
Efficient Proofs of Knowledge
of Discrete Logarithms and Representations

in Groups with Hidden Order

Endre Bangerter1, Jan Camenisch1, and Ueli Maurer2

1 IBM Research, Zurich Research Lab, CH-8803 Rueschlikon, Switzerland
{eba,jca}@zurich.ibm.com

2 Departement of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
maurer@inf.ethz.ch

Abstract. For many one-way homomorphisms used in cryptography,
there exist efficient zero-knowledge proofs of knowledge of a preimage.
Examples of such homomorphisms are the ones underlying the Schnorr
or the Guillou-Quisquater identification protocols.
In this paper we present, for the first time, efficient zero-knowledge proofs
of knowledge for exponentiation ψ(x1)

.
= hx1

1 and multi-exponentiation
homomorphisms ψ(x1, . . . , xl)

.
= hx1

1 · . . . · hxl
l with h1, . . . , hl ∈ H (i.e.,

proofs of knowledge of discrete logarithms and representations) where H
is a group of hidden order, e.g., an RSA group.

1 Introduction

Consider mappings ψ : G → H , where the domain is the group (G,+) and
the co-domain is (H, ·). A mapping ψ is called a homomorphism if ψ(g + g′) =
ψ(g) · ψ(g′) for all g and g′ from G. A proof of knowledge of a preimage under
a homomorphism is a two-party protocol between a prover and a verifier. The
parties’ common input is a homomorphism ψ and an element y ∈ H . As a result
of the protocol the verifier either accepts or rejects. Informally speaking, a proof
of knowledge has the property that if a prover succeeds in making the verifier
accept with a probability larger than some threshold probability (the knowledge
error), then the prover must “know” a preimage x of y, i.e., an element x ∈ G
such that y = ψ(x). That is, there exists an algorithm (the knowledge extractor)
for the protocol that can compute a preimage x of y given rewinding oracle
access to such a prover.

For all (computable) homomorphisms there exists a proof of knowledge: the
well known commitment-challenge-response protocol, often called Σ-protocol
[17, 18], with binary challenges. Due to the binary challenges, the protocol has
a knowledge error of 1/2 and therefore it needs to be repeated sequentially suf-
ficiently many times to achieve a reasonably small knowledge error (i.e., a small
success probability for a cheating prover). However, some homomorphisms al-
low one to use the Σ-protocol with larger challenges, which results in a smaller
knowledge error. Thus, the protocol needs to be repeated only a few times or

S. Vaudenay (Ed.): PKC 2005, LNCS 3386, pp. 154–171, 2005.
c© International Association for Cryptologic Research 2005

Efficient Proofs of Knowledge of Discrete Logarithms 155

just once, which is an order of magnitude more efficient. Examples of homomor-
phisms for which this is known to be possible are for instance those underlying
the Schnorr and the Guillou-Quisquater identification schemes [32, 27]. In fact,
Cramer [17] remarks that all the homomorphisms for which this is the case al-
low one to compute some information (e.g., the order of the group) from their
description that enables the knowledge extractor, together with the information
extracted from a convincing prover, to compute a preimage. Cramer calls such
homomorphisms special.

Unfortunately, many homomorphisms widely used in cryptographic proto-
cols are not known to be special and hence the most efficient proofs of knowl-
edge known for them is the Σ-protocol with binary challenges. Prominent ex-
amples of such homomorphisms are exponentiations ψ(x1)

.= hx1
1 and multi-

exponentiations ψ(x1, . . . , xl)
.= hx1

1 · . . . · hxl

l with h1, . . . , hl ∈ H in hidden
order groups H , e.g., where H is a class group [7, 22] or an RSA group. Such
homomorphisms are for instance the basis of recent group signature and iden-
tity escrow schemes, credential systems, and fair exchange protocols [2, 1, 8–10,
28, 5, 25, 11]. In fact in these schemes, the authors often employ the Σ-protocol
with non-binary challenges, sometimes wrongly relying on them to be proofs of
knowledge in this setting as well.

Related Work. Girault [26] suggests an efficient proof of knowledge for discrete
logarithms in the RSA group based on the Σ-protocol. His approach is to publish
the order of the sub-group in which the images lies. This requires, on the one
hand, that the RSA modulus has a special form and, on the other hand, the
non-standard assumption that giving away the order of the sub-group does not
allow one to factor the RSA modulus. Also, one can no longer make use of the
RSA-trapdoor for this subgroup with this approach.

Poupard and Stern [30] describe an identification scheme based on the Σ-
protocol, where the private key is a discrete logarithm of a generator of a sub-
group of the RSA group. They show that from an adversary that breaks the
identification scheme, a discrete logarithm can be extracted. While their con-
struction is appropriate to prove the security of their identification scheme, their
protocol is not a proof of knowledge of a discrete logarithm in the RSA group.

