
A Universally Composable Secure Channel
Based on the KEM-DEM Framework

Waka Nagao1, Yoshifumi Manabe1,2, and Tatsuaki Okamoto1,2

1 Graduate School of Informatics, Kyoto University,
Yoshida-honmachi, Kyoto, 606-8501 Japan

2 NTT Labs, Nippon Telegraph and Telephone Corporation,
1-1 Hikari-no-oka Yokosuka, 239-0847 Japan

Abstract. For ISO standards on public-key encryption, Shoup introduced the
framework of KEM (Key Encapsulation Mechanism), and DEM (Data Encapsu-
lation Mechanism), for formalizing and realizing one-directional hybrid encryp-
tion; KEM is a formalization of asymmetric encryption specified for key distri-
bution, and DEM is a formalization of symmetric encryption. This paper inves-
tigates a more general hybrid protocol, secure channel, using KEM and DEM,
such that KEM is used for distribution of a session key and DEM, along with
the session key, is used for multiple bi-directional encrypted transactions in a
session. This paper shows that KEM semantically secure against adaptively cho-
sen ciphertext attacks (IND-CCA2) and DEM semantically secure against adap-
tively chosen plaintext/ciphertext attacks (IND-P2-C2) along with secure signa-
tures and ideal certification authority are sufficient to realize a universally com-
posable (UC) secure channel. To obtain the main result, this paper also shows
several equivalence results: UC KEM, IND-CCA2 KEM and NM-CCA2 (non-
malleable against CCA2) KEM are equivalent, and UC DEM, IND-P2-C2 DEM
and NM-P2-C2 DEM are equivalent.

1 Introduction

1.1 Background

Key Encapsulation Mechanism (KEM) is a key distribution mechanism in public-key
cryptosystems, that was proposed by Shoup for ISO standards on public-key encryp-
tion [11].

The difference between KEM and public-key encryption (PKE) is as follows: PKE’s
encryption procedure, on input plaintext M and receiver R’s public-key PKR, out-
puts ciphertext C, while KEM’s encryption procedure, on input receiver R’s public-key
PKR, outputs ciphertext C and key K, where C is sent to R, and K is kept secret inside
the sender, and employed in the subsequent process of data encryption. PKE’s decryp-
tion procedure, on input C and secret-key SKR, outputs plaintext M , while KEM’s
decryption procedure, on input C and secret-key SKR, outputs key K. Although KEM
is a mechanism for key distribution and the applications of KEM are not specified,
the most typical application is hybrid encryption, where a key shared via a KEM is
employed for symmetric-key encryption. Shoup also formulated the symmetric-key en-
cryption as the Data Encapsulation Mechanism (DEM)[11].

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 426–444, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Universally Composable Secure Channel Based on the KEM-DEM Framework 427

Shoup defined the security, “indistinguishable (semantically secure) against adap-
tively chosen-ciphertext attacks,” for KEM and DEM, respectively, (we call them IND-
CCA2-KEM and IND-CCA2-DEM, respectively), and showed that hybrid encryption
(HPKE) implemented by combining KEM with IND-CCA2-KEM and DEM with IND-
CCA2-DEM is a PKE with IND-CCA2-PKE [8, 11]. 1

Since the KEM-DEM hybrid encryption specified by Shoup is one-directional (or
equivalent to public-key encryption in functionality), it is applicable for secure email
and single direction transactions. However, in many secure protocols (e.g., SSL, IPSec,
SSH), asymmetric and symmetric encryption schemes are employed in a different man-
ner as a secure channel such that an asymmetric encryption scheme is used for distribu-
tion of a session key while a symmetric encryption scheme with the session key is used
for many bi-directional encrypted transactions in a session.

The KEM-DEM framework can be modified for such a hybrid usage, secure chan-
nel; KEM can be used for key distribution of a session key and DEM with the ses-
sion key is used for secure communications in a session. Since the KEM-DEM frame-
work will be standardized in a near future, it is a promising way to employ the above-
mentioned modified KEM-DEM framework to realize a secure channel. However, no
research has been done on the security requirements of KEM and DEM such that a se-
cure channel based on the modified KEM-DEM framework can guarantee a sufficient
level of security, although KEM with IND-CCA2-KEM and DEM with IND-CCA2-
DEM have been shown to be sufficient for an IND-CCA2-PKE single-directional KEM-
DEM-hybrid scheme [8, 11]. That is, we have the following problems:

– What are the security requirements of KEM and DEM to construct a secure chan-
nel?

– How to define the satisfactory level of security of a secure channel? (since it cannot
be characterized by just public-key encryption, but should require more compli-
cated security definition.)

1.2 Our Results

This paper answers the above-mentioned problems:

– This paper shows that KEM with IND-CCA2-KEM and DEM with IND-P2-C2-
DEM along with secure signatures and ideal certification authority are sufficient to
realize a universally composable secure channel.

– We follow the definition of a universally composable secure channel by Canetti
and Krawczyk [6]. There are two major merits in using the universal composability
paradigm. Firstly, the paradigm provides a clear and unified (or standard) approach
to defining the security of any cryptographic functionality including a secure chan-
nel. Second, our concrete construction of a secure channel based on the KEM-DEM

1 Originally, the notion of IND-CCA2 was defined for PKE. The way to provide analogous def-
initions and to use the same name, “indistinguishable (semantically secure) against adaptively
chosen-ciphertext attacks”, for KEM and DEM follows that of [8]. In this paper, however,
we explicitly distinguish them by the terms, IND-CCA2-PKE, IND-CCA2-KEM, and IND-
CCA2-DEM.

428 W. Nagao, Y. Manabe, and T. Okamoto

framework guarantees not only stand-alone security but also universal composable
security. Since a secure protocol like SSL, IPSec and SSH is often employed as an
element of a large-scale security system, the universal composability of a secure
protocol is especially important.

In order to obtain the above-mentioned main result, we firstly show that UC KEM,
IND-CCA2 KEM and NM-CCA2 KEM are equivalent, and that UC DEM, IND-P2-
C2 DEM and NM-P2-C2 DEM are equivalent. We then present that UC KEM and
UC KEM as well as UC signatures and ideal certification authority are sufficient for
realizing a UC secure channel.

Although in this paper we consider only protocols for a single session, the same
result for the multi-session case is obtained automatically via the UC with joint state
(JUC) [7].

1.3 Related Works

Canetti and Krawczyk [6] showed a UC secure channel protocol consisting of an au-
thenticated Diffie-Hellman key exchange scheme, message authentication code, and
pseudorandom generator. Accordingly, their results are specific to their construction,
which uses an authenticated Diffie-Hellman key exchange scheme, message authenti-
cation code and pseudorandom generator. Our result is based on the general notions of
KEM, DEM and signatures, but not on any specific scheme.

The equivalence of UC PKE and IND-CCA2 PKE has been suggested by Canetti
[3], and the equivalence of NM-CCA2 PKE and IND-CCA2 PKE has been shown by
Bellare et.al. [1, 2]. The relationship among several security notions of symmetric en-
cryptions has been investigated by Katz and Yung [10]. However, no results have been
reported on the equivalence among UC KEM, IND-CCA2 KEM and NM-CCA2 KEM,
and that among UC DEM, IND-CCA2 DEM and NM-CCA2 DEM.

