
Fast Multi-computations
with Integer Similarity Strategy�

Wu-Chuan Yang1, Dah-Jyh Guan2, and Chi-Sung Laih1

1 Department of Electrical Engineering, National Cheng Kung University,
Tainan, Taiwan 701, R.O.C.

2 Department of Computer Science, National Sun Yat Sen University,
Kaohsiung, Taiwan 804, R.O.C.

wcyang77@ms32.hinet.net, guan@cse.nsysu.edu.tw, laihcs@eembox.ncku.edu.tw

Abstract. Multi-computations in finite groups, such as multiexponenti-
ations and multi-scalar multiplications, are very important in ElGamal-
like public key cryptosystems. Algorithms to improve multi-computa-
tions can be classified into two main categories: precomputing methods
and recoding methods. The first one uses a table to store the precom-
puted values, and the second one finds a better binary signed-digit (BSD)
representation. In this article, we propose a new integer similarity strat-
egy for multi-computations. The proposed strategy can aid with precom-
puting methods or recoding methods to further improve the performance
of multi-computations. Based on the integer similarity strategy, we pro-
pose two efficient algorithms to improve the performance for BSD sparse
forms. The performance factor can be improved from 1.556 to 1.444 and
to 1.407, respectively.

Keywords: ElGamal-like public key cryptosystems, binary signed-digit
(BSD) representations, sparse forms, multi-computations, multiexponen-
tiations, multi-scalar multiplications

1 Introduction

Multi-computations in finite groups, such as multiexponentiations, e.g. c =
axby, and multi-scalar multiplications, e.g. C = xA + yB (A, B, and C de-
note points in one elliptic curve), are very important in many ElGamal-like
public key cryptosystems [8, 21, 9]. In addition to the algorithms for single com-
putations (some good surveys can be found in [13, 5, 10]), the performance of
multi-computations can be improved by the concept of multiexponentiation [8,
Section V.B]. This concept was generalized to the small window methods by
Yen, Laih, and Lenstra [23].

Based on the concept of multiexponentiations, many algorithms have been
proposed to improve the performance of multi-computations. In general, these

� This work was supported by the National Science Council, Taiwan, under contract
NSC 92-2213-E-232-002.

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 138–153, 2005.
c© International Association for Cryptologic Research 2005

Fast Multi-computations with Integer Similarity Strategy 139

algorithms can be classified into two categories: precomputing methods and re-
coding methods. Precomputing methods use a large table to store the precom-
puted values, such as the BGMW method [4] and the Lim-Lee method [14].
Precomputing methods are very suitable for memory sufficient environment and
have the better performance indeed. Since the binary signed-digit (BSD) repre-
sentation of an integer is not unique, recoding methods try to recode the BSD
representations of x and y such that their joint Hamming weight ω(x, y) is as
minimal as possible [7, 22]. The joint Hamming weight can be defined by the
number of digit pairs, at least one of which is nonzero. Recoding methods are
very useful in memory limited environments, such as IC cards or smart consumer
electronic devices. Recently, this topic has been discussed in many articles [15,
18, 2, 3, 16, 19].

In this article, we focus on the memory limited environment and intro-
duce a new integer similarity strategy to improve the performance of multi-
computations. When computing c = axby or C = xA + yB, the recoding meth-
ods match the zeros or nonzeros as possible by recoding x and y in advance,
therefore the performance of multi-computations can be improved. Instead of
recoding x and y, the new strategy is by deleting or inserting some digits in
x and y, such that x and y have as much similarity as possible. For example, if
x = 0101010112 and y = 1010101012, we can match the zeros by deleting the
first zero in x and inserting a zero before the last digit in y as follows.

x 0 1 0 1 0 1 0 1 1
Original computation y 1 0 1 0 1 0 1 0 1 ω(x, y) = 9

x 0 1 0 1 0 1 0 1 1
adjusted computation y 1 0 1 0 1 0 1 01 ω(x, y) = 5

↑ ↑
deleted inserted

Obviously, the computation must be modified for evaluating the correct result
if some digits in x or y were deleted or inserted. As the above example, we only
compute the deleted digit which is the beginning digit of x. Afterwards the digit
with the same value can be computed simultaneously. Finally, the inserted digit
in y should be computed with the last digit pair. Different from the recoding
methods, our proposed methods improve the performance by shifting the digits.
Thus our methods are very promising ones to improve performance in memory
limited environments.

Since the performance of the multi-computation algorithms is determined
by the computations of nonzero columns, we use a performance factor, ρ, to
evaluate the performance of multi-computations. The performance factor can
be defined as follows, note that “1” refers to the necessary computations of
square (in multiexponentiation) or double (in multi-scalar multiplication).

ρ = 1 +
number of nonzero digit pairs
number of total digit pairs

.