The most relevant work in the field is that by Damg̊ard and Fujisaki [21]
(based on work by Fujisaki and Okamoto [24]). They show that the Σ-protocol
can be used in certain cases to demonstrate knowledge of a discrete logarithm
(or representation) in hidden order groups provided that the prover is not given
the group’s order. Let us refer in the following to the Damg̊ard and Fujisaki
scheme as the DF scheme. As pointed out and explained in detail by its au-
thors [21], the DF scheme is not a (computational) proof of knowledge accord-
ing to the standard definition [4]. Rather, it only works in a stronger definitional
setting resulting in “weak proofs of knowledge”. Technically, the DF scheme
demonstrates knowledge only over a suitable probability distribution of (multi-)
exponentiations. This distribution is enforced in a setup phase prior to the proof
protocol. While for some applications this is appropriate, it often leads to com-
plicated and error-prone proofs of security as one can no longer consider each

156 Endre Bangerter, Jan Camenisch, and Ueli Maurer

proof protocol separately (as one could with standard proofs of knowledge) but
has to analyze all of them in conjunction with each other. In fact, many authors
seem not to be aware of this fact and correspondingly the security analysis of
their applications using the DF scheme are incomplete or false.

Our Results. In this paper we provide two independent, new methods to obtain,
for the first time, efficient zero-knowledge proofs of knowledge for (multi-) ex-
ponentiations in hidden order groups H , where the order H is not known to at
least the verifier.

Our first method is based on the Σ-protocol. It relies on the new idea to pro-
vide auxiliary information to the verifier (and thus to the knowledge extractor)
to obtain proofs of knowledge for homomorphisms for which the Σ-protocol is
not known to work otherwise. The method applies to (multi-) exponentiation
homomorphisms in hidden order groups H , provided that the prover (but not
the verifier) knows the orderH . The method relies on the hardness of a new com-
putational problem, which we call the pseudo-preimage problem. We prove the
pseudo-preimage problem to be hard under standard assumptions, e.g., the RSA
assumption. This result is of potential independent interest for the construction
of new cryptographic schemes.

Our second method is based on a new protocol, which we call the Σ+-
protocol. The Σ+-protocol yields efficient proofs of knowledge for any (multi-)
exponentiation homomorphism in groups H with hidden order. The efficiency
of the proof depends on the smallest factor of the order of the homomorphism’s
image. Thus, we obtain for instance efficient proofs for discrete logarithm-based
homomorphisms in RSA groups whose modulus is a product of two safe primes.
Technically, we apply the ideas underlying the DF scheme and extend them to
obtain standard proofs of knowledge. As a consequence one can always use our
protocol instead of the DF scheme to obtain standard proofs of knowledge. Yet,
compared to the DF scheme, our protocol is applicable to a wider number of
settings and is also more efficient in certain application scenarios.

A Remark on the Presentation. We formulate all our new results for multi-
exponentiation ψM : Z

l → H in hidden order groups H , i.e., mappings
ψM (x1, . . . , xl)

.= hx1
1 · . . . · hxl

l with h1, . . . , hl ∈ H . We would like to emphasize
that the results (trivially) specialize to the practically relevant cases such as
when H is an RSA group or a class group and also to simple exponentiations
ψM (x) = hx. We recall that what we call a proof of knowledge for a multi-
exponentiation homomorphism is often referred to as a proof of knowledge of a
representation.

Outline. The remainder of this paper is structured as follows: In § 2 we introduce
the basic concepts and the notation we use. In § 3 we introduce the notion of a
pseudo-preimage and the related pseudo-preimage problem, which we prove to
be hard under standard assumptions. In § 4 we review the Σ-protocol and its
properties and then making use of the hardness of the pseudo-preimage problem
we discuss the first of our new methods, i.e., the one based on the Σ-protocol
where the verifier is given auxiliary information. In § 5 we discuss our second
method which is based on the Σ+-protocol.

Efficient Proofs of Knowledge of Discrete Logarithms 157

2 Preliminaries

LetM be an algorithm. By y ←M(x), we denote that y was obtained by running
M on input x. If M is deterministic, then this y is unique; if M is probabilistic,
then y is a random variable.

By k we denote an integer security parameter. A negligible function is a
function that, asymptotically in k, is smaller than one divided by any polynomial
in k.

We call a computational problem hard if there is a probability ensemble D(k)
on problem instances such that for any probabilistic polynomial-time algorithm,
the probability of solving the problem over choices according to D(k) is negligi-
ble. If there is a probabilistic polynomial-time algorithm that is successful over
choices D(k) with probability 1 − ν(k), where ν(k) is a negligible function, we
call the problem easy.

Let (G,+) and (H, ·) be abelian groups, with their identity elements de-
noted 0 and 1, respectively. By |H | we denote the order of the group H , and
by |h| the order of the element h ∈ H . We say that a group H has hidden
order if there is a description of H such that it is hard to compute a non-
zero multiple of |H |. A (group) homomorphism ψ is a mapping ψ : G → H
such that ψ(g1 + g2) = ψ(g1) · ψ(g2) for all g1, g2 ∈ G. We recall that the im-
age of a homomorphism, denoted image(ψ), is a subgroup of its co-domain H .
In the following we assume that H is a finite group. Throughout the paper
ψM stands for a multi-exponentiation homomorphism ψM : Z

l → H , where
ψM (x1, . . . , xl) = hx1

1 ·. . .·hxl

l and h1, . . . , hl ∈ H . We always assume that groups
and homomorphisms are computationally tractable. That is, there shall be de-
scriptions of groups and homomorphisms such that in (probabilistic) polynomial-
time one can evaluate the group operation, invert group elements, test member-
ship in the group, uniformly choose an element from the group (for finite groups),
and evaluate a homomorphism.

