules

|a ∗ b| ∼ |a| ∗ |b|, |a + b| ∼
√
|a|2 + |b|2 .

The centered norm |F| will in general be |F| ∼
√

d2(N − d)2/N2 + d(N − d)/N . However, in the case where
F is binary, |F| will take the considerably lower value |F| =

√
D(N −D)/N, D = d2 + d. Although it

will be extremely rare for randomly generated product-form F to be binary, we will use this lower value in
calculating c. For all parameter sets under consideration we obtain the result c > 1.73, so we can use the
extrapolation line obtained at c = 1.73, presented in table 1 above, to estimate lattice strength. Estimating
the effects of zero-forcing is also harder in this case, because the number of zeroes in f, r is now variable.
We will assume that the product-form polynomials can be approximated by dropping d(d + 1) balls into N
boxes. The expected number of empty boxes is

E(zeroes) = N(1− 1/N)d(d+1) .

We use this expected number of zeroes in our zero-forcing calculations.67

We can also estimate ‖F‖ by estimating the expected number of 0s, 1s, 2s, and so on, and calculating the
centered norm using Equation 1. This third estimate of ‖F‖ gives a higher c value than the other methods
described above. We denote it by c0,1,2,3 in Table 7.

Table 7 summarizes the results for lattice strength for product form polynomials. The value r is the
number of zeroes an adversary should guess when zero-forcing. We also give cf1,f2,f3 , the expected value of c
as calculated from the norms of f1, f2, f3, and c0,1,2,3, the expected value of c as calculated from the expected
numbers of 0s, 1s, 2s and 3s in F. Both of these measures give a higher value for c than the one we use,
demonstrating that in general the lattice security will be considerably above the extrapolation line based on
c = 1.73. The final parameter sets are given in Table 3.

6 If a given polynomial has more than the expected number of zeroes, this will help the attacker by improving their
chances of guessing a pattern, but also harm them because the fewer entries a polynomial has the greater its norm,
and the harder the associated lattice problem, will in general be.

7 An attacker could also attempt zero-forcing by inverting h and looking for patterns of zeroes in g. This approach
would be worthwhile if there were fewer zeroes in F than in g, but for the parameter sets under consideration, this
is not the case and zero-forcing on F will always be more effective.

k N d d/N Hw(F) q c(f, g) c(r, m) blatt r bzf
latt cf1,f2,f3 E0 E1 E2 E3 E4 c0,1,2,3

80 251 8 0.032 72 293 2.57 2.43 87.2 20 80.1 2.76 188 55 7 1 0 2.79

112 347 11 0.032 132 541 2.21 2.13 117.8 16 118.7 2.59 237 90 18 2 0 2.56

128 397 12 0.030 156 659 2.24 2.17 136.3 17 136.6 2.50 268 105 21 4 0 2.53

160 491 15 0.031 210 967 2.08 2.02 171.3 16 170.1 2.42 301 146 38 4 0 2.52

192 587 17 0.029 306 1229 2.02 1.97 203.3 14 204.6 2.39 348 180 51 8 0 2.41

256 787 22 0.028 462 2027 1.78 1.75 278.1 14 276.7 2.27 414 261 93 17 1 2.28
Table 7. Lattice constant c for different values of k