140 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

The performance of multi-computations by BSD representations can be de-
scribed as follows: ρ = 1.556 by using sparse forms directly [13], ρ′ = 1.534
[7] by using the Dimitrov-Jullien-Miller method, and ρ′′ = 1.500 [22] by using
joint sparse forms, respectively. The proposed integer similarity strategy has
practical applications for the above BSD methods. Based on the integer similar-
ity strategy, we propose two efficient algorithms to improve the performance for
BSD sparse forms; the performance factor can be reduced from 1.556 to 1.444
and to 1.407, respectively. The proposed strategy can also be used in binary rep-
resentations since it does not recode the representation. Based on the proposed
strategy, ρ can be reduced from 1.75 to 1.667 in binary method.

The rest of this article is organized as follows. In Section 2, we first review
the basic multi-computation algorithms. The concept of integer similarity strat-
egy and the proposed algorithms are illustrated in Section 3. And we also prove
the performance of the proposed algorithms. In Section 4, we compare the per-
formances of some well-known recoding methods and our proposed methods.
Besides, the application of the proposed strategy to binary representations is
also discussed in Section 4. Finally, our conclusion is presented in Section 5.

2 Preliminaries of Multi-computations

To simplify the description, the integer similarity strategy is described by multi-
scalar multiplication, C = xA + yB, with BSD representations only. Note that
our strategy can also be applied to multiexponentiation, c = axby, with binary
representations [11]. The notations used in this article are described as follows.
The uppercase alphabet, such as A or B, denotes the discrete point in elliptic
curve public key cryptosystems. The lowercase alphabet, such as x or y, denotes
an n-bit integer. Because the minimal weight BSD representations need an extra
BSD, x can be represented by n + 1 BSDs as follows (1̄ denotes −1).

x =
n∑

i=0

xi2i = (xnxn−1 · · ·x1x0)2, where xi ∈ {1̄, 0, 1}.

Symbol |x| represents the bit-length of x, ω(x) represents the Hamming weight of
x, i.e. the number of nonzero digits. In multi-computation, we put our emphasis
on whether the digit is zero or not. Therefore we use “o” to denote zero value,
and “ι” to denote the nonzero values. Hence the digits can be classified into
two sets: the zero set So and the nonzero set Sι. xi ∼ yi denotes xi, yi ∈ So or
xi, yi ∈ Sι. The expression xi �∼ yi denotes xi ∈ So, yi ∈ Sι or xi ∈ Sι, yi ∈ So.

For integer pairs, |(x, y)| = max(|x|, |y|), the joint Hamming weight ω(x, y) is
defined by the total number of (xi, yi) �= (0, 0), for all i. Thus, the performance
factor ρ can be simplified to ρ = 1 + ω(x,y)

|(x,y)| .

2.1 The Basic BSD Method for Multi-scalar Multiplications

The expected ω(x) in minimal weight BSD representations is 1
3n [1]. Many algo-

rithms can be used to recode the binary representation or any BSD representa-

Fast Multi-computations with Integer Similarity Strategy 141

tion to minimum weight BSD representation [20, 11, 12]. Notice that an integer
may have many minimal weight BSD representations, the most famous one is
called the sparse form since no two consecutive digits are both nonzeros. Sparse
forms are also called canonical forms or non-adjacent forms [10]. Minimal weight
BSD representations are especially suitable for elliptic curve scalar multiplica-
tions since the inverse of a point is easy to compute. The basic BSD method
for multi-scalar multiplications is shown in Algorithm 1. Symbol O denotes the
identity element of the elliptic curve, this point is also called “point at infinity.”
The value of all possible xiA+ yiB must be precomputed in Line 6 of Algorithm
1. Therefore it needs 5 registers to store the value of A, B, A + B, A − B,
and C. The inverse value −A, −B, −A − B and −A + B are easily to obtain
from the precomputed table, so we do not need to precompute these value. The
performance factor of Algorithm 1, ρ1, is equal to 1.556. The proof is shown in
Theorem 1.

Algorithm 1. The Basic BSD Method for multi-computations
I/P: A, B, x, y

O/P: C = xA + yB

1: Recode x and y to the minimum weight BSD representations;
2: Prepare the following values: A, B, A ± B;
3: C = O;
4: for i = n downto 0 do {
5: C = 2C;
6: if (xi, yi) �= (0, 0) then C = C + (xiA + yiB);
7: }

Theorem 1. The performance factor of Algorithm 1 is ρ1 = 1 5
9 � 1.556.

Proof. In Line 6, the probability of (xi, yi) �= (0, 0) is 1 − (2
3)2 = 5

9 .
Therefore the performance factor ρ1 = 1 + 5

9 � 1.556. ��

2.2 The Recoding Methods for BSD Representations

Since there are many minimal weight BSD representations, the result of Algo-
rithm 1 can be improved by recoding the representations. Dimitrov, Jullien, and
Miller proposed 8 reduction rules to recode x and y (called the DJM method
in this article) [7]. In their method, if the scanned segment of three consecutive
digits matches one of the upper part of Table 1, the algorithm recode the seg-
ment to the corresponding lower part. The performance factor can be reduced
from 1.556 to 1.534 by using the DJM method.

On the view of sparse form for the single integer, Solinas proposed the con-
cept of joint sparse form (JSF) for pairs of integers, the properties of JSF are
illustrated as follows [22]:

142 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 1. The DJM reduction rules.