By a collection of homomorphisms Ψ we refer to a (finite or infinite) set
of homomorphisms together with a probability ensemble DΨ (k) on Ψ . We as-
sume that there is a probabilistic polynomial-time algorithm that allows one to
chose homomorphisms ψ according to DΨ (k). Also, we consider sequences of sets
Ψ(k) .= {ψ : ψ ∈ Ψ, ψ : G→ H, and �log(|H |)� = k}. The notion of a collection
of homomorphisms Ψ comprises as special cases sequences of homomorphisms,
where Ψ is an infinite set of homomorphisms indexed by the security parameter,
and single homomorphisms, i.e., Ψ = {ψ}.

Given a binary relation R, we denote the corresponding language by LR.
Homomorphism collections give rise to what we call a homomorphism relation

R[Ψ] .= {((ψ, y), x) : ψ ∈ Ψ, ψ : G→ H,x ∈ G, y .= ψ(x)} or

R[Ψ(k)] .= {((ψ, y), x) : ψ :∈ Ψ(k), ψ : G→ H,x ∈ G, y .= ψ(x)} .
Our results on (computational) proofs of knowledge are formulated with respect
to the corresponding definitions put forth by Bellare and Goldreich [4].

158 Endre Bangerter, Jan Camenisch, and Ueli Maurer

3 The Pseudo-preimage Problem

In this section we introduce the notion of a pseudo-preimage of a homomor-
phism and a related computational problem termed the pseudo-preimage prob-
lem. While the pseudo-preimage problem has not been explicitly considered in
existing work, it is implicit in the construction of all known knowledge extractors
for the Σ-protocol. In fact, these constructions crucially rely on the existence of
easy instances of the pseudo-preimage problem. In the following we prove that
for a large class of multi-exponentiation homomorphisms the pseudo-preimage
problem is hard.

Definition 1 (Pseudo-preimage). Consider a homomorphism ψ : G → H
and y ∈ H. A pseudo-preimage of y under ψ is a pair (v, w) such that yv = ψ(w),
where v is a non-zero integer and w ∈ G . We refer to v as the exponent of the
pseudo-preimage (v, w).

Note that when ψ is not surjective, then there are pseudo-preimages (v, w)
of y ∈ H under ψ even for elements y /∈ image(ψ).

Definition 2 (Pseudo-preimage Problem). The pseudo-preimage (PP)
problem for a homomorphism ψ is to compute a preimage x of y under ψ given
a pseudo-preimage (v, w) of y under ψ, with y ∈ image(ψ).

For homomorphisms that are easy to invert, the PP problem trivially is easy.
More interestingly, the PP problem is also easy for certain one-way homomor-
phisms. In fact, as we will see in § 4.1, the existence of easy instances of the PP
problem for one-way homomorphisms is key for the construction of knowledge
extractors for the Σ-protocol. Examples of such one-way homomorphisms are
the ones underlying the Schnorr and the Guillou-Quisquater schemes.

In the following we show that the PP problem is hard for multi-exponentia-
tions in groups for which the ROOT problem, i.e., computing roots, is hard. Let
us introduce concepts and notation used for the formulation of this result. We
recall the ROOT problem for an arbitrary abelian group H . It is to compute a
h ∈ H such that he = u given an integer e > 1 and a group element u ∈ H . Next,
we define generators DR and DP for the ROOT and PP problem, respectively.
Let H be an arbitrary multiplicative abelian group and let l be an arbitrary
integer parameter. The generator DR(H) works as follows: 1) Choose u ∈U H
and an integer e > 1 such that gcd(|H |, e) = 1, whereas the distribution of e
may be arbitrary. 2) Output the ROOT problem instance (u, e).

In the definition of the generator for the PP problem we use as a subroutine
a probabilistic polynomial-time algorithm D̃(H, l) with the following properties.
The algorithm D̃(H, l) outputs tuples (v, (w1, . . . , wl), (e1, . . . , el)), where v is
an integer and (w1, . . . , wl) and (e1, . . . , el) are elements of Z

l, such that v �

(e1w1 + . . . + elwl) and gcd(|H |, v) = 1. Apart from this, the tuples may be
distributed arbitrarily. Note that the latter condition can be fulfilled by D̃(H, l)
without being given |H |. It suffices if one can compute a λ+ ≥ |H | from the
description of H . Then one can, for instance, choose a v as a prime ≥ λ+.

Efficient Proofs of Knowledge of Discrete Logarithms 159

Now, the generator DP(H, |H |, l) is as follows: 1) Choose (v, (w1, . . . , wl),
(e1, . . . , el)) ← D̃(H, l) and an element h ∈U H . 2) Set h1

.= he1 , . . . , hl
.= hel

and define the homomorphism ψM : Z
l → H by ψM (x1, . . . , xl)

.= hx1
1 · . . . · hxl

l .
3) Set (z1, . . . , zl)

.= (w1v
−1 (mod |H |), . . . , wlv

−1 (mod |H |)) and let
y
.= ψM (z1, . . . , zl) = hz1

1 · . . . · zzl

l . (Note that by construction (v, (w1, . . . , wl))
is a pseudo-preimage of y under ψM .) 4) Output the PP problem instance
((v, (w1, . . . , wl)), y, ψM).

