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Abstract. A complexity-theoretic model for public-key steganography with ac-
tive attacks is introduced. The notion of steganographic security against adaptive
chosen-covertext attacks (SS-CCA) and a relaxation called steganographic se-
curity against publicly-detectable replayable adaptive chosen-covertext attacks
(SS-PDR-CCA) are formalized. These notions are closely related to CCA-security
and PDR-CCA-security for public-key cryptosystems. In particular, it is shown
that any SS-(PDR-)CCA stegosystem is a (PDR-)CCA-secure public-key cryp-
tosystem and that an SS-PDR-CCA stegosystem for any covertext distribution
with sufficiently large min-entropy can be realized from any PDR-CCA-secure
public-key cryptosystem with pseudorandom ciphertexts.

1 Introduction

Steganography is the art and science of hiding information by embedding messages
within other, seemingly harmless messages. As the goal of steganography is to hide the
presence of a message, it can be seen as the complement of cryptography, whose goal
is to hide the content of a message.

Consider two parties linked by a public communications channel which is under the
control of an adversary. The parties are allowed to exchange messages as long as they are
not adding a hidden meaning to their conversation. A genuine communication message
is called covertext; but if the sender of a message has embedded hidden information in
a message, it is called stegotext. The adversary, who also knows the distribution of the
covertext, tries to detect whether a given message is covertext or stegotext.

Steganography has a long history as surveyed by Anderson and Petitcolas [2], but
formal models for steganography have only recently been introduced. Several informa-
tion-theoretic formalizations [4, 24, 15] and one complexity-theoretic model [12] have
addressed private-key steganography, where the participants share a common secret key.
These models are all limited to a passive adversary, however, who can only read messages
on the channel.

Von Ahn and Hopper [22] have recently formalized public-key steganography with a
passive adversary and, in a restricted model, also with an active adversary. Their notion
offers security against “attacker-specific” chosen-stegotext attacks, where the recipient
must know the identity of the sender, however; this is a limitation of the model compared
to the bare public-key scenario.

In this paper, we introduce a complexity-theoretic model for public-key steganog-
raphy with active attacks, where the participants a priori do not need shared secret
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information and the adversary may write to the channel and mount a so-called adaptive
chosen-covertext attack. This attack seems to be the most general attack conceivable
against a public-key stegosystem. It allows the adversary to send an arbitrary sequence
of adaptively chosen covertext messages to a receiver and to learn the interpretation of
every message, i.e., if the receiver considers a message to be covertext or stegotext, plus
the decoding of the embedded message in the latter case. (Note that here and in the
sequel, a message on the channel is sometimes also called a “covertext” when we do not
want to distinguish between stegotext and covertext in the proper sense.)

We do not address denial-of-service attacks in this work, where the adversary tries
to disrupt the hidden communication among the participants. Although they also qualify
as “active” attacks and are very important in practice, we think that protection against
them can be addressed orthogonally to the methods presented here.

Our model is based on the intuition that a public-key stegosystem essentially is a
public-key cryptosystem with the additional requirement that its output conforms to a
given covertext distribution. As in previous formalizations of steganography [4, 12, 9,
22], the covertext distribution is publicly known in the sense that it is accessible through
an oracle that samples the distribution. We introduce the notions of steganographic
security against adaptive chosen-covertext attacks (SS-CCA) and steganographic secu-
rity against publicly-detectable replayable adaptive chosen-covertext attacks (SS-PDR-
CCA) and show that they are closely linked to the analogous notions for public-key
cryptosystems, called security against adaptive chosen-ciphertext attacks (or CCA-
security) [16] and security against publicly-detectable replayable adaptive chosen-ci-
phertext attacks [5] (or PDR-CCA-security), respectively. (PDR-CCA-security is the
same as benign malleability [19] and generalized CCA-security [1].)

In particular, we show that stegosystems are related to public-key cryptosystems in
the following ways:

Theorem 1 (informal statement). Any SS-(PDR-)CCA stegosystem is a (PDR-)CCA-
secure public-key cryptosystem.

Theorem 2 (informal statement). An SS-PDR-CCA stegosystem for covertext distribu-
tions with sufficiently large min-entropy can be constructed from any PDR-CCA-secure
public-key cryptosystem whose ciphertexts are pseudorandom (i.e., computationally in-
distinguishable from a random bit string).

A corollary of Theorem 2 is that SS-PDR-CCA stegosystems exist in the standard
model under the Decisional Diffie-Hellman (DDH) assumption and in the random or-
acle model under the assumption of trapdoor one-way permutations. The stegosystem
constructed in the proof of Theorem 2 uses the “rejection sampler” construction found in
essentially all previous work in the area [12, 9, 22], which is already described by Ander-
son and Petitcolas [2]. However, our system embeds more hidden bits per stegotext than
any previous system. This follows from an improved analysis of the rejection sampler.
It is not known if a result analogous to Theorem 2 holds for CCA-security; finding an
SS-CCA stegosystem that works for an arbitrary covertext distribution with sufficiently
large min-entropy remains an interesting open problem.

Our model for public-key steganography is introduced in Section 2, where also the
relation to previous models for steganography is discussed in detail. Section 3 recalls
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the definitions of CCA- and PDR-CCA-security for public-key cryptosystems, states our
results formally, and presents the proof of Theorem 1. Section 4 gives the construction
of an SS-PDR-CCA stegosystem and proves Theorem 2.