2 The KEM-DEM Framework

We describe probabilistic algorithms and experiments with standard notations and con-
ventions. For probabilistic algorithm A, A(x1, x2, · · · ; r) is the result of running A that
takes as inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · ·) denote the experi-
ment of picking r at random and letting y equal the output of A(x1, x2, · · · ; r). If S is
a finite set, then x ← S denotes the experiment of assigning to x an element uniformly
chosen from S. If α is neither an algorithm nor a set, then x ← α indicates that we
assign α to x. We say that y can be output by A(x1, x2, · · ·) if there is some r such that
A(x1, x2, · · · ; r) = y.

2.1 Key Encapsulation Mechanism

Formally, a key encapsulation mechanism KEM is given by the triple of algorithms
KEM.KeyGen(), KEM.Encrypt(pk, options) and KEM.Decrypt(sk, C0), where:

A Universally Composable Secure Channel Based on the KEM-DEM Framework 429

1. KEM.KeyGen(), the key generation algorithm, is a polynomial time and prob-
abilistic algorithm that takes a security parameter k ∈ N (provided in unary) and
returns a pair (pk, sk) of matching public and secret keys.

2. KEM.Encrypt(pk, options), the encryption algorithm, is a polynomial time and
probabilistic algorithm that takes as input a public key pk, along with an optional
options argument, and outputs a key/ciphertext pair (K,C0). The role of options
is analogous to that in public-key encryption.

3. KEM.Decrypt(sk, C0), the decryption algorithm, is a polynomial time and deter-
ministic algorithm that takes as input secret key sk and ciphertext C0, and outputs
key K or special symbol ⊥ (⊥ implies that the ciphertext was invalid).

We require that for all (pk, sk) output by KEM.KeyGen(1k), and for all C0

output by KEM.Encrypt(pk, options), KEM.Decrypt(sk, C0) = K (|K| is de-
noted KEM.OutputKeyLen — the length of the key output by KEM.Encrypt and
KEM.Decrypt). A function ε : N → R is negligible if for every constant c ≥ 0 there
exists an integer kc such that ε(k) ≤ k−c for all z ≥ kc. We write vectors in boldface,
as in x. We also denote the number of components in x by |x|, and the i-th component
by x[i], so that x = (x[1],· · · ,x[|x|]). Additionally, we denote a component of a vector
as x ∈ x or x �∈ x, which mean, respectively, mean that x is in or is not in the set {
x[i] : 1 ≤ i ≤ |x|}. Such notions provide convenient descriptions. For example, we
can simply write x ← KEM.Decrypt(y) as the shorthand form of 1 ≤ i ≤ | y | do
x[i] ← KEM.Decrypt(y[i]). We will consider relations of amity t where t is polyno-
mial in the security parameter k. Rather than writing R(x1, · · · , xt) we write R(x,x),
meaning the first argument is special and the rest are bunched into vector x with |x| =
t − 1.

Attack Types of KEM. We state following three attack types of KEM. First, we state
CPA (Chosen Plaintext Attack). CPA is an attack type that an adversary is allowed to
access to only encryption oracle but not decryption oracle. Secondly, we state CCA1
(Chosen Ciphertext Attack). CCA1 is an attack type that an adversary is allowed to
access to both encryption and decryption oracle. However the adversary cannot access
to decryption oracle after getting target ciphertext. Thirdly, we state CCA2 (Adaptive
Chosen Ciphertext Attack). CCA2 is an attack type that an adversary is allowed to
access to both encryption and decryption oracle even if after the adversary gets target
ciphertext.

Indistinguishability of KEM. We use IND-ATK-KEM to describe the security no-
tion of indistinguishability for KEM against ATK ∈ {CPA, CCA1, CCA2}[11]. We
redescribe the security notion of IND-CCA2-KEM by considering following attack sce-
nario. First, the key generation algorithm is run to generate the public and private key
for the protocol. The adversary can get the public key, but not the private key. Secondly,
the adversary generates some queries of plaintexts/ciphertexts and sends the queries to
encryption/decryption oracle. Each oracle encrypts/decrypts the queries and returns the
results of ciphertexts/plaintexts to the adversary. If the algorithm fails, this information
is informed to the adversary, and the attack continues. Thirdly, encryption oracle does
the following:

430 W. Nagao, Y. Manabe, and T. Okamoto

1. Runs the encryption algorithm, generating pair (K∗, C∗
0).

2. Generates a random string ˜K of length KEM.OutputKeyLen.
3. Chooses b ∈ {0, 1} at random.
4. If b = 0, outputs (K∗, C∗

0), otherwise outputs (˜K, C∗
0).

Fourth, the adversary generates plaintexts/ciphertexts to get information from each
oracle on the condition of the ciphertext C0 �= C∗

0 . Finally, the adversary outputs
b̂ ∈ {0, 1}.

Let ΠKEM = (KEM.KeyGen, KEM.Encrypt, KEM.Decrypt) be an encryp-
tion protocol and let A be an adversary. The advantage of ΠKEM for adversary A,
AdvIND-ATK

A,ΠKEM
is defined as follows:

AdvIND-ATK
A,ΠKEM

(k) = |Pr[b̂ = b] − 1
2 |.

ΠKEM is secure in the sense of IND-ATK if AdvIND-ATK
A,ΠKEM

(k) is negligible for any
PPT adversary A.

Non-malleability of KEM. We state formal definition of non-malleability for KEM in
Fig.1 following [1], which we call NM-KEM. We also use NM-ATK-KEM to describe
the security notion of non-malleability for KEM against ATK ∈ {CPA, CCA1, CCA2}.
Let A = (A1, A2) be an adversary. (We state two more definitions in the full paper
version.)

AdvNM-ATK
A,ΠKEM (k) ≡ Pr[ExptNM-ATK

A,ΠKEM (k) = 1] − Pr[˜Expt
NM-ATK

A,ΠKEM
(k) = 1]

where
ExptNM-ATK

A,ΠKEM
(k) ˜Expt

NM-ATK

A,ΠKEM
(k)

(pk, sk)←KEM.KeyGen(1k) (pk, sk)←KEM.KeyGen(1k)

(K, s)←AO1
1 (pk) (K, s)←AO1

1 (pk)
(K∗, C∗

0)←KEM.Encrypt(pk) ∧ K∗∈K K∗←K
(R, C0)←AO2

2 (s, C∗
0) (˜K, ˜C0)←KEM.Encrypt(pk) ∧ ˜K∈K

K←KEM.Decrypt(sk, C0) (R, ˜C0)←AO2
2 (s, ˜C0)

return 1 iff (C∗
0 �∈ C0) ∧ R(K∗, K) ˜K←KEM.Decrypt(sk, ˜C0)

return 1 iff (˜C0 �∈ ˜C0) ∧ R(K∗, ˜K)

and
If ATK = CPA then O1 = ε and O2 = ε.
If ATK = CCA1 then O1 = KEM.Decrypt(sk, ·) and O2 = ε.
If ATK = CCA2 then O1 = KEM.Decrypt(sk, ·) and O2 = KEM.Decrypt(sk, ·).