Let be given computational problems P1 and P2 and the respective generators
D1 and D2. We say P2 is reducible to P1, if given a probabilistic polynomial-time
solver M with non-negligible success probability for P1 over choices of D1, one
can construct a probabilistic polynomial-time solver given black box access to M
that has non-negligible success probability for P2 over choices of D2. We denote
this by P1[D1] ≥ P2[D2].

Theorem 1. For the generators DR(H) and DP(H, |H |, l) (as defined above)
we have PP[DP(H, |H |, l)] ≥ ROOT[DR(H)].

Proof. Let M denote a probabilistic polynomial-time solver of the PP problem
that is successful with non-negligible probability over choices of DP .

Given an instance of the ROOT problem (u, e) ← DR(H) we construct an
instance of the PP problem as follows. Choose (v′, (w′

1, . . . , w
′
l), (e

′
1, . . . , e

′
l)) ←

D̃(H, l). Then we set h′ .= uv, h′1
.= h′e1 , . . . , h′l

.= h′e
′
l and define the ho-

momorphism ψ′
M : Z

l → H by ψ′
M (x1, . . . , xl)

.= h′1
x1 · . . . · h′lxl . We set

y′ .= u(e′
1w′

1+...+e′
lw

′
l). It is easy to see that we have constructed an instance

(v′, (w′
1, . . . , w

′
l), y

′, ψ′
M) of the PP problem.

Now, we invoke M on input (v′, (w′
1, . . . , w

′
l), y

′, ψ′
M) and let us assume that

M outputs a preimage (z1, . . . , zl) of y′ under ψ′
M . Thus we have y′v

′
= (h′z1

1 ·
. . . · h′zl

l)v′
= h′(e

′
1z1+...+e′

lzl)v
′

and y′v
′

= h′1
w′

1 · . . . · h′lw
′
l = h′(e

′
1w′

1+...+e′
lw

′
l).

Using λ .= (e′1w
′
1 + . . .+ e′lw

′
l)− (e′1z1 + e′2z2 + . . .+ e′lzl)v we have h′λ = 1. By

assumption v � (e′1w′
1 + . . .+e′lw

′
l) and thus λ �= 0, i.e., λ is a non-zero multiple of

the order of h′. As h′ and u have the same order, λ is also a multiple of the order
of u. This allows us to compute the e-th root of u as follows. We note that λ is
not necessarily co-prime to e. However, we have by assumption gcd(e, |H |) = 1.
Thus we can easily find a multiple λ′ of |u| that is co-prime to e, if we set λ′ .= λ
and compute λ′ .= λ′/ gcd(e, λ′) until gcd(e, λ′) = 1. Finally we compute 1/e
modulo λ′ to obtain u1/e.

It remains to show that the distribution of instances (v′, (w′
1, . . . , w

′
l), y

′, ψ′
M)

of the PP problem constructed above is equal to the distribution of instances gen-
erated by DP(H, |H |, l). From yv = ψM (w1, . . . , wl) and gcd(v, |H |) = 1 we have
that the image element y is uniquely determined by ψM and (v, (w1, . . . , wl))
and the same is true for ((v′, (w′

1, . . . , w
′
l), y

′, ψ′
M). Hence, it suffices to show

that the distribution of v′, (w′
1, . . . , w

′
l), and ψ′

M is indistinguishable from the
distribution of the corresponding quantities chosen by DP(H, |H |, l). By con-
struction the distribution of tuples (v′, (w′

1, . . . , w
′
l), (e

′
1, . . . , e

′
l)) chosen above is

the same as the one of those output by DP(H, |H |, l). It remains to see that ψ′
M

and ψM have the same distribution. To this end, note that h′ = uv, where u

160 Endre Bangerter, Jan Camenisch, and Ueli Maurer

is a uniform random element of H . From gcd(v, |H |) = 1 it follows that h′ is
uniformly distributed in H , and thus has the same distribution as the element
h chosen by the generator DP(H, |H |, l). The claim now follows immediately, as
the homomorphism ψ′

M is constructed from h′ in the same way as is ψM from h
by the generator DP(H, |H |, l). �	

Theorem 1 implies that the PP problem is hard for multi-exponentiations
in groups for which the ROOT problem is hard. This is widely assumed to
be the case for RSA groups [31] and class groups [7]. Moreover, Damg̊ard and
Koprowski [22] have shown that if a group has hidden order and if the order of
that group contains a large prime factor, then the ROOT problem is hard for
generic algorithms.

Corollary 1. There is a probabilistic polynomial-time algorithm M such that
the probability distributions ((v, (w1, . . . , wl)), y, ψM) ← DP(H, |H |, l) and
((v, (w1, . . . , wl)), y, ψM)←M(H, l) are equal.

Corollary 1 follows from the proof of Theorem 1. It implies that instances of
the PP problem as output by DP(H, |H |, l)) do not reveal any computational
information on the order of H .

4 Efficient Proofs of Knowledge
Using Auxiliary Pseudo-preimages

This section presents a new technique that uses the hardness of the pseudo-
preimage problem to yield proofs of knowledge for multi-exponentiations ψM

in groups for which the ROOT problem is hard (e.g., RSA groups and class
groups). The proofs are based on the Σ-protocol. The technique requires that
the honest prover is given the order of H , while it ensures that the verifier does
not learn the order of H . The resulting proofs are efficient, they achieve in fact
an arbitrarily small knowledge error in a single execution of the Σ-protocol.