2 Definitions

2.1 Notation

A function f : N → R≥0 is called negligible if for every constant c ≥ 0 there exists
kc ∈ N such that f(k) < 1

kc for all k > kc. Given some set S, a subset of almost
all elements contains all but a negligible fraction of elements from S. A (randomized)
algorithm is called efficient if its running time is bounded by a polynomial except with
negligible probability (over the coin tosses of the algorithm).

Let x← y denote the algorithm that assigns a value y to x. If A(·) is a (randomized)
algorithm, the notation x ← A(y) denotes the algorithm that assigns to x a randomly
selected value according to the probability distribution induced by A(·) with input y over
the set of its outputs.

If S is a probability distribution, then the notation x
R← S denotes any algorithm

which assigns to x an element randomly selected according to S. If S is a finite set, then
the notation x

R← S denotes the algorithm which assigns to x an element selected at
random from S with uniform distribution over S.

If p(·, ·, · · · ) is a predicate, the notation

Pr[x R← S; y R← T ; · · · : p(x, y, · · · )]
denotes the probability that p(x, y, · · · ) will be true after the ordered execution of the
algorithms x

R← S, y
R← T, · · · . If X is a (randomized) algorithm, a distribution, or a

set, then PrX [x] is short for Pr
x

R←X
[x], which is short for Pr[s R← X : s = x].

The statistical distance between two distributions X and Y over the same set X is
defined as ‖X − Y‖ = maxX0⊆X

∣∣∑
x∈X0

PrX (x) − PrY(x)
∣∣. The min-entropy of a

distribution X over an alphabet X is defined as H∞(X ) = − log maxx∈X PrX [x]. (All
logarithms are to the base 2.)

2.2 Public-Key Stegosystems

We define a public-key stegosystem as a triple of algorithms for key generation, message
encoding, and message decoding, respectively. The notion corresponds to a public-key
cryptosystem in which the ciphertext should conform to a target covertext distribution.

For the scope of this work, the covertext is modeled by a distribution C over a given
set C. The distribution is only available via an oracle; it samples C upon request, with
each sample being independent. In other words, it outputs a sequence of independent
and identically distributed covertexts. W.l.o.g., PrC [c] > 0 for all c ∈ C.

The restriction to independent repetitions is made here only to simplify the notation
and to focus on the contribution of this work. All our definitions and results can be
extended in the canonical way to the very general model of a covertext channel as
introduced by Hopper et al. [12]. They model a channel as an unbounded sequence of
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values drawn from a set C whose distribution may depend in arbitrary ways on past
outputs; access to the channel is given only by an oracle that samples from the channel.

Such a channel underlies only one restriction: The sampling oracle must allow ran-
dom access to the channel distribution, i.e., the oracle can be queried with an arbitrary
prefix of a possible channel output and will return the next symbol according to the
channel distribution. In other words, the channel sampler cannot only be rewound to
an earlier state of its execution but also restarted from a given state. (Hence it may be
difficult to use an email conversation among humans for a covertext channel since that
cannot easily be restarted.)

The sampling oracle for the covertext distribution is available to all users and to
the adversary. In order to avoid technical complications, assume w.l.o.g. that the sam-
pling oracle is implemented by a probabilistic polynomial-time algorithm and therefore
does not help an adversary beyond its own capabilities (for example, with solving a
computationally hard problem).

Definition 1. [Public-Key Stegosystem] Let C be a distribution on a set C of cover-
texts. A public-key stegosystem is a triple of probabilistic polynomial-time algorithms
(SK, SE, SD) with the following properties.

– The key generation algorithm SK takes as input the security parameter k and outputs
a pair of bit strings (spk , ssk), called the [stego] public key and the [stego] secret
key. W.l.o.g. SK induces the uniform distribution over the set of possible key pairs
for security parameter k.

– The steganographic encoding algorithm SE takes as inputs the security parameter k,
a public key spk and a message m ∈ {0, 1}l(k), where l(k) is an arbitrary polyno-
mial, and outputs a covertext c ∈ C. The plaintext m is often called the embedded
message.

– The steganographic decoding algorithm SD takes as inputs the security parameter k,
a secret key ssk , and a covertext c ∈ C and outputs either a message m ∈ {0, 1}l(k)

or a special symbol⊥. An output value of⊥ indicates a decoding error, for example,
when SD has determined that no message is embedded in c.

We require that for almost all (spk , ssk) output by SK(1k) and all m ∈ {0, 1}l(k),
the probability that SD(1k, ssk , SE(1k, spk , m)) �= m is negligible in k.

Note that except for the presence of the covertext distribution, this definition is
equivalent to that of a public-key cryptosystem. Although all algorithms have oracle
access to C, only SE needs it in the stegosystems considered in this paper. For ease of
notation, the security parameter will be omitted henceforth.

The probability that the decoding algorithm outputs the correct embedded message
is referred to as the reliability of the stegosystem. Although one might also allow a
non-negligible decoding error in the definition of a stegosystem (as done in previous
work [12]), we require that the decoding error probability is negligible in order to main-
tain the analogy between a stegosystem and a cryptosystem.

Security definition. Coming up with the “right” security definition for a cryptographic
primitive has always been a challenging task because the sufficiency of a security prop-
erty cannot be demonstrated by running the cryptosystem. Only its insufficiency can
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be shown by pointing out a specific attack, but finding an attack is usually hard. Often,
security definitions had to be strengthened when a primitive was used as part of a larger
system. Probably the most typical example is the security of public-key cryptosystems:
the original notion of semantic security [11], which considers only a passive or eaves-
dropping adversary, was later augmented to security against adaptive chosen-ciphertext
attacks or non-malleability, which allows also for active attacks [16, 10, 3].