Original xi+2xi+1xi 010 010 01̄0 01̄0 101̄ 101̄ 1̄01 1̄01

digits yi+2yi+1yi 101̄ 1̄01 101̄ 1̄01 010 01̄0 010 01̄0

After x′
i+2x

′
i+1x

′
i 010 010 01̄0 01̄0 011 011 01̄1̄ 01̄1̄

Adjusted y′
i+2y

′
i+1y

′
i 011 01̄1̄ 011 01̄1̄ 010 01̄0 010 01̄0

1. Of any 3 consecutive digits, at least one is double zeros.
2. Adjacent digits do not have opposite signs.
3. If xi+1xi �= 0, then yi+1 �= 0 and yi = 0.

If yi+1yi �= 0, then xi+1 �= 0 and xi = 0.

Solinas also proposed two efficient recoding algorithms to generate the joint
sparse form from binary representation and sparse form, respectively. The per-
formance factor can be improved to 1.500 when n approaches infinite, and this
value is the minimum of all the recoding methods.

3 The Integer Similarity Strategy

By observing above recoding methods, we find two major limitations in those
method. First, they can not recode the binary representations since the binary
representation for an integer is unique. Second, they cannot recode the digits
with the same signs, such as 101 or 1̄01̄, because they are unique minimum
weight form. For example, if x = (10101010)2 and y = (01010101)2, all recoding
methods cannot improve the computation. Based on the observation, we propose
a totally new strategy, the integer similarity strategy, to improve the performance
of multi-computations. Our idea is to shift some digits by deleting and insert-
ing so that two different integers can be as much similarity as possible. For
example x = (01010101)2 and y = (10101010)2, x can be adjusted by deleting
the first zero and inserting a zero in the end. When the digit of x or y is deleted
or inserted, the corresponding computation must be defined for evaluating the
correct result. In order to use the proposed strategy for multi-computations, the
following items must be taken into consideration.

1. The Condition for Deleting or Inserting
For improving the performance, we have to define the condition to let the
integers be as much similarity as possible. The condition depends on both
integer representations and memory space.

2. The Corresponding Computation of Deletion or Insertion
In computing C = xA + yB, C = 2C + xiA is computed when deleting xi

and C = 2(C + yi+1B) + (xiA + yiB) when inserting yi.
3. The Computation After Deletion or Insertion

After deletion, the corresponding digits of x and y will be shifted, that is
the corresponding digits of xi−1 is yi after deleting xi. The corresponding
computation after deletion is C = 2C + (xi−1A + yi2B).

Fast Multi-computations with Integer Similarity Strategy 143

The simplest case of the integer similarity strategy is that one insertion in
an integer follows one deletion in another integer, we name it the single-stage
version. The deletion can be acted on only one integer, called the single-integer
version, and it can be also acted on both the integers, call double-integer version.
In this article, in order to point out the essence of the integer similarity strategy,
two basic methods are taken into consideration. The first one, called the single-
stage single-integer (1S1I) method, is to delete one digit in x then to insert
another digit in y at an appropriate position. The second one, called the single-
stage double-integer (1S2I) method, is to delete one digit in x or y and insert
another digit in its opposite integer. The single stage can be generalized to multi-
stage. However, we do not discuss the generalization of 1S1I and 1S2I method
in this article due to the page limitation.

3.1 The 1S1I Method for Sparse Forms

The BSD sparse form has an important property – of any 2 consecutive digits,
at least one is zero. According to this property, if we want to match the zeros
and nonzeros, xi �∼ yi is a suitable condition to delete one digit in x. When one
digit in x is deleted, the computation should be modified, which is called “Delete
x” state, denoted by Dx. On the contrary, if the computation is the same with
the original algorithm, the state can be called the “Normal” state, denoted by
Nr. Thus the state diagram of the 1S1I method is shown in Fig. 1.

��

��

��

��
Nr Dx

�

�

xi �∼ yi
xi ∼ yi

�

�

xi ∼ yi
xi �∼ yi

Fig. 1. The state diagram of the 1S1I method.

Consider the following condition, xu is deleted in x and yv is inserted in y.

x = (xn · · · � xu xu−1 · · · xv xv−1 · · · x0)2
y = (yn · · · yu · · · yv+1yv yv−1 · · · y0)2

Before deleting xu and after inserting yv (i > u or i < v), the computation is
2C+(xiA+yi+1B). It is the same as Algorithm 1. When deleting xu (i = u), the
computation is 2C +xuA. After deleting xu and before inserting yv (u > i > v),
the computation is 2C + (xiA + yi+12B) and the state is transferred into Dx.
When inserting yv (i = v), the computation is C = 2(C +yv+1B)+(xvA+yvB).
The corresponding digits are (xi, yi) in Nr, and (xi, yi+1) in Dx. Therefore, the
corresponding computations can be illustrated in Table 2. To summarize the
above, Algorithm 1 can be modified to the following Algorithm 2.

144 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 2. The corresponding computations of the proposed algorithm.