4.1 Preliminaries: The Σ-Protocol and Its Properties

In this section we review known properties of the Σ-protocol. For a detailed
discussion we refer to Cramer [17] and Damg̊ard [20].

Definition 3 (Σ-Protocol). Let Ψ be a collection of homomorphisms with a
finite domain and let ((ψ, y), x) ∈ R[Ψ(k)]. Let (P, V) be a pair of interactive
machines with common input (ψ, y), the private input of P being x. A Σ-protocol
with challenge set C .={0, . . . , c+(k)} is (P, V) performing the following joint com-
putation.

1. P : Choose r ∈U G, compute t .= ψ(r), and send t to V .
2. V : Choose c ∈U C and send c to P .
3. P : Set s .= r + cx and send s to V .
4. V : If ψ(s) = tyc output 1; otherwise output 0.

Efficient Proofs of Knowledge of Discrete Logarithms 161

The Σ-protocol is honest-verifier zero-knowledge but not known to be zero-
knowledge unless the cardinality of C is polynomially bounded in k. In case
one requires real zero-knowledge or the even stronger notion of concurrent zero-
knowledge, one can apply one of numerous constructions, e.g., [19, 23, 15]. Most
notably, the technique by Damg̊ard [19] achieves concurrent zero-knowledge at
almost no computational and communicational overhead. In Definition 3, the Σ-
protocol is only defined for homomorphisms with a finite domain. However, there
is a standard variant of the Σ-protocol that is defined for multi-exponentiations
ψM : Z

l → H (which have an infinite domain). That variant of the protocol is
statistical zero-knowledge instead of perfect zero-knowledge; apart from this, the
above comments and results stated in the following are valid for both variants
of the Σ-protocol.

We call Ψ a (collection of) special homomorphisms, if there is a probabilistic
polynomial-time algorithmM that on input any (ψ, y) ∈ LR[Ψ] outputs a pseudo-
preimage (v, w) of y under ψ. The algorithm M is called a pseudo-preimage
finder (for Ψ). An example of a special homomorphism is the one used in the
Schnorr protocol, i.e., the mapping ψ : Zq → Z

∗
p defined by ψ(x) .= hx with

q | (p − 1) and |h| = q. From the description of this mapping, the pseudo-
preimage finder can derive (q, 0). Now yq = 1 = ψ(0) for all y ∈ image(ψ)
and therefore the pair (q, 0) is a pseudo-preimage of y under ψ. More generally,
homomorphisms ψ : G → H for which a multiple of the order image(ψ) can be
efficiently computed from the description of ψ are easily seen to be special. An
example of a special homomorphism with hidden order co-domain is the mapping
ψ : Z

∗
n → Z

∗
n given by ψ(x) .= xe, where e is an integer, which is used in the

Guillou and Quisquater [27] scheme. For such mappings we have ye = ψ(y) and
hence (y, e) is a pseudo-preimage of y under ψ.

To simplify the subsequent discussion we make the following assumption
on collections Ψ and pseudo-preimage finders M . For (ψ, y) ∈ LR[Ψ(k)] and
(v, w) ← M(ψ, y) we assume that the exponents v are all equal for a given
value of the security parameter k, i.e., that v = v(k). It is straightforward to
generalize our discussion and results to the setting where this assumption is not
made. Moreover, all known examples of (collections of) special homomorphisms
fulfill this assumption.

Theorem 2. The Σ-protocol with challenge set C = {0, . . . , c+(k)} is a proof of
knowledge for R[Ψ],

(a) with knowledge error 1/2 if c+(k) = 1.
(b) with knowledge error 1/(c++1) if Ψ is a collection of special homomorphisms

and c+(k) < p(k), where p(k) is the smallest prime dividing the pseudo-
preimage exponent v(k) output by a pseudo-preimage finder M for Ψ .

Pseudo-preimages have the property that given two (appropriate) pseudo-
preimages of y under ψ one can compute a preimage of y as follows.

Lemma 1 (Shamir’s Trick). Let be given two pseudo-preimages (v1, w1) and
(v2, w2) of y for ψ. If gcd(v1, v2) = 1, then x = aw1 + bw2 is a preimage of
y under ψ, where a and b are integers (computed using the extended Euclidean
algorithm) such that av1 + bv2 = 1.

162 Endre Bangerter, Jan Camenisch, and Ueli Maurer

Proof (Theorem 2). Let us describe a knowledge extractor for the Σ-protocol.
Let P ∗ be an arbitrary prover that is successful in the Σ-protocol on common
input (ψ, y) ∈ LR[Ψ] and arbitrary private input with probability ε > κ

.=
1/(c+ +1). It is well known that given rewinding access to P ∗, one can obtain a
pair of tuples (t, c, s) and (t′, c′, s′) that fulfill the verification equation in step 4
of the Σ-protocol, with t = t′ and c �= c′. We refer to this property of the Σ-
protocol as the collision extractibility property. For a detailed analysis of this
property we refer to Damg̊ard [20]. Now, using
c .= c′ − c and
s .= s − s′,
where wlog we assume
c > 0, one gets

y�c = ψ(
s). (1)