We introduce here the notion of steganographic security against adaptive chosen-
covertext attacks, abbreviated SS-CCA, and its slightly relaxed variant steganographic
security against publicly-detectable replayable chosen-covertext attacks, abbreviated
SS-PDR-CCA. Both notions are based on the intuition that a stegosystem is essentially
a cryptosystem with a prescribed ciphertext distribution. We first recall the definition of
compatible [publicly computable] relations, adopted from public-key cryptosystem to
stegosystems, on which the definition of SS-PDR-CCA is based.

Definition 2. [Compatible Relation [19]] Let Σ = (SK, SE, SD) be a stegosystem. A
family of binary relations ≡spk (indexed by the public keys of Σ) on covertext pairs is
called a compatible relation family for Σ if for almost all key pairs (spk , ssk) we have:

– For any two covertexts c and c′, if c ≡spk c′ then SD(ssk , c) = SD(ssk , c′), except
with negligible probability over the random choices of the algorithm SD.

– For any two covertexts c and c′, it can be determined except with negligible prob-
ability whether c ≡spk c′ using a probabilistic polynomial-time algorithm taking
inputs spk , c, and c′.

SS-CCA and SS-PDR-CCA are defined by the following experiment. Let an arbi-
trary distribution C on a set C be given and consider a (stego-)adversary, defined by
two arbitrary probabilistic polynomial-time algorithms SA1 and SA2. For the SS-PDR-
CCA experiment, let also an arbitrary compatible relation family ≡spk be given. The
experiment consists of five stages, where both notions only differ in the fourth stage.

Key Generation: A key pair (spk , ssk) is generated by the key generation algorithm
SK.

First Decoding Stage: Algorithm SA1 is run with the public key spk as input and has
access to the sampling oracle forC and to a decoding oracle SO1. The decoding oracle
knows the secret key ssk . Whenever it receives a covertext c, it runs SD(ssk , c) and
returns the result to SA1.

When SA1 finishes its execution, it outputs a tuple (m∗, s), where m∗ ∈ {0, 1}l
is a message and s is some additional information which the algorithm wants to
preserve.

Challenge: A bit b is chosen at random and a challenge covertext c∗ is determined de-
pending on it: If b = 0 then c∗ ← SE(spk , m∗) else c∗ R← C. c∗ is given to algorithm
SA2, who should guess the value of b, i.e., determine whether the message m∗ has
been embedded in c∗ or whether c∗ has simply been chosen according to C.

Second Decoding Stage: SA2 is run on input c∗, and s, i.e., it knows the challenge
covertext and the state provided by SA1.

For SS-CCA, SA2 may access a decoding oracle SOcca
2 , which is analogous to

SO1 except that upon receiving query c∗, oracle SOcca
2 returns ⊥.
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For SS-PDR-CCA, SA2 has access to a decoding oracle SOpdr-cca,≡spk
2 , which is

identical to SOcca
2 except that it does not allow any query that is equivalent to c∗ under

≡spk . In particular, upon receiving query c, SOpdr-cca,≡spk
2 returns ⊥ if c ≡spk c∗;

otherwise, it returns SD(ssk , c).
Guessing Stage: When SA2 finishes its execution, it outputs a bit b′.

The stego-adversary succeeds in distinguishing stegotext from covertext if b′ = b in
the above experiment. We require that for a secure stegosystem, no efficient adversary
can distinguish stegotext from covertext except with negligible probability over random
guessing.

Definition 3. [Steganographic Security against Active Attacks] Let C be a distribution
on a covertext set C and let Σ = (SK, SE, SD) be a stegosystem. We say that Σ
is steganographically secure against adaptive chosen-covertext attacks (SS-CCA) with
respect to C if for all probabilistic polynomial-time adversaries (SA1, SA2), there exists
a negligible function ε such that

Pr
[
(spk , ssk)← SK; (m∗, s)← SASO1

1 (spk); b
R← {0, 1};

if b = 0 then c∗ ← SE(spk , m∗) else c∗ R← C :

SASOcca
2

2 (spk , m∗, c∗, s) = b
]

=
1
2

+ ε(k).

Similarly, we say that Σ is steganographically secure against publicly-detectable
replayable adaptive chosen-covertext attacks (SS-PDR-CCA) with respect to C if there
exists a compatible relation family ≡spk such that for all probabilistic polynomial-time
adversaries (SA1, SA2), there exists a negligible function ε such that the above equation

holds with SOcca
2 replaced by SOpdr-cca,≡spk

2 .

Note that this leaves the adversary free to query the decoding oracle with any ele-
ment of the covertext space before the challenge is issued. By definition, an SS-CCA
stegosystem is also SS-PDR-CCA.

2.3 Discussion

The relation to public-key cryptosystems. A stegosystem should enable two parties to
communicate over a public channel in such a way that the presence of a message in the
conversation cannot be detected by an adversary. It seems natural to conclude from this
that the adversary must not learn any useful information about an embedded message,
should there be one. The latter property is the subject of cryptography: hiding the content
of a message transmitted over a public channel. This motivates the approach of von Ahn
and Hopper [22] and of this paper that models a public-key stegosystem after a public-key
cryptosystem in which the ciphertext conforms to a particular covertext distribution.

The most widely accepted formal notion of a public-key cryptosystem secure against
an active adversary is indistinguishability of encryptions against an adaptive chosen-
ciphertext attack (CCA-security) [16] and is equivalent to non-malleability of ciphertexts
in the same attack model [10, 3]. CCA-security is defined by an experiment with almost
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the same stages as above, except that the first part of the adversary outputs two messages
m0 and m1, of which one is chosen at random and then encrypted. The resulting value
c∗, also called the target ciphertext, is returned to the adversary and the adversary has
to guess what has been encrypted. In the second query stage, the adversary is allowed
to obtain decryptions of any ciphertext except for c∗.