Fig. 1. NM-KEM Definition

ΠKEM is secure in the sense of NM-ATK-KEM, where ATK∈ {CPA, CCA1, CCA2},
if for every polynomial p(k), A runs in p(k), outputs a valid key space K in p(k), and
outputs relation R computable in p(k), and AdvNM-ATK

A,ΠKEM
(k) is negligible. We insist that

the adversary is unsuccessful if some ciphertext C0[i] does not have a valid decryption
(that is, ⊥ ∈ K).

A Universally Composable Secure Channel Based on the KEM-DEM Framework 431

Equivalence Results. We can obtain the equivalence of all three formal definitions and
a following Theorem 1 between IND-CCA2-KEM and NM-CCA2-KEM. (See more
details and proofs in the full paper version.)

Theorem 1. (IND-CCA2-KEM ⇔ NM-CCA2-KEM)
If encryption scheme ΠKEM is secure in the sense of IND-CCA2-KEM, then ΠKEM

is secure in the sense of NM-CCA2-KEM.

2.2 Data Encapsulation Mechanism

Formally, a data encapsulation mechanism DEM is given by a pair of algorithms DEM.
Encrypt(K,M) and DEM.Decrypt(K,C), where:

1. The encryption algorithm DEM.Encrypt(K, M) takes as input a secret key K,
and a plaintext M . It outputs a ciphertext C. Here, K, M and C are byte strings,
and M may have arbitrary length, and K’s length is DEM.KeyLen.

2. The decryption algorithm DEM.Decrypt(K, C) takes as input secret key K and
ciphertext C. It outputs plaintext M .

DEM must satisfy the soundness, DEM.Decrypt(K, DEM.Encrypt(K, M))
= M .

Attack Types of DEM. We state following six attack types of DEM. In the first, we
consider the first three attack types, these are for access to encryption oracle. First,
we state P0, that is an attack type with no access to encryption oracle by adversary.
Secondly, we state P1 (Chosen Plaintext Attack). P1 is an attack type with access to
encryption oracle. However the adversary cannot access to encryption oracle after get-
ting target ciphertext. Thirdly, we state P2 (Adaptive Chosen Plaintext Attack). In this
type, an adversary can access to encryption oracle even if after the adversary gets target
ciphertext. Moreover, we consider the last three attack types, these are for access to
decryption oracle. First, we state C0, that is an attack type with no access to decryp-
tion oracle by adversary. Secondly, we state C1 (Chosen Ciphertext Attack). C1 is an
attack type with access to decryption oracle. However the adversary cannot access to
decryption oracle after getting target ciphertext. Thirdly, we state C2 (Adaptive Chosen
Ciphertext Attack). In this type, an adversary can access to decryption oracle even if
after the adversary gets target ciphertext.

Indistinguishability of DEM. We state formal definition of indistinguishability for
DEM in Fig.2 following [10], which we call IND-DEM. We also use IND-PX-CY-
DEM to describe the security notion of indistinguishability for DEM against ATK ∈
{CPA, CCA1, CCA2}.

Let ΠDEM = (DEM.Encrypt,DEM.Decrypt) be an encryption scheme over
message space M and let A = (A1, A2) be an adversary. We insist that A1(1k) out-
puts {x0, x1} ∈ M with |x0| = |x1|, where k is security parameter. Furthermore, when
Y = 2, we insist that A2 does not ask for the decryption of challenge ciphertext y.

ΠDEM is secure in the sense of IND-PX-CY for {X, Y} ∈ {0, 1, 2} if AdvIND-PX-CY
A,ΠDEM

(·) is negligible for any PPT adversary A.

432 W. Nagao, Y. Manabe, and T. Okamoto

AdvIND-PX-CY
A,ΠDEM (k) ≡ 2 · Pr[ExptIND-PX-CY

A,ΠDEM (k)] − 1

where ExptIND-PX-CY
A,ΠDEM

(k)

K←{0, 1}k; (x0, x1, s)←A
O1,O′

1
1 (1k); b ← {0, 1}; y←DEM.Encrypt(K, xb);

g←A
O2,O′

2
2 (1k, s, y); return 1 iff g = b

and
If X = 0 then O1(·) = ε and O2(·) = ε.
If X = 1 then O1(·) = DEM.Encrypt(K, ·) and O2(·) = ε.
If X = 2 then O1(·) = DEM.Encrypt(K, ·) and O2(·) = DEM.Encrypt(K, ·).
If Y = 0 then O′

1(·) = ε and O′
2(·) = ε.

If Y = 1 then O′
1(·) = DEM.Decrypt(K, ·) and O′

2(·) = ε.
If Y = 2 then O′

1(·) = DEM.Decrypt(K, ·) and O′
2(·) = DEM.Decrypt(K, ·).

Fig. 2. IND-DEM Definition

Non-malleability of DEM. We state formal definition of non-malleability for DEM in
Fig.3 following Bellare[2] and Katz[10], which we call NM-DEM. We also use NM-

AdvNM-PX-CY
A,ΠDEM (k) ≡ Pr[ExptNM-PX-CY

A,ΠDEM (k) = 1] − Pr[˜Expt
NM-PX-CY

A,ΠDEM
(k) = 1]

where
ExptNM-PX-CY

A,ΠDEM
(k) ˜Expt

NM-PX-CY

A,ΠDEM
(k)

K←{0, 1}k K←{0, 1}k

(M, s)←A
O1,O′

1
1 (1k) (M, s)←A

O1,O′
1

1

x←M (x, x̃)←M
y←DEM.Encrypt(K, x) ỹ←DEM.Encrypt(K, x̃)

(R, y)←A
O2,O′

2
2 (s, y) (R, ỹ)←A

O2,O′
2

2 (s, ỹ)
x←DEM.Decrypt(K, y) x̃←DEM.Decrypt(K, ỹ)
return 1 iff (y �∈ y) ∧ R(x, x) return 1 iff (ỹ �∈ ỹ) ∧ R(x, x̃)

and
If X = 0 then O1(·) = ε and O2(·) = ε.
If X = 1 then O1(·) = DEM.Encrypt(K, ·) and O2(·) = ε.
If X = 2 then O1(·) = DEM.Encrypt(K, ·) and O2(·) = DEM.Encrypt(K, ·).
If Y = 0 then O′

1(·) = ε and O′
2(·) = ε.

If Y = 1 then O′
1(·) = DEM.Decrypt(K, ·) and O′

2(·) = ε.
If Y = 2 then O′

1(·) = DEM.Decrypt(K, ·) and O′
2(·) = DEM.Decrypt(K, ·).

Fig. 3. NM-DEM Definition

A Universally Composable Secure Channel Based on the KEM-DEM Framework 433

PX-CY-DEM to describe the security notion of non-malleability for DEM for {X, Y}
∈ {0, 1, 2}.