In the case where the challenge set is C = {0, 1} we have
c = 1 and thus
y = ψ(
s). This proves part (a) of the theorem. To prove part (b) we may
assume that ψ is special. Now, we in invoke a pseudo-preimage finder for ψ
on input (ψ, y) to obtain a pseudo-preimage (v, w) of ψ under y. Using that

c ≤ c+(k) and the assumption c+(k) < p(k), it follows that gcd(v,
c) = 1,
and by Lemma 1 we can compute a preimage of y under ψ. �	

We call the knowledge extractor described in the proof of Theorem 2 the
standard knowledge extractor (for the Σ-protocol). The standard knowledge ex-
tractor, informally speaking, is the “only knowledge extractor that is known for
the Σ-protocol”. More precisely, Cramer [17] points out that all existing knowl-
edge extractors for the Σ-protocol with a challenge set of cardinality larger than
two use the collision extractability property, the existence of pseudo-preimage
finders for special homomorphisms, and Shamir’s trick to compute a preimage.

It is worthwhile to note that the standard knowledge extractor is only suc-
cessful when the instances (1) of the PP problem (obtained from the prover P ∗)
are easy to solve. In fact, we can distinguish two classes of PP instances that
are easy to solve. One class consists of PP problem instances ((v, w), y, ψ) with
v = 1, where w is a preimage of y under ψ, in which case the PP problem is
trivial to solve. The other class consists of easy PP problem instances for special
homomorphisms. In fact, let ψ be a special homomorphism, y ∈ image(ψ), and
(v, w) be the pseudo-preimage output by a pseudo-preimage finder for ψ. Then
by Lemma 1 all instances ((v′, w′), y, ψ) of the PP problem with gcd(v, v′) = 1
are easy. The former class of easy instances underlies the proof of part (a) and
the latter the proof of part (b) of Theorem 2.

For non-special homomorphisms, such as multi-exponentiations in groups
with hidden order, the PP problem instances (1) extracted from the Σ-protocol
with non-binary challenge set are not known to be easy. Hence, the standard
knowledge extractor does not work for non-special homomorphisms.

4.2 Σ-Protocol with Auxiliary Pseudo-preimages: Basic Idea

Our idea in the following is to enhance the common input of the Σ-protocol
by a pseudo-preimage. That is, we consider the Σ-protocol on common input
(ψ, y) and a pseudo-preimage (v, w) (of y under ψ). The prover’s private input

Efficient Proofs of Knowledge of Discrete Logarithms 163

remains to be a preimage x (of y under ψ). This allows us to obtain proofs of
knowledge for non-special homomorphisms using the Σ-protocol with challenge
sets of cardinality larger than two.

Let us refer to the pseudo-preimage in the common input as an “auxiliary
pseudo-preimage”. In fact, auxiliary pseudo-preimages enable us to use the stan-
dard knowledge extractor for non-special homomorphisms. This claim is easy to
verify: The common input and thus the auxiliary pseudo-preimage is by defini-
tion given to the knowledge extractor [4]. We recall that the standard knowl-
edge extractor (described in §4.1) first computes a pseudo-preimage (
c,
s)
from the prover P ∗. It then uses a second pseudo-preimage to compute the
desired preimage using Shamir’s trick. For special homomorphisms the second
pseudo-preimage can be obtained using a corresponding pseudo-preimage finder.
In our approach, this second preimage is the auxiliary preimage contained in the
common input. In the following we formalize this idea and discuss under what
conditions it can be used to obtain practically useful proofs of knowledge.

Definition 4. Let v(k) be an arbitrary integer parameter and Ψ a collection
of homomorphisms. We call R(v)[Ψ] .= {((ψ, y, (v(k), w)), x) : ψ ∈ Ψ(k), ψ :
G → H,x ∈ G, y = ψ(x), and (v(k), w) is a pseudo-preimage of y under ψ} a
pseudo-preimage relation.

Note that while in Definition 3 we describe the Σ-protocol only for homomor-
phism relations, it is clear it is also defined for pseudo-preimage relationsR(v)[Ψ]
(i.e., where the common input is (ψ, y, (v, w)) ∈ LR(v)[Ψ]).

Corollary 2. The Σ-protocol with challenge set C .= {0, . . . , c+(k)} is a proof of
knowledge for the pseudo-preimage relation R(v)[Ψ] if the smallest prime factor
of v(k) is larger than c+(k). The knowledge error is 1/(c+(k) + 1).

Corollary 2 follows from the proof of Theorem 2. Let us consider a collection
of homomorphisms Ψ , a homomorphism relation R[Ψ], and the pseudo-preimage
relation R(v)[Ψ]. We observe that a proof of knowledge for a ((ψ, y), x) ∈ R[Ψ]
and a proof of knowledge for ((ψ, y, (v, w)), x) ∈ R(v)[Ψ] both are proofs of
knowledge of a preimage x of y under ψ (possibly with different knowledge
errors). Thus to prove knowledge of a preimage under a homomorphism one
can use proofs of knowledge for pseudo-preimage relations. In the following we
pursue this idea of using pseudo-preimage relations for proving knowledge of a
preimage of a homomorphism. We refer to a proof of knowledge for a collection
of homomorphisms Ψ using a pseudo-preimage relation R(v)[Ψ] as a proof of
knowledge in the auxiliary setting and call R(v)[Ψ] anauxiliary relation.