This appears to be the minimal requirement to make the definition of a cryptosystem
meaningful, but it has turned out to be overly restrictive in some cases. For example,
consider a CCA-secure cryptosystem where a useless bit is appended to each ciphertext
during encryption and that is ignored during decryption. Although this clearly does not
affect the security of the cryptosystem, the modified scheme is no longer CCA-secure.

Several authors have relaxed CCA-security to allow for such “benign” modifica-
tions [19, 1, 5]. The corresponding relaxed security notion has been called publicly-
detectable replayable CCA-security or PDR-CCA-security by Canetti et al. [5] because
the modifications are apparent without knowledge of the secret key. The difference to
CCA-security is that in the second query stage, the adversary is more restricted and does
not allow any query that is equivalent to the target ciphertext under some compatible
relation that can be derived from the public key. The intuition is that such a cryptosystem
allows anyone to modify a ciphertext into an equivalent one if this is apparent from the
public key, and therefore to “replay” the target ciphertext.

Our notion of an SS-CCA stegosystem is analogous to a CCA-secure cryptosystem,
in that it only excludes the target covertext from the queries to the second decoding
oracle. Likewise, our notion of an SS-PDR-CCA stegosystem contains a restriction that
is reminiscent of a PDR-CCA-secure cryptosystem, by not allowing queries that are
publicly identifiable transformations of the challenge covertext. These similarities are
no coincidence: We show in Section 3 that any SS-CCA stegosystem is a CCA-secure
public-key cryptosystem, and similarly for their replayable counterparts.

Canetti et al. [5] also propose a further relaxation of CCA-security called replayable
CCA-security (or R-CCA-security), where anyone can generate new ciphertexts that de-
crypt to the same value as a given ciphertext, but the equivalence may not be publicly
detectable. We note that it is possible to formulate the corresponding notion of stegano-
graphic security against replayable chosen-ciphertext attacks (SS-R-CCA) by suitably
modifying Definition 3. Our results of Sections 3 and 4 can be adapted analogously.

Related work on steganography. The first published model of a steganographic system is
the “Prisoners’ Problem” by Simmons [21]. This work addresses the particular situation
of message authentication among two communicating parties, where a so-called sublim-
inal channel might be used to transport a hidden message in the view of an adversary
who tries to detect the presence of a hidden message. Although a subliminal channel
in that sense is only made possible by the existence of message authentication in the
model, it can be seen as the first formulation of a general model for steganography.

Cachin [4] presented an information-theoretic model for steganography, which was
the first to explicitly require that the stegotext distribution is indistinguishable from the
covertext distribution to an adversary. Since the model is unconditional, a statistical
information measure is used.

Hopper et al. [12] give the first complexity-theoretic model for private-key stegano-
graphy with passive attacks; they point out that a stegosystem is similar to a cryptosystem
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whose ciphertext is indistinguishable from a given covertext. In Section 3 we establish
such an equivalence formally for public-key systems with active attacks.

Dedić et al. [9] study the efficiency of stegosystems that have black-box access to
the covertext distribution and provide lower bounds on their efficiency.

Recently, vonAhn and Hopper [22] have formalized public-key steganography with a
passive adversary, i.e., one who can mount a chosen-message attack. The resulting notion
is the analogue of a cryptosystem with security against chosen-plaintext attacks (i.e., a
cryptosystem with semantic security). They also formalize the notion of a stegosystem
that offers security against “attacker-specific” chosen-stegotext attacks; this means that
the decoder must know the identity of the encoder, however, and restricts the usefulness
of their notion compared to SS-CCA and SS-PDR-CCA.

No satisfying formal model for public-key steganography with active attacks has
been published so far, although the subject was discussed by several authors, and some
systems with heuristic security have been proposed [8, 2]. A crucial element that seems
to make our formalizations useful is the restriction of the stage-two decoding oracle
depending on the challenge covertext.

3 Results

This section investigates the relation between SS-(PDR-)CCA stegosystems and
(PDR-)CCA-secure public-key cryptosystems. Two results are presented:

1. Any SS-CCA stegosystem is a CCA-secure public-key cryptosystem and, similarly,
any SS-PDR-CCA stegosystem is a PDR-CCA-secure public-key cryptosystem.

2. An SS-PDR-CCA stegosystem for covertext distributions with sufficiently large
min-entropy can be constructed from any PDR-CCA-secure public-key cryptosys-
tem whose ciphertexts are pseudorandom.

We first recall the formal definitions for public-key encryption with CCA- and PDR-
CCA-security, respectively. A public-key cryptosystem is a triple (K, E, D) of proba-
bilistic polynomial-time algorithms. Algorithm K, on input the security parameter k,
generates a pair of keys (pk , sk). The encryption and decryption algorithms, E and D,
have the property that for almost all pairs (pk , sk) generated by K and for any plain-
text message m ∈ {0, 1}l(k) where l is an arbitrary polynomial in k, the probability
that D(1k, sk , E(1k, pk , m)) �= m is negligible in k. (The security parameter is omitted
henceforth.)