State Corresponding computation

Nr C = 2C + (xiA + yiB)

Nr → Dx C = 2C + xiA

Dx C = 2C + (xiA + yi+12B)

Dx → Nr C = 2(C + yi+1B) + (xiA + yiB)

Algorithm 2. The 1S1I method for sparse forms
I/P: A, B, x = (xn−1, · · · , x1, x0)2, y = (yn−1, · · · , y1, y0)2
O/P: C = xA + yB

1: Prepare the value of A, B, A ± B, A ± 2B;
2: C = O, State = Nr;
3: for i = n downto 0 do {
4: if (State = Nr) {
5: if (xi ∼ yi) then C = 2C + (xiA + yiB);
6: else State = Dx, C = 2C + xiA;
7: }
8: else {
9: if (xi �∼ yi) then C = 2C + (xiA + yi+12B);
10: else State = Nr, C = 2(C + yi+1B) + (xiA + yiB);
11: }
12: }

The rules in Fig. 1 are very simple and efficient. Theorem 2 proves that Algorithm
2 is guaranteed to further improvement of the performance of Algorithm 1 with
BSD sparse forms.

Theorem 2. Let ρ1 and ρ2 be the performance factor of Algorithm 1 and Algo-
rithm 2, respectively. If x and y are both sparse forms, then ρ2 ≤ ρ1.

Proof. The performance factor is analyzed by considering the computation of
Nr and of Dx.

First, we consider the computation in state Nr of Algorithm 2. In Line 5, it
is the same with Algorithm 1. In Line 6, if yi is zero, ρ will be decreased by 1,
otherwise ρ remains the same with Algorithm 1.

Then we consider the computation of state Dx. if xi �∼ yi for u ≥ i ≥ v,
therefore Dx is occurred for (u − 1) ≥ i ≥ (v − 1), thus the corresponding
computation digits are shown as follows.

Nr Nr→ Dx Dx · · · Dx Dx Dx→ Nr
xu+1 � xu xu−1 · · · xv+1 xv xv−1

yu+1 yu · · · yv+2 yv+1 yvyv−1

Fast Multi-computations with Integer Similarity Strategy 145

Suppose the length of the above interval of Dx is k, then k = u− v + 1. We can
get xi ∼ yi+1 for (u − 1) ≥ i ≥ v, because of the property of sparse forms and
xi �∼ yi for u ≥ i ≥ v. Thus ρ can be considered into the following 4 conditions:

1. Led by deleting o and ended by inserting ι: ρ = 3k+1
2 , k = 1, 3, 5, · · ·.

2. Led by deleting ι and ended by inserting o: ρ = 3k+1
2 , k = 1, 3, 5, · · ·.

3. Led by deleting o and ended by inserting o: ρ = 3k
2 , k = 2, 4, · · ·.

4. Led by deleting ι and ended by inserting ι: ρ = 3k
2 + 1, k = 2, 4, · · ·.

ρ will be decreased by k−1
2 , k−1

2 , k
2 , and k

2 − 1 for the above 4 conditions,
respectively, because ρ = 2k in Algorithm 1. Thus ρ will never be increased either
in Dx.

For the above discussion, ρ2 ≤ ρ1. ��
According to the proof of Theorem 2, the computation cost will not be in-

creased even if in the worst case. The average performance of Algorithm 2 is
analyzed as follows. We now concern the conditional probability of xi when xi+1

is given. We know Po = 2
3 and Pι = 1

3 in sparse forms have been proved in [20].
Lemma 1 illustrates the conditional probability Pxi|xi+1 , and it can be extended
to pairs of integers, Pxiyi|xi+1yi+1 , as described in Lemma 2.

Lemma 1. Let Pxi|xi+1 be the conditional probability of xi given xi+1. Then
Po|o = Pι|o = 1

2 , Po|ι = 1, and Pι|ι = 0 in BSD sparse forms.

Proof. Since no two consecutive digits are nonzeros, Po|ι = 1 and Pι|ι = 0.
Let Po|o = p and Pι|o = 1 − p.
Po = Po · Po|o + PιPo|ι, therefore 2

3 = 2
3 · p + 1

3 · 1 → p = 1
2 .

We can get Po|o = p = 1
2 and Pι|o = 1 − p = 1

2 . ��
Lemma 2. Let Pxiyi|xi+1yi+1 be the conditional probability of xiyi given xi+1yi+1.
Then Poo|ιι = 1, Poo|oι = Pιo|oι = Poo|ιo = Poι|ιo = 1

2 , Poo|oo = Poι|oo = Pιo|oo =
Pιι|oo = 1

4 , Poι|ιι = Pιo|ιι = Pιι|ιι = Poι|oι = Pιι|oι = Pιo|ιo = Pιι|ιo = 0.