In Fig.3, M is a distribution over messages and R is some relation and k is security
parameter. We require that |x| = |x′| for all x, x′ in the support of M . We also require
that the vector of ciphertexts y output by A2 should be non-empty. Furthermore, when
Y = 2, we insist that A2 does not ask for the decryption of y.

ΠDEM is secure in the sense of NM-PX-CY for {X, Y} ∈ {0, 1, 2} if AdvNM-PX-CY
A,ΠDEM

(k)
is negligible for any PPT adversary A.

We obtain that the two above security notions of DEM yield the following Theorem
2. (Proof is in the full paper version.)

Theorem 2. (NM-P2-C2-DEM ⇔ IND-P2-C2-DEM)
Encryption scheme ΠDEM is secure in the sense of NM-P2-C2 if and only if ΠDEM

is secure in the sense of IND-P2-C2.

3 Universally Composable KEM Is Equivalent to IND-CCA2
KEM

3.1 The Key Encryption Mechanithm Functionality FKEM

We define key encapsulation mechanism (KEM) functionality FKEM in Fig.4. FKEM is
a functionality of KEM-key-generation, KEM-encryption and KEM-decryption. Here
note that there is no functionality of data transmission between parties in FKEM.

3.2 UC KEM Is Equivalent to IND-CCA2 KEM

Let KEM= (KEM.KeyGen,KEM.Encrypt,KEM.Decrypt) be a key encapsula-
tion mechanism. Consider the following transformation from KEM to protocol πKEM

that is constructed for realizing FKEM :

1. Upon input (KEM.KeyGen, sid) within some party Pj , Pj obtains the public key
pk and secret key sk by running the algorithm KEM.KeyGen(), then outputs
(KEM Key, sid, pk).

2. Upon input (KEM.Encrypt, sid, pk′) within some party Pi, Pi obtains pair (K∗, C0
∗)

of a key and a ciphertext by running the algorithm KEM.Encrypt(pk′) and out-
puts (Encrypted Shared Key, sid, pk′, K∗, C0

∗). (Note that it does not necessarily
hold that pk′= pk).

3. Upon input (KEM.Decrypt, sid, C0
∗) within Pj , Pj obtains K∗ = KEM.Decrypt

(sk, C0
∗) and output (Shared Key, sid, K∗).

Theorem 3. πKEM securely realizes FKEM with respect to non-adaptive adversaries if
and only if KEM is indistinguishable against adaptive chosen ciphertext attacks (IND-
CCA2 KEM).

Proof. (“only if” part) Because NM-CCA2-KEM equals to IND-CCA2-KEM by The-
orem 1, we prove that if πKEM is not NM-CCA2-KEM secure, then πKEM does not

434 W. Nagao, Y. Manabe, and T. Okamoto

Functionality FKEM

FKEM proceed as follows, running with parties P1, . . . , Pn and an adversary S.

KEM.KeyGen
In the first activation, expect to receive (KEM.KeyGen, sid) from some party Pj . Then,

1. Send (KEM.KeyGen, sid) to S.
2. Upon receiving (KEM Key, sid, pk) from S, send (KEM Key, sid, pk) to Pj .
3. If this is the first activation then record the pair (Pj , pk), otherwise pk is discarded.

KEM.Encrypt
Upon receiving (KEM.Encrypt, sid, pk′) from some party Pi, proceed as follows:

– Check the memory, if pk′ = pk, and if Pj is not corrupted, then proceeds as follows:
1. Send (KEM.Encrypt, sid, pk′) to S.
2. Receive (Encrypted Shared Key, sid, pk′, C0) from S.
3. If C0 is stored in memory then halt.

4. Choose Shared Key K
R←− {0, 1}∗ randomly.

5. Send (Encrypted Shared Key, sid, pk′, K, C0) to Pi.
6. Store the pair (K, C0) in memory.

– Otherwise (includes pk′ �= pk or pk is not yet recorded, or Pj is corrupted),
1. Send (KEM.Encrypt with Key, sid, pk′) to S.
2. Receive (Encrypted Shared Key, sid, pk′, K, C0) from S.
3. Send (Encrypted Shared Key, sid, pk′, K, C0) to Pi.

KEM.Decrypt
Upon receiving (KEM.Decrypt, sid, C′

0) from Pj (and Pj only), hand (KEM.Decrypt, sid,
C′

0) to S. Upon receiving (Shared Key, sid, K′) from S, proceed as follows:

1. If a pair (K, C′
0) exists in memory, send (Shared Key, sid, K) to Pj .

2. Otherwise, send (Shared Key, sid, K′) to Pj .

Fig. 4. The Key Encapsulation Mechanism Functionality

securely realize FKEM. More details, we prove that we can construct an environment
Z and a real life adversary A such that for any ideal process adversary (simulator) S,
Z can tell whether it is interacting with A and πKEM or with S in the ideal process for
FKEM by using the adversary G that breaks NM-CCA2-KEM.

Z proceeds as follows:

1. Activates key receiver Pj with (KEM.KeyGen, sid), and obtains pk.
2. Activates Pi with (KEM.Encrypt, sid, pk), and obtains (K∗, C0

∗).
3. Activates G with pk and C0

∗, obtains (R, C0), where R is some relation.
4. Activates Pj with (KEM.Decrypt, sid, C0[i]) for each i, and obtains K′[i].
5. Return 1 iff R(K∗,K′).

When Z interacts with A and πKEM, Z obtains corresponding pair (K∗, C0
∗) in

Step 2. In this case, Z returns 1 in Step 5. On the other hand, Z interacts with S in the

A Universally Composable Secure Channel Based on the KEM-DEM Framework 435

ideal process for FKEM, Z obtains non-corresponding pair (K�, C0
∗) in Step 2, where

K� R←− {0, 1}∗ by FKEM and C0
∗ is generated by S. For C0

∗, G successfully obtains
(R, C0). However Z cannot output 1 in Step 5 because there is no relation R(K�,K′).

(“if” part) We show that if πKEM does not securely realize FKEM, then πKEM is
not IND-CCA2-KEM. More details, we assume that for any simulator S there is an
adversary and an environment Z that can distinguish with non-negligible probability
whether it interacts with S in the ideal process for FKEM or with parties running πKEM

and the adversary A in the real-life world. Then we prove that πKEM is not IND-CCA2-
secure by using the distinguishable environment Z.

We will show that Z can distinguish only when receiver Pj is not corrupted. We
discuss all the cases as follows.

(Case 1: Receiver Pj is corrupted.) In this case, we can make simulator S such that
the environment Z cannot distinguish the real life world from the ideal process world.
Once A corrupts Pj , simulator S corrupts dummy party ˜Pj . However receiver Pi is not
corrupted, that is, Pi is honest. Simulator S proceeds as follows:

1. When S receives (KEM.KeyGen, sid), it obtains (pk, sk) by running KEM.KeyGen(),
and returns pk to FKEM.

2. When S receives (KEM.Encrypt with Key, sid, pk), then S generates a correspond-
ing pair (K, C0) and returns C0 to FKEM.