CCA-security and PDR-CCA-security for a public-key encryption scheme are de-
fined by the following experiment. Consider an adversary defined by two arbitrary
polynomial-time algorithms A1 and A2. First, a key pair (pk , sk) is generated by K.
Next, A1 is run on input the public key pk and may access a decryption oracle O1.
Oracle O1 knows the secret key sk , and whenever it receives a ciphertext c, it applies
D with key sk to c and returns the result to A1. When A1 finishes its execution, it out-
puts a triple (m0, m1, s), where m0, m1 ∈ {0, 1}l are two arbitrary messages and s is
some additional state information. Now a bit b is chosen at random and mb is encrypted
using E under key pk, resulting in a ciphertext c∗. Algorithm A2 is given m0 and m1,
ciphertext c∗, and state s, and has to guess the value of b, i.e., whether m0 or m1 has



218 M. Backes and C. Cachin

been encrypted. For CCA-security, A2 may access a decryption oracle Occa
2 , which is

analogous to O1 and knows sk, but returns ⊥ upon receiving query c∗. For PDR-CCA-
security, the cryptosystem also specifies a compatible relation family≡ pk according to
Definition 2 with the stegosystem being replaced by the cryptosystem. A2 may access
a decryption oracle O

pdr-cca,≡pk
2 , which is identical to Occa

1 except that it answers ⊥ for
any query c with c ≡pk c∗. Finally, A2 outputs a bit b′ as its guess for b.

A secure cryptosystem requires that no efficient adversary can distinguish an encryp-
tion of m0 from an encryption of m1 except with negligible probability.

Definition 4. [(PDR-)CCA-Security for Public-Key Cryptosystems [3, 5]] Let Ω =
(K, E, D) be a public-key cryptosystem. We say that Ω is CCA-secure if for all proba-
bilistic polynomial-time adversaries A = (A1, A2), there exists a negligible function ε
such that

Pr
[
(pk , sk)← K; (m0, m1, s)← AO1

1 (pk); b
R← {0, 1};

c∗ ← E(pk, mb); AOcca
2

2 (pk , m0, m1, c
∗, s) = b

]
=

1
2

+ ε(k).

We say that Ω is PDR-CCA-secure if there exists a compatible relation family≡pk such

that the above condition holds with Occa
2 replaced by Opdr-cca,≡pk

2 .

The following is our first main result.

Theorem 1. Let Σ = (SK, SE, SD) be a public-key stegosystem. If Σ is SS-CCA (SS-
PDR-CCA) with respect to some distribution C, then Σ is a CCA-secure (PDR-CCA-
secure) public-key cryptosystem.

Proof. Note first that Σ satisfies the definition of a public-key cryptosystem. We prove
that Σ is (PDR-)CCA-secure by a reduction argument. Assume that Σ is not a
(PDR-)CCA-secure cryptosystem and hence there exists an (encryption-)adversary (A1,
A2) that breaks the (PDR-)CCA-security of Σ, i.e., it wins in the experiment of Defi-
nition 4 with probability 1

2 + δ(k) for some non-negligible function δ. Let ≡pk denote
a compatible relation family for Σ in the case of PDR-CCA security. We construct
a (stego-)adversary (SA1, SA2) against Σ as a stegosystem with respect to C that has
black-box access to (A1, A2) as follows.

Key Generation: When SA1 receives a public-key pk , it invokes A1 with this key.
First Decoding Stage: Whenever A1 queries its decryption oracle O1 with a ciphertext

c, SA1 passes c on to its decoding oracle SO1, waits for the response and forwards
the response to A1.
When A1 halts and outputs (m0, m1, s), the stego-adversary SA1 chooses a random
bit b′, and outputs (mb′ , (m0, m1, b

′, s)).
Challenge: A challenge covertext c∗ is computed according to the definition of a ste-

gosystem and given to SA2.
Second Decoding Stage: SA2 receives inputs mb′ , c∗, and (m0, m1, b

′, s) and invokes
A2 on inputs m0, m1, c∗, and s. Otherwise, SA2 behaves in the same way as SA1
during the first decoding stage, forwarding the decryption requests that A2 makes to
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O2 to the respective decoding oracle SOcca
2 or SOpdr-cca,≡pk

2 and the responses back to
A2. If the distinction between SOcca

2 and SOpdr-cca,≡pk
2 is irrelevant, we simply write

SO2, similarly for the decryption oracle O2.

Guessing Stage: When A2 outputs a bit b∗, the stego-adversary SA2 tests if b∗ = b′ and
outputs 0 if true, and 1 otherwise.

We now analyze the environment simulated by the stego-adversary (SA1, SA2) to the
encryption-adversary (A1, A2), and the probability that the stego-adversary can distin-
guish stegotext from covertext.

Clearly, key generation and the first decoding stage perfectly simulate the decryption
oracle to adversary A1. During the challenge, a random bit b is chosen and a challenge
covertext is computed as c∗ ← SE(pk, mb′) in case b = 0 and as c∗ R← C in case b = 1.

Note that when b = 1, algorithm A2 and its final output b∗ are independent of b′.
Hence, we have Pr[b′ = b∗|b = 1] = 1

2 and the stego-adversary has no advantage
over randomly guessing b′ in that case. When b = 0, we show that during the second
decoding phase, SA2 correctly simulates the decryption oracle O2 to A2. For SS-CCA,
correct simulation for queries c �= c∗ is clear by definition. For a query c = c∗, the
decoding oracle SOcca

2 will output⊥, and so will the decryption oracle Occa
2 , which gives

a correct simulation again. For SS-PDR-CCA, correct simulation for queries c �≡pk c∗ is

again clear by definition. For queries c with c ≡pk c∗, the decoding oracle SOpdr-cca,≡pk
2

will output ⊥, and so will the decryption oracle Opdr-cca,≡pk
2 .