Proof. Because the digits in x and y are independent, the probability Pxiyi|xi+1yi+1

= Pxi|xi+1 × Pyi|yi+1 . Thus the proof of this Lemma is completed. ��
According to Lemma 3, the corresponding computations and their proba-

bilities of Algorithm 2 are illustrated in Table 3, where the symbols “P.S.” and
“N.S.” stand for “Present state” and “Next state”, respectively. The items “com-
putations,” “nxiyi ,” “Pxi+1xiyi+1yi ,” and “Line” denote the corresponding com-
putations, the number of additions, the probability of the computation of this
row, and the corresponding line number in Algorithm 2. In Theorem 3, we show
that the performance factor ρ2 of Algorithm 2 is 1.444. In comparison with 5
registers in Algorithm 1, Algorithm 2 needs 2 extra registers to store the value
of A ± 2B.

Lemma 3. Among the 16 possible xi+1xiyi+1yi, there are 9 nonzero Pxi+1xiyi+1yi ,
i.e. Poooo, Poooι, Poιoo, Poιoι, Pιoιo, Pooιo, Poιιo, Pιooo, and Pιooι, and all of them
are all equal to 1

9 .

146 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 3. Performance Analysis of Algorithm 2.

P.S. xi+1yi+1 xiyi N.S. computations nxiyi Pxi+1xiyi+1yi Line

Nr oo oo Nr C = 2C 1 1/9 5

Nr oo oι Dx C = 2C 1 1/9 6

Nr oo ιo Dx C = 2C ± A 2 1/9 6

Nr oo ιι Nr C = 2C ± (A ± B) 2 1/9 5

Nr ιι oo Nr C = 2C 1 1/9 5

Dx oι oo Nr C = 2(C ± B) 2 1/9 10

Dx oι ιo Dx C = 2C ± (A ± 2B) 2 1/9 9

Dx ιo oo Nr C = 2C 1 1/9 10

Dx ιo oι Dx C = 2C 1 1/9 9

Proof. The value of Pxi is Po = 2
3 and Pι = 1

3 , then the value of Pxiyi is Poo = 4
9 ,

Poι = Pιo = 2
9 , and Pιι = 1

9 .
The value of Pxi+1xiyi+1yi is equal to Pxi+1yi+1 ×Pxiyi|xi+1yi+1 . Thus, accord-

ing to Lemma 2 and the above fact, all the nonzero Pxi+1xiyi+1yi are as shown
in this Lemma, and the values are all 1

9 . ��
Theorem 3. The performance factor of Algorithm 2 is ρ2 = 1 4

9 � 1.444.

Proof. The performance factor is computed by
∑

(nxiyi × Pxi+1xiyi+1yi).
According to Table 3,
ρ2 = 1·1+1·1+1·2+1·2+1·1+1·2+1·2+1·1+1·1

9 = 13
9 � 1.444. ��

3.2 The 1S2I Method for Sparse Forms

When the deleted digit is equal to zero, it only needs one computation. Therefore
if xi = ι and yi = o, it is more suitable to delete yi instead of xi. When we
delete yi, the state is transferred into the state “Delete y,” denote by Dy. In
this subsection, we propose a method which deletes one digit of xi or yi rather
than deletes xi only. The method is called the 1s2I method. The corresponding

Table 4. The corresponding computations of the 1S2I algorithm.

State Corresponding computations

Nr C = 2C + (xiA + yiB)

Nr → Dx C = 2C

Nr → Dy C = 2C

Dx C = 2C + (xiA + yi+12B)

Dx → Nr C = 2(C + yi+1B) + (xiA + yiB)

Dy C = 2C + (xi+12A + yiB)

Dy → Nr C = 2(C + xi+1A) + (xiA + yiB)

Fast Multi-computations with Integer Similarity Strategy 147

��

��

��

��

��

��
Dy Nr Dx

� �
� �

� � �

xi = ι
yi = o

xi = o
yi = ι

xi ∼ yi xi ∼ yi

xi �∼ yi xi ∼ yi xi �∼ yi

Fig. 2. The state diagram for the 1S2I method.

computation is illustrated in Table 4 and the state diagram of the 1S2I method
is shown in Fig. 2. Thus Algorithm 2 can be modified in the 1S2I method, as
shown in Algorithm 3.

Algorithm 3. The 1S2I method for sparse forms
I/P: A, B, x = (xn−1, · · · , x1, x0)2, y = (yn−1, · · · , y1, y0)2
O/P: C = xA + yB

1: Prepare the value of A, B, A ± B, A ± 2B, 2A ± B;
2: C = O, State = Nr;
3: for i = n downto 0 do {
4: if (State = Nr) {
5: if (xi ∼ yi) then C = 2C + (xiA + yiB);
6: else if (xi = o and yi = ι) then State = Dx, C = 2C;
7: else State = Dy, C = 2C;
8: }
9: else if (State = Dx) {
10: if (xi �∼ yi) then C = 2C + (xiA + yi+12B);
11: else State = Nr, C = 2(C + yi+1B) + (xiA + yiB);
12: }
13: else {
14: if (xi �∼ yi) then C = 2C + (xi+12A + yiB);
15: else State = Nr, C = 2(C + xi+1A) + (xiA + yiB);
16: }
17: }