3. When S receives (KEM.Decrypt, sid, C0), S generates key K and returns K to
FKEM.

In this case Z cannot distinguish the real world from the ideal world because S can
reconstruct by using the simulated copy of A. Note that, A can do stopping the protocol
πKEM . Even if this situation happens, Z cannot distinguish the real world from the
ideal world, because S can also stop the protocol.

(Case 2: Pj is not corrupted.) We look at the generated key and ciphertext by Pi in
each world.

– In the real life world, πKEM runs among the honest parties, Pi generates corre-
sponding pair (K∗, C∗

0) by running the algorithm KEM.Encrypt(pk).
– In the ideal process world, when ˜Pi sends (KEM.Encrypt, sid, pk) to FKEM ,

FKEM obtains C0 from S, and FKEM chooses shared key K
R←− {0, 1}∗ at ran-

dom. Then sends (Encrypted Shared Key, sid, pk, K, C0) to Pi.

It is easily seen that C0 is not concerned to the key K (because FKEM randomly
generates the key K). In the real world, Z obtains the corresponding pair (K∗, C0

∗).
However, in the ideal world, Z obtains the non-corresponding pair (K,C0). Conse-
quently, we can construct environment Z that can distinguish the real world from the
ideal world.

Recall the formal settings, there are three types of messages between Z and A. That
is, Z sends A a message either to corrupt parties, or to report on messages sending, or
to deliver some message. In this protocol, no party corruption occurs during execution
since we consider non-adaptive adversaries. Furthermore, parties don’t send messages
each other. Therefore, there are no request to report on or deliver messages. So, the
way that S affects the output of Z is only the communication via FKEM. As a result, S
proceeds as follows:

436 W. Nagao, Y. Manabe, and T. Okamoto

1. When S receives a message (KEM.KeyGen, sid) from FKEM, it runs the key gen-
eration algorithms KEM.KeyGen(), obtains the public key pk and the secret key
sk, and returns pk to FKEM.

2. When S receives a message (KEM.Encrypt, sid, pk) from FKEM, then it generates
C0 from the output of the algorithm KEM.Encrypt(pk), and returns C0 to FKEM.

3. When S receives a message (KEM.Encrypt with Key, sid, pk) from FKEM, then it
generates key (K, C0) = KEM.Encrypt(pk), and returns (K, C0) to FKEM.

4. When S receives a message (KEM.Decrypt, sid, C0) from FKEM, it obtains K =
KEM.Decrypt(sk, C0) and returns K to FKEM.

We assume that there is an environment Z that can distinguish the interaction in the
real life world from that in the ideal process world. We prove that we can construct an
adversary F that breaks IND-CCA2-KEM by using the distinguishable environment Z.
Precisely, for some value of the security parameter z for Z, we assume that there is
an environment Z such that IDEALF,S,Z(z) - REALπKEM,A,Z(z) > σ, then we show
that F correctly guesses the bit b with probability 1

2 + σ
2l in the CCA2 game, where l is

the total number of times invoking encryption oracle.
F is given a public key pk, and is allowed to query to decryption oracle and en-

cryption oracle. First, F chooses a number h
R←− {1, . . . , l} at random. Secondly, F

simulates Z on the following simulated interaction with a system running πKEM. Let
Ki and C0i denote the i-th key and ciphertext that Z asks to encrypt in this simulation,
respectively.

1. When Z activates some party Pj with (KEM.KeyGen, sid), F lets Pj output the
value pk from F ′s input.

2. For the first h − 1 times that Z asks some party Pi to generate shared key Ki, F
lets Pi return (Ki, C0i) by using algorithm (Ki, C0i) = KEM.Encrypt(pk).

3. The h-th time that Z asks to generate key Kh, F queries its encryption oracle with
pk, then obtains corresponding pair X= (Kh, C0h) or non-corresponding pair X =
(K ′

h, C0h) from encryption oracle. Accordingly, F hands X to Z as the test pair.
4. For the remaining l − h times that Z asks Pi to generate shared key Ki, F lets

Pi return (Ki, C0i), where Ki
R←− {0, 1}∗ randomly and C0 from the output of

algorithm KEM.Encrypt(pk).
5. Whenever Z activates decryptor Pj with (KEM.Decrypt, sid, C0), where C0 = C0i

for some i, F lets Pi return the corresponding key Ki for any i. If C0 is different
from all the C0i’s, then F queries C0 to its decryption oracle, obtains value v, and
lets Pj return v to Z.

6. When Z halts, F outputs whatever Z outputs and halts.

We apply a standard hybrid argument for analyzing the success probability of F . Let
the random variable Di denote the output of Z from an interaction that is identical to
an interaction with S in the ideal process, except that the first i pairs are computed with
correctly generation, and the last pair are computed with non-corresponding generation.
We can see that D0 is identical to the output of Z in the ideal process world, and
Dl is identical to the output of Z in the real life world. (This follows from the fact
that the mechanism KEM guarantees that KEM.Decrypt(sk, C0) = K, where C0 =

A Universally Composable Secure Channel Based on the KEM-DEM Framework 437

KEM.Encrypt(pk), this is called “soundness”.) Furthermore, in the simulation of F , if
the value C0h that F obtains from its encryption oracle is an encryption of Kh then
the output of the simulated Z has the distribution of Dh−1. If C0h does not correspond
to the encryption of the key then the output of the simulated Z has the distribution
of Dh. As discussed above, we can construct attacker F by using the distinguishable
environment Z. We can conclude that if πKEM does not securely realize FKEM, then
πKEM is not IND-CCA2-KEM. 	

4 Universally Composable DEM Is Equivalent to IND-P2-C2
DEM

4.1 The KEM-DEM Functionality FKEM-DEM

We define KEM-DEM functionality FKEM-DEM in Fig.5 and Fig.6. FKEM-DEM is a
functionality of hybrid usage of KEM and DEM, KEM-key-generation, KEM-encryption,
KEM-decryption, DEM-encryption and DEM-decryption. Information obtained in KEM-
encryption and KEM-decryption is transfered to DEM-encryption and DEM-decryption
inside FKEM-DEM. Here note that there is no functionality of data transmission between
parties in FKEM-DEM.

4.2 UC DEM Is Equivalent to IND-P2-C2 DEM

First, we define a protocol πKEM-DEM in Fig.7 that is constructed on an algorithm DEM
= (DEM.Encrypt,DEM.Decrypt) in the FKEM-hybrid model. We say that the un-
derlying DEM is UC secure if and only if πKEM-DEM securely realizes FKEM-DEM in
the FKEM-hybrid model.

Therefore, the following theorem implies that UC DEM is equivalent to IND-P2-C2
DEM.

Theorem 4. Protocol πKEM-DEM securely realizes FKEM-DEM with respect to non-
adaptive adversaries in the FKEM-hybrid model if and only if DEM is indistinguishable
against adaptive chosen plaintext/ciphertext attacks(IND-P2-C2 DEM).