Since the encryption-adversary A2 by assumption breaks the (PDR-)CCA-security
of the cryptosystem, and A2 is independent of b′ when b = 1 as argued above, it obtains
all its advantage in the case b = 0 and we have Pr[b′ = b∗|b = 0] = 1

2 + δ(k). By the
definition of SA2, this is also the probability that the stego-adversary guesses b correctly
when b = 0. Hence, the overall probability that SA2 guesses b correctly is 1

2 + δ(k)
2 ,

which exceeds 1
2 by a non-negligible quantity and shows that Σ is not SS-(PDR-)CCA

with respect to any C.

Theorem 1 shows that an SS-CCA stegosystem is a special case of a CCA-secure
public-key cryptosystem, and similarly for their replayable variants. In the converse
direction, we show now that some PDR-CCA-secure public-key cryptosystems, namely
those with “pseudorandom ciphertexts,” can also be used to construct SS-PDR-CCA
stegosystems. Constructing an SS-CCA stegosystem from a CCA-secure public-key
cryptosystem — or from other assumptions, for that matter — for an arbitrary covertext
distribution with sufficiently large min-entropy remains an open problem.

In a cryptosystem with pseudorandom ciphertexts, the encryption algorithm outputs
a bit string that is indistinguishable from a random string of the same length for any
efficient distinguisher that has knowledge of the public key. We make the assumption that
the encryption of a plaintext of length l(k) always results in a ciphertext of length n(k),
for some polynomial n in k.

Definition 5. [Public-key Cryptosystem with Pseudorandom Ciphertexts [22]] A pub-
lic-key cryptosystem (K, E, D) is said to have pseudorandom ciphertexts if for all prob-
abilistic polynomial-time adversaries A = (A1, A2), there exists a negligible function ε
such that
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Pr
[
(pk , sk)← K; (m, s)← A1(pk); c0 ← E(pk , m); c1

R← {0, 1}n(k);

b
R← {0, 1}; A2(pk , m, cb, s) = b

]
=

1
2

+ ε(k).

It seems difficult to construct SS-(PDR-)CCA stegosystems for any covertext dis-
tribution. We show that it is possible for covertexts whose distribution conforms to a
sequence of independently repeated experiments and has sufficiently large min-entropy.
(According to the remark in Section 2.2, this result generalizes to an arbitrary covertext
channel.) Given a covertext distribution C and positive t, let Ct denote the probability
distribution consisting of a sequence of t independent repetitions of C.

The next theorem is our second main result. Its proof is the subject of Section 4.

Theorem 2. SS-PDR-CCA stegosystems with respect to a covertext distribution Ct for
any C with sufficiently large min-entropy can be efficiently constructed from any PDR-
CCA-secure cryptosystem with pseudorandom ciphertexts.

Theorem 2 leaves us with the task of finding a PDR-CCA-secure cryptosystem with
pseudorandom ciphertexts. Such cryptosystems exist under a variety of standard as-
sumptions if one asks for security against a passive adversary only, i.e., security against
chosen-plaintext attacks (CPA). For example, von Ahn and Hopper [22] demonstrate
a scheme that is as secure as RSA and one that is secure under the Decisional Diffie-
Hellman (DDH) assumption. It is also straightforward to verify that the generic method
of encrypting a single bit by xoring it with the hard-core predicate of a trapdoor one-way
permutation has pseudorandom ciphertexts.

But any PDR-CCA-secure cryptosystem can be turned into one with pseudorandom
ciphertexts using the following method, suggested by Lindell [13]: Take the ciphertext
output by the PDR-CCA-secure encryption algorithm and encrypt it again, using a second
cryptosystem with pseudorandom ciphertexts, which is secure against chosen-plaintext
attacks. Decryption proceeds analogously, by first applying the decryption operation
of the second cryptosystem and then the decryption operation of the PDR-CCA-secure
cryptosystem. It can be verified that the composed cryptosystem retains PDR-CCA-
security because the stage-two decryption oracle knows both secret keys. This method
yields SS-PDR-CCA stegosystems in three different models as follows.

By applying the above generic CPA-secure cryptosystem with pseudorandom ci-
phertexts to a generic non-malleable cryptosystem [10, 18], we obtain an SS-PDR-CCA
stegosystem under general assumptions.

Corollary 1. Provided that trapdoor one-way permutations exist, there is an SS-PDR-
CCA stegosystem in the common random string model.

Using the above DDH-based cryptosystem with pseudorandom ciphertexts combined
with the Cramer-Shoup cryptosystem [7], we obtain also an efficient SS-PDR-CCA
stegosystem in the standard model.

Corollary 2. Under the Decisional Diffie-Hellman assumption, there is an SS-PDR-
CCA stegosystem.

A more practical cryptosystem with pseudorandom ciphertexts exists also in the
random oracle model: the OAEP+ scheme of Shoup [20]. OAEP+ is a CCA-secure
cryptosystem based on an arbitrary trapdoor one-way permutation.



Public-Key Steganography with Active Attacks 221

Corollary 3. Provided that trapdoor one-way permutations exist, there is an SS-PDR-
CCA stegosystem in the random oracle model.

4 An SS-PDR-CCA Stegosystem

In this section, we propose a stegosystem that is steganographically secure against
publicly-detectable replayable adaptive chosen-covertext attacks.