A desirable property of the auxiliary setting is that it allows one to obtain
very efficient proofs of knowledge for any homomorphism collection Ψ . In fact,
using the Σ-protocol in the auxiliary setting, we can achieve an arbitrary small
knowledge error for any Ψ . Therefore, we use the auxiliary relationR(v)[Ψ], where
v(k) is prime, and the Σ-protocol with the challenge set C .= {0, . . . , (v(k)− 1)}.
By Corollary 2, the resulting knowledge error is 1/v(k), which can be made
arbitrarily small by choosing v(k) appropriately. This is in contrast to existing
proofs of knowledge for homomorphisms (i.e., not in the auxiliary setting) based

164 Endre Bangerter, Jan Camenisch, and Ueli Maurer

on Σ-protocol, where the knowledge error can not be made arbitrarily small and
is in fact often quite large (see Theorem 2).

Our discussion so far was focused on obtaining proofs of knowledge of a
preimage. We have seen that within this focus proofs in the auxiliary setting
and conventional proofs (i.e., proofs for homomorphism relations without using
auxiliary pseudo-preimages) are equivalent and thus one can use the former in-
stead of the latter. However, if we widen our focus, then the auxiliary setting is in
general not equivalent to the conventional setting. The reason is that providing
auxiliary pseudo-preimages might reveal information that is not available other-
wise. For instance, the auxiliary pseudo-preimage could suddenly allow a verifier
to compute a preimage from the common input to the Σ-protocol. Thus, in the
following we need to additionally consider what (computational) information the
prover and the verifier obtain from an auxiliary pseudo-preimage.

4.3 Σ-Protocol with Auxiliary Pseudo-preimages:
Applied to Multi-exponentiations in Hidden Order Groups

In the following we look at proofs of knowledge in the auxiliary setting for
multi-exponentiations ψM : Z

l → H in groups H for which the ROOT problem
is hard. In particular, we consider the information the prover and the verifier can
derive from an auxiliary pseudo-preimage. It turns out that, on the one hand,
the verifier does not get any additional (computational) information on |H | and
the preimage x. On the other hand, we see that |H | is required by the (honest)
prover.

Let us first consider a (possibly dishonest) verifier in the auxiliary setting.
The results from §3 allow us to exclude that the verifier can either compute
a preimage or information about the order of H from an auxiliary pseudo-
preimage. In fact, by Theorem 1 (under the ROOT assumption) it is impossible
for the verifier to compute a preimage from a pseudo-preimage, i.e., to solve the
PP problem. Concerning the order ofH , Corollary 1 implies that instances of the
PP problem for multi-exponentiations in a groupH , and thus the common input
to the Σ-protocol in the auxiliary setting, can be generated without knowing the
order of H . Hence, an auxiliary pseudo-preimage gives the verifier no advantage
in computing the order of H either. Finally, as the Σ-protocol is (honest verifier)
zero-knowledge (c.f. §4.1), the verifier does not get an advantage in computing a
preimage or information on the order of H from running the protocol with the
prover.

Next, we consider the information the (honest) prover learns on |H | in the
auxiliary setting. We note that the prover in addition to the common input is also
given a preimage as private input. It is easy to see that from the honest prover’s
input (ψM , y, (v, w), x) ∈ R(v) (where ψM (z) = hz), one can compute the order
of h (assuming v � w). Moreover, in certain groups, such as RSA groups with
moduli being a safe-prime product, this allows one to factor the modulus and to
obtain the group’s order. For the case where ψM is a multi-exponentiation, we
don’t know how to show that the (honest) prover obtains information on |H |.
But neither can we prove that it does not get information on |H |. Thus, unless
we want to put forth a corresponding (and “rather questionable”) computational

Efficient Proofs of Knowledge of Discrete Logarithms 165

assumption, we should expect that the prover can compute |H |. Moreover, we
only know how to generate the protocol’s input in the auxiliary setting, i.e.,
(ψM , y, (v, w), x) when the order of H is given. (For a possible way to generate
the input we refer to the description of the PP instance generator DP in §3.)
Thus, in the context of an application where the input to the Σ-protocol in the
auxiliary setting is generated by the (honest) prover, then the (honest) prover
explicitly needs to be privy to |H |.

Finally, we note that if one uses our auxiliary setting to obtain a proof of
knowledge as a sub-protocol in some application, one needs to consider the infor-
mation an auxiliary pseudo-preimage reveals in the context of the whole system–
in the same way one has to do this for the image y itself. Such an analysis,
however, must be outside the scope of this paper.

A property of practical interest of proofs of knowledge in the auxiliary set-
ting is that one can use techniques from groups with known order for proving
relations among preimages of different multi-exponentiations [6, 14]. As an ex-
ample one can prove knowledge of two discrete logarithms of two different group
elements with respect to different bases and also that the discrete logarithms
are equal. That is, using notation introduced by Camenisch and Stadler [13], on
can realize a proof PK({α1, α2} : y1 = hα1

1 ∧ y2 = hα2
2 ∧α1 = α2}. The approach

to obtain such an equality proof in the auxiliary setting is to choose the auxil-
iary pseudo-preimage (v, w) to be the same for (y1, ψM ,1(x1) = h1

x1) and for
(y2, ψM ,2(x2) = h2

x2). Using this approach it is straightforward to verify that
the knowledge extractor indeed is able to find a value x = logh1

y1 = logh2
y2.