Proof. (sketch) (“only if” part) Because NM-P2-C2-DEM equals to IND-P2-C2-DEM
by Theorem 2, we prove that if πDEM is not NM-P2-C2-DEM secure, then πKEM-DEM

does not securely realize FKEM-DEM in the FKEM - hybrid model. More details, we
prove that we can construct an environment Z and a real life adversary A such that for
any ideal process adversary (simulator) S, Z can tell whether it is interacting with A
and πKEM-DEM or with S in the ideal process for FKEM-DEM by using the adversary
which breaks NM-P2-C2-DEM. Note that A corrupts no party and Z sends no messages
to A. We assume that there exists a successful attacker G for πDEM in the sense of NM-
P2-C2-DEM. Environment Z proceeds as usual, except that Z runs a copy of G.

Z proceeds as above, except that Z runs a simulated copy of G. For more details:

1. Activates key receiver Pj with (KEM.KeyGen, sid), then obtains pk.
2. Activates key encrypter Pi with (KEM.Encrypt, sid, pk), then obtains C0

∗.
3. Activates Pj with (KEM.Decrypt, sid, C0).

438 W. Nagao, Y. Manabe, and T. Okamoto

Functionality FKEM-DEM

FKEM-DEM proceeds as follows, running with parties P1, . . . , Pn and an adversary S.

KEM.KeyGen
In the first activation, expect to receive (KEM.KeyGen, sid) from some party Pj . Then,

1. Send (KEM.KeyGen, sid) to S.
2. Upon receiving (KEM Key, sid, pk) from S, send (KEM Key, sid, pk) to Pj .

KEM.Encrypt
Upon receiving (KEM.Encrypt, sid, pk′) from some party Pi, proceed as follows:

– If an entry (Pi, C, active) is not in memory for any C,
1. Send (KEM.Encrypt, sid, pk′) to S, and receive (Encrypted Shared Key, sid, pk′,

C0) from S.
2. Send (Encrypted Shared Key, sid, pk′, C0) to Pi, and store the pair (pk′, C0) and (Pi,

C0, active) in memory.
– Otherwise, do nothing.

KEM.Decrypt
Upon receiving (KEM.Decrypt, sid, C′

0) from Pj (and Pj only), hand (KEM.Decrypt, sid,
C′

0) to S. Upon receiving ok from S, proceed as follows:

– If an entry (Pj , C, active) is not in memory for any C, send ok to Pj and store the pair
(Pj , C′

0, active) in memory.
– Otherwise, do nothing.

DEM.Encrypt
Upon receiving (DEM.Encrypt, sid, m) from party Pe (e ∈ {i, j} only), proceed as fol-

lows:

– If (Pe, C0, active) is stored in memory.

• If both Pe are uncorrupted, then proceeds as follows:
1. Send (DEM.Encrypt, sid, |m|) to S, where |m| denotes the length of m and

receive (DEM.Ciphertext, sid, c′) from S.
2. Send (DEM.Ciphertext, sid, c′) to Pe, and store the entry (m, c′, C0) in memory.

• Otherwise, proceeds as follows:
1. Send(DEM.Encrypt, sid, m) to S, and receive (DEM.Ciphertext, sid, c′) from

S.
2. Send (DEM.Ciphertext, sid, c′) to Pe, and store the entry (m, c′, C0) in memory.

– Otherwise, do nothing.

Fig. 5. The KEM-DEM Functionality

4. Activates message encrypter Pi with (DEM.Encrypt, sid, m), then obtains c.
5. Activates G on c, obtains (R, c), where R is some relation.
6. Activates Pj with (DEM.Decrypt, sid, c[i]) for each i, and obtains m′[i].
7. Return 1 iff R(m,m′).

A Universally Composable Secure Channel Based on the KEM-DEM Framework 439

Functionality FKEM-DEM (continued)

DEM.Decrypt
Upon receiving (DEM.Decrypt, sid, c′) from Pe (e ∈ {i, j} only), hand (DEM.Decrypt,

sid, c′) to S. Upon receiving (DEM.Plaintext, sid, φ) from S, proceed as follows:

– If an entry (Pe, C, active) exists in memory for some C:
1. If the entry (m, c′, C) is stored in the memory, then send (DEM.Plaintext, sid, m) to

Pj .
2. Else, if Pi and Pj is not corrupted, and if (m, c′, C) doesn’t recorded in the memory,

then store the entry (⊥, c′, C) and send (DEM.Plaintext, sid, ⊥) to Pe.
3. Else, if an entry (⊥, c′, C) is recorded, then send (DEM.Plaintext, sid, ⊥) to Pe.
4. Otherwise, send (DEM.Plaintext, sid, φ) to Pe, and record the entry (φ, c′, C) in

memory.
– Otherwise, do nothing.

Fig. 6. The KEM-DEM Functionality

When Z interacts with A and πKEM-DEM, Z obtains ciphertext c in Step 4. In this
case, Z return 1 in Step 7. Therefore when Z interacts with A and πKEM-DEM , Z
outputs 1 with non-negligible probability. On the other hand, Z interacts with S in
the ideal process for FKEM, Z also obtains ciphertext c in Step 4. For ciphertext c, G
successfully obtains (R, c). However Z cannot output 1 in Step 7 because there is no
relation R(m,m′).

(“if” part) We prove that if πKEM-DEM does not securely realize FKEM-DEM, then
πDEM is not IND-P2-C2-DEM. More details, we assume that there is an adversary A
such that for any simulator S, there is an environment Z can tell with non-negligible
probability whether it is interacting with FKEM-DEM and S in the ideal process world
or with parties running πKEM-DEM and the adversary A in the real life world. Then,
we prove that there is adversary F breaks IND-P2-C2-DEM by using distinguishable
Z. Note that there are three cases of party corruption since we take account of non-
adaptive adversaries.

Recall the formal settings, there are three types of messages between Z and A. That
is, Z sends A a message either to corrupt parties, or to report on messages sending, or
to deliver some message. In this protocol, no party corruption occurs during execution
since we consider non-adaptive adversaries. Furthermore, parties don’t send messages
each other. Therefore, there are no request to report on or deliver messages. In fact,
there is no communication between Z and A at all. So, the way that S affects the output
of Z is only the communication via FKEM-DEM.

We will show that Z can distinguish is only when both sender Pi and receiver Pj

are not corrupted. We discuss all the cases for the following simulator S as follows:

1. When S receives (KEM.KeyGen, sid), S obtains (pk, sk) by running KEM.KeyGen(),
and returns (KEM Key, sid, pk) to FKEM-DEM.

2. When S receives (KEM.Encrypt, sid, pk), S generates a corresponding pair (K,
C0), and returns (Encrypted Shared Key, sid, pk, C0) to FKEM-DEM.

440 W. Nagao, Y. Manabe, and T. Okamoto

Protocol πKEM-DEM

Key Encapsulation Mechanithm KEM

KEM.KeyGen

1. Upon input (KEM.KeyGen, sid), Pj sends (KEM.KeyGen, sid1) to FKEM.
2. Upon receiving (KEM Key, sid1, pk) from FKEM, Pj outputs pk.