This stegosystem works for any covertext distribution that consists of a sequence of
independent repetitions of a base-covertext distribution. Deviating from the notation of
Section 2, we denote the base-covertext distribution by C and the covertext distribution
used by the stegosystem by Ct = Πt

i=1C. As noted in Section 2.2, through the introduc-
tion of a history, our construction also generalizes to arbitrary covertext channels.

Let (K, E, D) be a PDR-CCA-secure public-key cryptosystem with pseudorandom
ciphertexts and compatible relation ≡pk . Suppose its cleartexts are l-bit strings and its
ciphertexts are n-bit strings.

A class G of functions X → Y is called strongly 2-universal [23] if, for all distinct
x1, x2 ∈ X and all (not necessarily distinct) y1, y2 ∈ Y , exactly |G|/|Y |2 functions
from G take x1 to y1 and x2 to y2. Such a function family is sometimes simply called a
strongly 2-universal hash function for brevity.

4.1 Description

The SS-PDR-CCA stegosystem consists of a triple of algorithms (keygen, encode,
decode). The idea behind it is to encrypt a message using the public-key cryptosystem
first and to embed the resulting ciphertext into a covertext sequence, as shown in Figure 1.

{0,1}l {0,1}n Ctencrypt sample

Fig. 1. The encoding process of the stegosystem: a message is first encrypted and then embedded
using Algorithm sample. The decoding process works analogously in the reverse direction

Algorithm sampleC

Input: security parameter k, a function g : C → {0, 1}f , and a value b ∈ {0, 1}f
Output: a covertext x

1: j ← 0
2: repeat
3: x

R← C
4: j ← j + 1
5: until g(x ) = b or j = k
6: return x
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The encoding method is based on the following algorithm sample, which has oracle
access to C and samples a base-covertext according to C such that a given f -bit string
b is embedded in it. This algorithm is the well-known rejection sampler [2, 12, 17, 9],
generalized to embed multi-bit messages instead of only single-bit messages.

Intuitively, algorithm sample returns a covertext chosen from distribution C, but
restricted to that subset of C which is mapped to the given b by g. sample may also fail
and return a covertext c with g(c) �= b, but this happens only with negligible probability
in k. As will be shown in Section 4.2, when b is a random f -bit string, g is chosen
randomly from a 2-universal hash function, and C has sufficient min-entropy, then the
output distribution of sample is statistically close to C.

We now turn to the description of the stegosystem. Let f ≤ γ log k for a positive
constant γ < 1 and let G : C → {0, 1}f denote a strongly 2-universal hash function.

Algorithm keygen chooses a random g
R← G and computes a tuple (pk , sk) ← K,

by running the key generation algorithm of the cryptosystem. The output of keygen is
the tuple (spk , ssk) = ((pk , g), sk).

Algorithm encode first encrypts an input message m using the given encryption
algorithm E, which outputs in a ciphertext y. Assuming w.l.o.g. that y is an n-bit string
(bounded by a polynomial in k) and n = tf , encode then repeatedly invokes sample
to embed y in pieces of f bits a time into a sequence of t covertext symbols. Formally:

Algorithm encode

Input: security parameter k, a public key spk = (pk , g), and a message m ∈ {0, 1}l
to encode

Output: a covertext (c1, . . . , ct)
1: y ← E(pk , m)
2: parse y as y1‖ · · · ‖yt, where yi ∈ {0, 1}f
3: for i = 1 to t do
4: ci ← sampleC(k, g, yi)
5: return (c1, . . . , ct)

Algorithm decode proceeds analogously. From each of the t symbols in the cover-
text, a string of f bits is extracted by g; then the concatenation of these bit strings is
decrypted by D, and the resulting value is returned (this is either an l-bit message or the
symbol ⊥):

Algorithm decode
Input: security parameter k, a secret key ssk = (sk , g), and a covertext (c1, . . . , ct) ∈

Ct to decode
Output: a decoded l-bit message or ⊥

1: for i = 1 to t do
2: yi ← g(ci)
3: y ← y1‖ · · · ‖yt

4: x← D(sk , y)
5: return x
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The compatible relation≡spk of the stegosystem is computed as follows: given a pair
of covertexts (c1, . . . , ct) and (c′1, . . . , c

′
t), they are first mapped to a pair of ciphertexts

y and y′, respectively, by running lines 1–3 of Algorithm decode. Then the relation is
determined according to y ≡pk y′.

4.2 Analysis

This section is devoted to an analysis of the above stegosystem. Theorems 3 and 4 below
together imply Theorem 2.

Theorem 3. (keygen, encode, decode) is a valid stegosystem for covertext distribu-
tions with sufficiently large min-entropy.

Proof (Sketch). According to Definition 1, the only non-trivial steps are to show that the
algorithms are efficient and that the stegosystem is reliable, i.e., that

decode(ssk , encode(spk , m)) = m

for almost all pairs (spk , ssk) and all m ∈ {0, 1}l except with negligible probability.
Efficiency follows immediately from the construction, the assumption f ≤ γ log k,

and the efficiency of the public-key cryptosystem.
For reliability, it suffices to analyze the output of encode because the decoding

operation is deterministic.
Consider iteration i in Algorithm encode, in which Algorithm sample tries to

find a covertext x that is mapped to yi by g. Because g is chosen from a strongly 2-
universal class of hash functions, the entropy smoothing theorem [14] implies that over
the random choices of g and c

R← C, the random variable (g, g(c)) is exponentially
close to the uniform distribution over f -bit strings, provided C has enough min-entropy.
Hence, there exists a negligible quantity ε(k) 
 2−f such that for almost all g, the
distance of g(c) from the uniform distribution is at most ε(k) over the choice c

R← C.
Thus, the probability that in any particular iteration of sample, an x is chosen with
g(x) �= yi, is at most 1− 2−f + ε(k).