The performance analysis of Algorithm 3 is similar to Algorithm 2. In order
to get the performance analysis table like Table 3, we compute the probability
of all the state beforehand. We first find that the deleted digit is always zero and
the corresponding digit is always nonzero. Therefore, the state Dx is separated
into Dx′ (xi = o and yi = ι) and Dx′′ (xi = ι and yi = o); the state Dy is
separated into Dy′ (xi = ι and yi = o) and Dy′′ (xi = o and yi = ι). Then
according to Lemma 1 and Lemma 2, the probability of the state diagram is

148 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

��

��

��

��

��

��

��

��

��

��

D′
y Nr D′

x

D′′
y D′′

x

� �
� �

�

� �

� �

�
�

�
�

�
��

�
�

�
�

�
�	1

5
1
5

3
5

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Fig. 3. The detail state probability of Algorithm 3.

illustrated as Fig. 3. The probability of state Nr, Dx′, Dx′′, Dy′, and Dy′′ are
illustrated in Lemma 4. Thus the performance analysis is illustrated in Table 5.
In Theorem 4, the performance factor ρ3 is proved to be 1.407. In comparison
with 5 registers in Algorithm 1, Algorithm 3 needs 4 extra registers to store the
value of A ± 2B and 2A ± B.

Lemma 4. Suppose p0, p′1, p′′1 , p′2, and p′′2 denote the probabilities of state Nr,
Dx′, Dx′′, Dy′, and Dy′′, respectively. Then p0 = 5

9 , p′1 = 4
27 , p′′1 = 2

27 , p′2 = 4
27 ,

and p′′2 = 2
27

Proof. Consider the probability in Fig. 2, we can get
p′′2 = 1

2p′2 → p′2 = 2p′′2 ,
p′2 = 1

5p0 + 1
2p′′2 → p0 = 15

2 p′′2 ,
p′′1 = 1

2p′1 → p′1 = 2p′′1 ,
p′1 = 1

5p0 + 1
2p′′1 → p0 = 15

2 p′′1 ,
Suppose p′′2 = p′′1 = a, and p′2 = p′1 = 2a, p0 = 15

2 a,
We can get (1 + 1 + 2 + 2 + 15

2)a = 1 → a = 2
27 ,

Therefore p0 = 5
9 , p′1 = 4

27 , p′′1 = 2
27 , p′2 = 4

27 , and p′′2 = 2
27 . ��

Theorem 4. The performance factor of Algorithm 3 is ρ3 = 1 11
27 � 1.407.

Proof. The performance factor is computed by
∑

(nxiyi × Pxi+1xiyi+1yi).
According to Table 5,
ρ3 = 1·1+1·1+1·1+1·2+1·1

9 + 2·2+2·2+1·1+1·1+2·2+2·2+1·1+1·1
27 = 38

27 � 1.407. ��

4 Comparison and Discussion

The performance of multi-computations can be improved by integer similarity
strategy. Consider the 1S1I and 1S2I methods with sparse forms, ρ1 = 1.556
is improved to ρ2 = 1.444 and ρ3 = 1.407. The performance of the proposed
algorithm seems to be further improve by combining with recoding methods.

Fast Multi-computations with Integer Similarity Strategy 149

Table 5. Performance analysis of Algorithm 3.

P.S. xi+1yi+1 xiyi N.S. computations nxiyi Pxi+1xiyi+1yi Line

Nr oo oo Nr C = 2C 1 1/9 5

Nr oo oι Dx C = 2C 1 1/9 6

Nr oo ιo Dx C = 2C 1 1/9 7

Nr oo ιι Nr C = 2C ± (A ± B) 2 1/9 5

Nr ιι oo Nr C = 2C 1 1/9 5

Dx oι oo Nr C = 2(C ± B) 2 2/27 11

Dx oι ιo Dx C = 2C ± (A ± 2B) 2 2/27 10

Dx ιo oo Nr C = 2C 1 1/27 11

Dx ιo oι Dx C = 2C 1 1/27 10

Dy oι oo Nr C = 2C 1 1/27 15

Dy oι ιo Dy C = 2C 1 1/27 14

Dy ιo oo Nr C = 2(C ± A) 2 2/27 15

Dy ιo oι Dy C = 2C ± (2A ± B) 2 2/27 14

Thus, using recoding methods in Algorithm 2 and Algorithm 3 is an interesting
approach. As described in proof of Theorem 2, the computation in Dx can be
divided into 4 conditions, and the performance factor can be increased in each
condition. Thus our proposed methods will also improve the performance when
combined with recoding methods. Unfortunately, the performance is poorer than
directly using sparse forms. The reason is that zeros (or nonzeros) have been
aligned between x and y in recoding methods. If we try to apply our method
to the recoded BSD representations, the ratio of the improvement is less than
the ratio that we apply the method on sparse forms. In our simulation (10000
pairs of 1024-bit integers generated by java.security.SecureRandom object in
Java 2 platform), the performance factor is shown in Table 6. Thus the proposed
strategy is suitable for spars forms especially. We illustrate improvement of the
1S1I method of the by given instance in Example 1. Furthermore, the proposed
strategy seems to be similar to the width-w nonadjacent form (w-NAF) encoding
method [6, 17]. In order to achieve the unique w-NAF, the digits in w-NAF
should be zero or odds. If the digits is in {−2,−1, 0, 1, 2}, the effect is very
near to the proposed integer similarity strategy, but the integer will be many
representations. It does not exist an exact method to find a good “w-NAF(-2,-
1,0,1,2)” for multi-computations. Based on the proposed strategy, Algorithm 2
and Algorithm 3 exactly define the rules of deleting or inserting digits. However,
the w-NAF encoding is a very interesting research topic in multi-computations.