KEM.Encrypt
Upon input (KEM.Encrypt, sid, pk) within party Pi,

– If boolean variable active is not set,
1. Pi sends (KEM.Encrypt, sid1, pk) to FKEM.
2. Upon receiving (Encrypted Shared key, sid1, pk, K, C0) from FKEM, then Pi outputs

C0 and stores the key K in memory and sets a boolean variable active in memory.
– Otherwise, do nothing.

KEM.Decrypt
Upon input (KEM.Decrypt, sid, C0) within Pj ,

– If boolean variable active is not set,
1. Pj sends (KEM.Decrypt, sid1, C0) to FKEM.
2. Upon receiving (Shared Key sid1, K), Pj stores K in memory and outputs ok and

sets a boolean variable active in memory.
– Otherwise, do nothing.

Data Encapsulation Mechanithm DEM

DEM.Encrypt
Upon input (DEM.Encrypt, sid, m) from Pe (e ∈ {i, j}), proceeds as follows:

– If the boolean variable is active in Pe’s memory, Pe obtains ciphertext c =
DEM.Encrypt(K, m) and outputs (DEM Ciphertext, sid, c).

– Otherwise do nothing.

DEM.Decrypt
Upon input (DEM.Decrypt, sid, c) from Pe (e ∈ {i, j}), proceeds as follows:

– If the boolean variable is active in Pe’s memory, Pe obtains m = DEM.Decrypt (K, c)
and outputs (DEM Plaintext, sid, m).

– Otherwise do nothing.

Fig. 7. The KEM-DEM Protocol

3. When S receives (KEM.Decrypt, sid, C0), S obtains key K by KEM.Decrypt(sk,
C0), and returns ok to FKEM-DEM.

4. When S receives (DEM.Encrypt, sid, |m|), S generates c′ by output of DEM.Encry
pt(K, 0|m|), and returns (DEM.Ciphertext, sid, c′) to FKEM-DEM.

A Universally Composable Secure Channel Based on the KEM-DEM Framework 441

5. When S receives (DEM.Encrypt, sid, m), S generates c′ by the output of DEM.Enc
rypt(K, m) and returns (DEM.Ciphertext, sid, c′) to FKEM-DEM.

6. When S receives (DEM.Decrypt, sid, c′), S generates φ by DEM.Decrypt(K, c′),
and sends (DEM.Plaintext, sid, φ).

(Case 1: Sender Pi is corrupted.) In this case, once A corrupts Pi, simulator S
corrupts dummy party ˜Pi. However receiver Pj is not corrupted, that is, Pj is honest.
Environment Z cannot distinguish the real life world from the ideal process world for
the above simulator S because S can reconstruct by using the simulated copy of A. Note
that, A can do stopping the protocol πKEM-DEM. Even if this situation is happened, Z
cannot distinguish the real world from the ideal world, because S can also stop the
protocol.

(Case 2: Receiver Pj is corrupted.) In this case, once A corrupts Pj , simulator S

corrupts dummy party ˜Pj . However sender Pi is not corrupted, that is, Pi is honest.
Environment Z cannot distinguish the real life world from the ideal process world by
the above simulator S because simulator S can reconstruct by using the simulated copy
of A.

(Case 3: No party is corrupted.) In this case, sender Pi and receiver Pj are not
corrupted i.e., they are honest parties. We look at the generated key and ciphertext by
Pi in each world.

– In the real life world, πKEM-DEM runs among the honest parties, Pi generates c by
running the algorithm DEM.Encrypt(K,m). Note that c is corresponding to m.

– In the ideal process world, FKEM-DEM send (DEM.Encrypt, sid, |m|) to S. Pi

obtains c′ from S via FKEM-DEM. Note that c is non-corresponding to m because
S sees only the length of m.

By applying a hybrid argument similar to the one in the proof of Theorem 3, we can
obtain adversary F that attacks IND-P2-C2-DEM by using the environment Z that can
distinguish the real world from the ideal world. 	

5 A Universally Composable Secure Channel Based on the
KEM-DEM Framework

To realize secure channel functionality, FSC, defined in [4], we define a secure channel
protocol πSC in Fig.8 in the (FKEM-DEM, FSIG, FCA)-hybrid model, where FSIG is a
signature functionality [4], and FCA is certification authority functionality [4]. (Due to
the page limitation, we omit the description of FSIG and FCA. See [4] for the defini-
tions.)

Combining with the previous theorems, the following theorem implies that IND-
CCA2 KEM, IND-P2-C2 DEM, secure signatures and ideal CA are sufficient to se-
curely realize FSC.

Theorem 5. Protocol πSC securely realizes FSC in the (FKEM-DEM, FSIG, FCA)-
hybrid model.

442 W. Nagao, Y. Manabe, and T. Okamoto

Protocol πSC

Session Set-up

1. Upon input (Establish-session, sid, Pj , initiator), Pi sends (KEM.KeyGen, sid1) to
FKEM-DEM, and stores (sid, Pj).

2. Upon receiving (KEM Key, sid1, PKi) from FKEM-DEM, Pi sends (Register, Pi, PKi)
to FCA.

3. Upon input (Establish-session, sid, Pi, responder), Pj sends (Retrieve, Pi) to FCA.
4. Upon receiving (Retrieve, Pi, PKi) from FCA, Pj sends (KEM.Encrypt, sid1, PKi) to

FKEM-DEM, and receives (Encrypted Shared key, sid1, PKi, C0) from FKEM-DEM.
5. Pj sends (KeyGen, (Pj , sid

′)) to FSIG, receives (Verification Key, (Pj , sid
′), PKj).

6. Pj sends (Register, Pj , PKj) to FCA, then sends (Sign, Pj , C0) to FSIG, receives (Sig-
nature, (Pj , sid

′), C0, σ) from FSIG.
7. Pj sends (sid, C0, σ, Pj) to Pi, and set a boolean variable active.
8. Upon receiving (sid, C0, σ, Pj), Pi checks whether (sid, Pj) is stored. If it is not stored,

discard the message. Otherwise, Pi sends (Retrieve, Pj) to FCA and receives (Retrieve,
Pj , PKj), then sends (Verify, (Pj , sid

′), C0, σ, PKj) to FSIG and receives (Verified,
(Pj , sid

′), C0, f). If f is 1 then Pi goes to next step. Else finish the protocol.
9. Pi sends (KEM.Decrypt, sid1, C0) to FKEM-DEM. If ok is returned from FKEM-DEM, set

a boolean variable active.

Data Exchange

1. Upon input (Send, sid, m), to Pe, if Pe is active (i.e., e ∈ {i, j}), Pe sends the message
(DEM.Encrypt, sid1, m) to FKEM-DEM.

2. Upon receiving (DEM.Ciphertext, c) from FKEM-DEM, Pe sends c to Pē.
3. Upon receiving c, if Pē is active (i.e., ē ∈ {i, j}), Pē sends (DEM.Decrypt, sid1, c) to

FKEM-DEM.
4. Pē receives (DEM.Plaintext, m) from FKEM-DEM and outputs m.

Session Ending

1. Upon input (Expire-session, sid), Pe sends (Expire-session, sid) to Pē and erases the
session state (including all keys and local values) and terminates this protocol.