For any such g, since the k iterations and choices of C in sample are independent,
the algorithm returns c with g(c) �= yi only with some negligible probability ε′(k) for
f ≤ γ log k. Hence, by the union bound, the probability that any iteration of Algo-
rithm encode fails to embed the correct value is at most tε′(k), which is negligible.

The proof of security is based on the following result. It shows that the joint dis-
tribution of the output from Algorithm sample and G is statistically close to the joint
distribution of C and G, where G denotes the distribution of choosing g uniformly from
G, and where sample is run with a uniformly chosen b. The proof of Proposition 1 is
given in the full version of the paper.

Proposition 1. If the min-entropy of the covertext distribution C is large enough com-
pared to f , then the statistical distance between (S(k),G) and (C,G) is negligible.

Theorem 4. For a covertext distributionCt such thatC has sufficiently large min-entropy
and provided that (K, E, D) is a PDR-CCA-secure public-key cryptosystem with pseu-
dorandom ciphertexts, the stegosystem (keygen, encode, decode) is SS-PDR-CCA.
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Proof (Sketch). We prove that the stegosystem (keygen, encode, decode) is SS-PDR-
CCA by a reduction argument. Assume that it is not SS-PDR-CCA and and hence there
exists a (stego-)adversary (SA1, SA2) that succeeds in the experiment of Definition 3 with
probability 1

2 + δ(k) for some non-negligible function δ. We construct an (encryption-
)adversary (A1, A2) that has black-box access to (SA1, SA2) and breaks the PDR-CCA-
security of (K, E, D) as follows.

Key Generation: When A1 receives a public-key pk generated by K, it chooses g
R← G,

computes spk ← (pk , g), and invokes SA1 with spk .
First Decryption Stage: When SA1 sends a query (c1, . . . , ct) to its decoding oracle

SO1, then A1 computes y ← y1‖ · · · ‖yt for yi ← g(ci), gives y to its decryption
oracle O1, waits for the response and forwards the response to SA1.

Challenge: When SA1 halts and outputs (m∗, s), the encryption-adversary A1 chooses
an arbitrary plaintext message m′ ∈ {0, 1}l, different from m∗, and outputs a
triple (m∗, m′, g). According to the definition of a public-key cryptosystem, a chal-
lenge ciphertext y∗ is computed. Now A2 is invoked with inputs pk , m∗, m′, y∗,
and g. It parses y∗ as a sequence y∗1‖ · · · ‖y∗t of f -bit strings, computes c∗i ←
sampleC(k, g, y∗i ) for i = 1, . . . , t, and invokes SA2 with inputs (pk , g), m∗,
(c∗1, . . . , c

∗
t ), and s.

Second Decryption Stage: A2 behaves in the same way as A1 during first decryption
stage: It computes a ciphertext y from any decoding request that SA2 makes as above,
submits y to the decryption oracle O2, and returns the answer to SA2.

Guessing Stage: When SA2 outputs a bit b∗, indicating its guess as to whether message
m∗ is contained in the challenge covertext (c∗1, . . . , c

∗
t ), the encryption-adversary

A2 returns b∗ as its own guess of whether m∗ or m′ is encrypted in y∗.

We now analyze the environment simulated by the encryption-adversary (A1, A2)
to the stego-adversary (SA1, SA2) and the probability that the encryption-adversary can
distinguish the encrypted messages.

Clearly, during key generation and the first decoding stage, the simulation for the
stego-adversary SA1 is perfect. During the encoding stage, a random bit b is chosen
according to Definition 4 and the challenge ciphertext is computed as y∗ ← E(pk , m∗)
if b = 0 and y∗ ← E(pk , m′) if b = 1.

When b = 0, then, according to the definition of A1, the challenge covertext c∗ is
computed in the same way as expected by the stego-adversary in the experiment of
Definition 3 and the simulation is perfect.

When b = 1, however, SA2 expects (c∗1, . . . , c
∗
t ) to be a random covertext drawn

according to Ct, but receives c∗i = sampleC(k, g, y∗i ) for i = 1, . . . , t instead, where
the concatenation of the y∗i is an encryption of m′ under key pk with E.

Proposition 1 implies that for every i ∈ {1, . . . , t}, the statistical distance between
C and the distribution of c∗i as computed by Algorithm sample when run with input a
uniformly chosen f -bit string is bounded by a negligible quantity ε∗1(k). Furthermore,
since the cryptosystem (K, E, D) has pseudorandom ciphertexts, for every distinguisher
SA2 there exists a negligible quantity ε∗2(k) such that its advantage (over guessing ran-
domly) in distinguishing between y∗ as used by A2 and the uniform distribution on n-bit
strings is at most ε∗2(k).
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By combining these two facts, it follows that the behavior of the stego-adversary
SA2 who observes (c∗1, . . . , c

∗
t ) in the simulation when b = 1 does not differ from its

behavior in experiment of Definition 3, where it observes covertext Ct, with more than
probability ε∗(k) = tε∗1(k) + ε∗2(k).

By definition, the output of the encryption-adversary A2 is the same as that of the
stego-adversary SA2. Since SA2 succeeds with probability 1

2 + δ(k) in attacking the
stegosystem and since the simulated view of SA2 is correct except with probability ε∗(k)
when b = 1, the probability that SA2 breaks PDR-CCA-security is 1

2 + δ(k) − ε∗(k)
2 ,

which exceeds 1
2 by a non-negligible quantity and establishes the theorem.
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