Example 1. Let x = (101̄01̄0101010101̄0)2 and y = (010101̄01̄01̄0101̄00)2. The
performance factor of the combination with recoding methods and the 1s1I
method is shown as follows. In this example, we first find that ρ1 = 1.938 is
improved to ρ′1 = ρ′′1 = 1.563 by using the DJM method and JSF, respectively.
Second, we find that ρ1 = 1.938 is improved to ρ2 = 1.500 by using the 1S1I
method. Finally, ρ2 can not be improved by using the DJM method and JSF.

150 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

Table 6. The comparison of some algorithms.

Performance Factor Original with 1S1I with 1S2I

Sparse Forms 1.556 1.444 1.407

recode by DJM 1.534 1.453 1.414

recode to JSF 1.500 1.469 1.438

Sparse forms 1 0 1̄ 0 1̄ 0 1 0 1 0 1 0 1̄ 0 1̄ 0
0 1 0 1 0 1̄ 0 1̄ 0 1̄ 0 1 0 1̄ 0 0 ρ1 = 1.938

with 1S1I � 1 0 1̄ 0 1̄ 0 1 0 1 0 1 0 1̄ 0 1̄ 0
0 1 0 1 0 1̄ 0 1̄ 0 1̄ 0 1 0 1̄ 00 ρ2 = 1.500

recode by DJM 0 1̄ 1̄ 0 1̄ 0 1 0 1 0 0 1 0 1 1 0
0 1 0 0 1 0 1 0 1 1 0 1 0 1̄ 0 0 ρ′1 = 1.563

with 1S1I 0 1̄ � 1̄ 0 1̄ 0 1 0 1 � 0 0 1 0 1 � 1 0
0 1 00 1 0 1 0 1 10 1 0 1̄ 00 ρ′2 = 1.563

recode to JSF 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0
0 1 0 1 0 0 1 0 1 1 0 1 0 1̄ 0 0 ρ′′1 = 1.563

with 1S1I 0 1 0 1 � 1 0 1 0 1 � 0 0 1 0 1 � 1 0
0 1 0 1 00 1 0 1 10 1 0 1̄ 00 ρ′′2 = 1.563

Besides, our proposed strategy can also be applied to multiexponentiation
with binary representations. With regard to state Dx, the corresponding digits
are (xi, yi+1), xi �= yi+1 is suitable to insert yi. But the value of (c × byi+1)β ×
axibyi must be computed by inserting yi. The computation needs 1 square and
2 multiplications. Therefore, the condition, xi = yi and yi �= yi+1 (denoted by
xi = yi �= yi+1) is more suitable. Since the number of multiplication can be
reduced by 1. The conditions of deletion and insertion for binary representations
are shown in Fig. 4. Apply the strategy to the binary method (the square-
and-multiply method), the modified algorithm is shown in Algorithm 4. The
performance factor can be reduced from 1.75 to 1.667 and only increase one
extra register to store ab2.

��

��

��

��
Nr Dx

�

�

xi �= yi
xi = yi

�

�

xi = yi �= yi+1
xi = yi+1 or

yi = yi+1 �= xi

Fig. 4. The state diagram for binary representations.

Fast Multi-computations with Integer Similarity Strategy 151

Algorithm 4 Apply the integer similarity strategy to binary methods
I/P: a, b, x = (xn−1 · · ·x1x0)2, y = (yn−1 · · · y1y0)2
O/P: c = axby

1: Precompute and store the values of a, b, ab, and ab2.
2: c = 1, state = Nr;
3: for i = n − 1 downto 0 do {
4: if (state = Nr) {
5: if (xi �= yi) then state = Dx, c = c2 × axi ;
6: else c = c2 × (axibyi);
7: }
8: else {
9: if (xi �= yi+1) then {
10: if (xi = yi) then state = Nr, c = (c × byi+1)2 × (axibyi);
11: else c = (c × byi+1)2 × axi ;
12: }
13: else c = c2 × (axib2yi);
14: }
15: }

5 Conclusion

In this article, we propose a totally new strategy, the integer similarity strat-
egy, for multi-computations. In order to match zeros and nonzeros in multi-
computation, the proposed strategy modifies the computing sequences by delet-
ing and inserting some digits. According to the strategy, we propose two efficient
algorithms, named the 1S1I and 1S2I method for multi-scalar multiplications
with BSD sparse forms. The performance factor is improved from 1.556 to 1.444
and to 1.407, respectively. The memory space only required 2 and 4 extra regis-
ters, respectively. Thus the proposed algorithms is suitable for memory limited
environments.