2. Upon receiving (Expire-session, sid), Pē erases the session state (including all keys and
local values) and terminates this protocol.

Fig. 8. The Secure Channel Protocol πSC

Proof. (sketch) Let A be an adversary that interacts with parties running πSC in the
(FKEM-DEM, FSIG, FCA)-hybrid model, and S be an ideal process adversary (simula-
tor) that interacts with the ideal process for FSC. We construct S such that any environ-
ment Z cannot tell whether it is interacting with A in πSC or with S in the ideal process
for FSC. S invokes a simulated copy of A, and proceeds as follows:

1. Inputs from Z are forwarded to A and outputs from A are forwarded to Z.
2. (Simulating the interaction of A in the session set-up) Upon receiving a mes-

sage (sid, Pi, Pj) from FSC (which means that Pi and Pj have set-up a session),

A Universally Composable Secure Channel Based on the KEM-DEM Framework 443

simulates for A the process of exchanging shared key between Pi and Pj . That
is, play functionalities, FCA, FKEM-DEM, FSIG, for A as follows: send to A (in
the name of FKEM-DEM) the message (KEM.KeyGen, sid1, PKi), obtain the re-
sponse (KEM Key, sid1, PKi) from A; send to A (in the name of FCA) the message
(Registered, Pi, PKi), obtain the response ok from A; send to A (in the name of
FCA) the message (Retrieve, Pi, Pj), obtain the response ok from A; send to A
(in the name of FKEM-DEM) the message (KEM.Encrypt, sid1, PKi), obtain the
response (Encrypted Shared key, sid1, PKi, C0) from A; send to A (in the name
of FSIG) the message (KeyGen, (Pj , sid

′)), obtain the response (Verification Key,
(Pj , sid

′), PKj) from A; send to A (in the name of FCA) the message (Registered,
Pj , PKj), obtain the response ok from A; send to A (in the name of FSIG) the mes-
sage (Sign, (Pj , sid

′), C0), obtain the response (Signature, (Pj , sid
′), C0, σ) from

A; send to A (in the name of FCA) the message (Retrieve, Pj , Pi), obtain the re-
sponse ok from A; send to A (in the name of FSIG) the message (Verify, (Pj , sid

′),
C0, σ, PKj), obtain the response (Verified, (Pj , sid

′), C0, φ) from A; send to A
(in the name of FKEM-DEM) the message (KEM.Decrypt, sid1, C0, PKi), obtain
the response ok from A.

3. (Simulating the interaction of A in the data exchange) Upon receiving a mes-
sage (sid, Pe, u) (e ∈ {i, j}) from FSC (which means that Pe sent a message of
length u to Pē), simulates for A the process of exchanging shared key between Pi

and Pj . That is, play functionality FKEM-DEM for A as follows: send to A (in the
name of FKEM-DEM) the message (DEM.Encrypt, sid1, |m|), obtain the response
(DEM.Ciphertext, c) from A; send to A (in the name of FKEM-DEM) the message
(DEM.Decrypt, sid1, c), obtain the response (DEM.Plaintext, ψ) from A.

4. (Simulating the interaction of a corrupted party) Simulating the interaction of
a corrupted party can be done by simulating the functionalities and transmissions
in the natural way. So, we omit the precise description here.

5. (Simulating party corruption) When A corrupts a party, S corrupts that party
in the ideal process, and forwards the obtained information to A. This poses no
problem since none of the parties maintains any secret information.

It is straightforward to verify that the simulation is perfect. That is, for any environ-
ment Z and A, it holds that the view of Z interacting with S and FSC is distributed
identically to the view of Z interacting with A and parties running protocol πSC in the
(FKEM-DEM, FSIG, FCA)-hybrid model. 	

6 Conclusion

The KEM-DEM framework is a promising formulation for hybrid encryption based
on symmetric and asymmetric encryption, and will be standardized in ISO in the near
future. This paper studied the possibility of constructing a UC secure channel using
the KEM-DEM framework. We presented that IND-CCA2 KEM and IND-P2-C2 DEM
along with secure signatures and ideal certification authority are sufficient to realize a
UC secure channel. This paper also shows several equivalence results: UC KEM, IND-
CCA2 KEM and NM-CCA2 KEM are equivalent, and UC DEM, IND-P2-C2 DEM and
NM-P2-C2 DEM are equivalent.

444 W. Nagao, Y. Manabe, and T. Okamoto

References

1. M.Bellare, A.Desai, D.Pointcheval, and P.Rogaway, “Relations Among Notions of Security
for Public-Key Encryption Schemes, Crypto’98 LNCS 1462.

2. M.Bellare and A.Sahai, “Non-Malleable Encryption: Equivalence between Two Notions, and
an Indistinguishability-Based Characterisation, Crypto’99 LNCS 1666.

3. R. Canetti, “Universally Composable Security: A New paradigm for Cryptographic Proto-
cols, 42nd FOCS, 2001. Full version available at http://eprint.iacr.org/2000/067.

4. R. Canetti, “Universally Composable Signature, Certification, and Authentication, August,
2004. http://eprint.iacr.org/2003/239/.

5. R. Canetti and H. Krawczyk, “Analysis of Key-Exchange Protocols and Their Use for Build-
ing Secure Channels, Eurocrypt 01, 2001. Full version at http://eprint.iacr.org/2001.

6. R. Canetti and H. Krawczyk, “Universally Composable Notions of Key Exchange and Secure
Channels, Eurocrypt 02, LNCS, Springer, 2002. http://eprint.iacr.org/2002.

7. R. Canetti and T. Rabin, “Universal Composition with Joint State,” Proceedings of Crypto
03, LNCS, Springer, 2003. available at http://eprint.iacr.org/2002.

8. R.Cramer and V.Shoup, “Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack, http://shoup.net/papers/, 2001 Dec.

9. D.Dolev, C.Dwork, and M.Naor, “Non-Malleable Cryptography, 23rd STOC, 1991. Also
Technical Report CS95-27, Weizmann Institute of Science, 1995.

10. J. Katz and M.Yung, “Characterization of Security Notions for Probabilistic Private-Key
Encryption,” to appear. Full version available at http://www.cs.umd.edu/̃ jkatz/.

11. V.Shoup, “A Proposal for an ISO Standard for Public Key Encryption (version 2.1), ISO/IEC
JTC1/SC27, N2563, http://shoup.net/papers/, 2001 Dec.

	Introduction
	Background
	Our Results
	Related Works

	The KEM-DEM Framework
	Key Encapsulation Mechanism
	Data Encapsulation Mechanism

	Universally Composable KEM Is Equivalent to IND-CCA2 KEM
	The Key Encryption Mechanithm Functionality FKEM
	UC KEM Is Equivalent to IND-CCA2 KEM

	Universally Composable DEM Is Equivalent to IND-P2-C2 DEM
	The KEM-DEM Functionality FKEM-DEM
	UC DEM Is Equivalent to IND-P2-C2 DEM

	A Universally Composable Secure Channel Based on the KEM-DEM Framework
	Conclusion