Our proposed algorithms can also be combined with recoding methods, in-
cluding the DJM method and joint sparse forms. However, this way turns out to
be far from desirable. Besides, the proposed strategy can be still used in binary
representations. In binary methods for multiexponentiation, the performance
factor can be improved form 1.75 to 1.667 with only one extra register.

Based on the integer similarity strategy, all the proposed methods are all
single stage in this article, that is one insertion must appear after one deletion.
In general case, the deletion and insertion should be appeared without any lim-
itations. The multi-stage version of the proposed strategy is an interesting work
in the future.

152 Wu-Chuan Yang, Dah-Jyh Guan, and Chi-Sung Laih

References

1. S. Arno and F. S. Wheeler. Signed digit representations of minimal hamming
weight. IEEE Trans. Computers, 42(8):1007–1010, 1993.

2. R. M. Avanzi. On multi-exponentiation in cryptography. IACR Cryptology ePrint
Archive 2002/154, http://eprint.iacr.org, 2002.

3. D. J. Bernstein. Pippenger’s exponentiation algorithm.
http://cr.yp.to/antiforgery.html, 2002.

4. E. F. Brickelland, D. M. Gordon, K. S. McCurley, and D. Wilson. Fast exponentia-
tion with precomputation. Advances in Cryptology-EUROCRYPT’92, LNCS 658,
Springer-Verlag, pages 200–207, 1992.

5. Ç. K. Koç. High-speed RSA implementations. RSA Laboratories, Technique Notes
TR201, http://www.rsasecurity.com/rsalabs, pages 9–32, Nov. 1994.

6. H. Cohen, A. Miyagi, and T. Ono. Efficient elliptic curve exponentiation us-
ing mixed coordinates. Advances in Cryptology-AISACRYPT’98, LNCS 1514,
Springer-Verlag, pages 51–65, 1998.

7. V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Complexity and fast algorithms
for multiexponentiation. IEEE Trans. Computers, 49(2):141–147, Feb. 2000.

8. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory, 31(4):469–472, Jul. 1985.

9. FIPS186-2. Digital signature standard(DSS). NIST Computer Security FIPS page,
http://csrc.nist.gov/publications/fips/, 2001.

10. D. M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27:129–146, 1998.

11. J. Jedwab and C. J. Mitchell. Minimum weight modified signed-digit representa-
tions and fast exponentiation. Electronics Letters, 25(17):1171–1172, 1989.

12. M. Joye and S. M. Yen. Optimal left-to-right binary signed-digit recoding. IEEE
Trans. Computers, 49(7):740–748, 2000.

13. D. E. Knuth. The Art of Computer Programming, Seminumerical Algorithms,
volume 2. Addison-Wesley, 3rd edition, 1998.

14. C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation.
Advances in Cryptology-CRYPTO’94, LNCS 839, Springer-Verlag, pages 95–107,
1994.

15. B. Möller. Algorithms for multi-exponentiations. 8th Annual Workshop on Selected
Areas in Cryptography -SAC 2001, LNCS 2259, Springer-Verlag, pages 165–180,
2001.

16. P. K. Mishra. Scalar multiplication in elliptic curve cryptosystems: Pipelining with
pre-computations.
IACR Cryptology ePrint Archive 2004/191, http://eprint.iacr.org, 2004.

17. J. Muir and D. Stinson. Minimality and other properties of the width-w nonadja-
cent form. Technique Report CORR 2004-08, http://www.cacr.math.uwaterloo.ca,
2004.

18. K. Okeya and K. Sakurai. Fast multi-scalar multiplication methods on elliptic
curves with precomputation using montgomery trick. 4th International Workshop
on Cryptographic Hardware and Embedded Systems - CHES 2002, LNCS 2523,
Springer-Verlag, pages 564–578, 2003.

19. K. Okeya, K. Schmidt-Samoa, C. Spahn, and T. Takagi. Signed binary representa-
tions revisited. IACR Cryptology ePrint Archive 2004/195, http://eprint.iacr.org,
2004.

20. G. W. Reitwiesner. Binary arithmetic. Advance in computers, pages 231–308, 1960.

Fast Multi-computations with Integer Similarity Strategy 153

21. C. P. Schnorr. Efficient identification and signatures for smart cards. Advances in
Cryptology-CRYPTO’89, LNCS 435, Springer-Verlag, pages 239–252, 1989.

22. J. A. Solinas. Low-weight binary representations for pairs of integers. Technique
Report CORR 2001-41, http://www.cacr.math.uwaterloo.ca, 2001.

23. S. M. Yen, C. S. Laih, and A. K. Lenstra. Multiexponentiation. IEE Proc., Com-
puters and Digital Techniques, 141(6):325–326, 1994.

	1 Introduction
	2 Preliminaries of Multi-computations
	2.1 The Basic BSD Method for Multi-scalar Multiplications
	2.2 The Recoding Methods for BSD Representations

	3 The Integer Similarity Strategy
	3.1 The 1S1I Method for Sparse Forms
	3.2 The 1S2I Method for Sparse Forms

	4 Comparison and Discussion
	5 Conclusion
	References