5 The Σ+-Protocol

In this section we introduce a new protocol that we call the Σ+-protocol. The
Σ+-protocol is a an efficient zero-knowledge (computational) proof of knowl-
edge for multi-exponentiations ψM in arbitrary groups H and, in particular, in
groups with hidden order. The knowledge error of the Σ+-protocol is governed
by the smallest prime in | image(ψM)|. The computational validity property of
the Σ+-protocol holds under the Strong RSA assumption [3, 24] and under the
computational binding property of the commitment scheme used in the protocol.
The Σ+-protocol is a proof of knowledge regardless of whether the prover or the
verifier knows the order of H .

Technically, the construction of the Σ+-protocol takes up and extends ideas
underlying the DF scheme (c.f. § 1) to obtain standard proofs of knowledge
according to [4]. In fact, the Σ+-protocol can always be used to replace the DF
scheme to obtain standard proofs of knowledge.

Yet, compared to the DF scheme, the Σ+-protocol works under weaker con-
ditions and hence can be used more broadly. In fact, when applied to a multi-
exponentiation ψM : Z

l → H , the DF scheme requires that H is a group (with
hidden order) for which the generalized root assumption1 holds, and that the

1 The assumption is that given h ∈U H it is hard to compute an integer e �= 1 and
u ∈ H such that ue = h.

166 Endre Bangerter, Jan Camenisch, and Ueli Maurer

prover must not know the order of H . The Σ+-protocol needs neither of these
requirements. Additionally, in certain application scenarios the Σ+-protocol is
more efficient than the DF scheme. We recall that the DF scheme consists of two
parts. A rather inefficient setup part that is run once and an efficient proof of
knowledge part using the Σ-protocol, which is typically executed several times.
The computational cost of the Σ+-protocol, which is an atomic protocol, is
roughly three times the cost of the Σ-protocol. As a consequence, the Σ+-
protocol is more efficient than the DF protocol in settings when few proofs of
knowledge are required, while the DF scheme is more efficient when one requires
many proofs of knowledge.

5.1 Preliminaries

The Strong RSA assumption [3, 24] states that there is a generator DS(k) such
that given (n, g)← DS(k), with g ∈ Z

∗
n, it is hard to compute a u ∈ Z

∗
n and an

integer e > 1 fulfilling ue = g. In the following we assume that n = (2p+1)(2q+1)
with p, q, (2p+ 1), and (2q+ 1) being primes, and that g ∈ QRn, where QRn is
the subgroup of quadratic residues of Z

∗
n.

We define a generator Dϑ(l, k) that outputs multi-exponentiations ϑ : Z
l →

QRn as follows: 1) Choose (n, g)← DS(k). 2) For i = 1, . . . , (l−1) choose ρi ∈U

[0, 2k
n/4�]. 3) Set gi
.= gρi . 4) Define the multi-exponentiation ϑ(x1, . . . , xl)

.=
gx1
1 · . . . · gxl−1

l−1 · gxl . 5) Output (ϑ, n). Using this notation the following holds.

Theorem 3. Under the Strong RSA assumption, it is hard given (n, ϑ) ←
Dϑ(l, k) to compute a y ∈ Z

∗
n and a pseudo-preimage (v, (w1, . . . , wl)) of y under

ϑ such that v �= 1 and v � wi for some i ∈ {1, . . . , l}.
Theorem 3 underlies the construction of the knowledge extractor of the DF

scheme as well as the one for our Σ+-protocol. A similar statement was recently
proved by Camenisch and Shoup [12, Theorem 3].

Let commit(·, ·) be a computationally binding and statistically hiding com-
mitment scheme such as the one by Pedersen [29]. To commit to value γ, one
computes C ← commit(γ, r), where r is a random value. To open the commit-
ment C, one reveals γ and r to a verifier, who checks that C = commit(γ, r).

5.2 The Σ+-Protocol and Its Properties

In this section we define the Σ+-protocol. For simplicity, we describe the protocol
only for simple-exponentiations ψM (x) .= hx with h ∈ H . This allows us to focus
on the key ideas underlying the protocol construction. It is a straightforward
exercise to extend the definition of the protocol and the results given below to
multi-exponentiations ψM (x1, . . . , xl)

.= hx1
1 · . . . · hxl

l with h1, . . . , hl ∈ H . Let

x .=
x(k) and lz

.= lz(k) denote integer parameters.

Definition 5 (Σ+-Protocol). Let Ψ be a collection of simple-exponentiation
homomorphisms and ((ψM , y), x) ∈ R[Ψ] with x ∈ [−
x,+
x]. Let (P, V) be
a pair of interactive Turing machines with common input (ψM , y), the private
input of P being x. A Σ+-protocol with challenge set C .={0, . . . , c+} consists of
(P, V) performing the joint computation described in Fig. 1.

Efficient Proofs of Knowledge of Discrete Logarithms 167

Note that x ∈ [−
x,+
x] in Definition 5 is necessary for the Σ+-protocol
to be statistical zero-knowledge (i.e., one needs to know how large x can be
to blind x in the messages sent by the prover). The tightness of the statistical
zero-knowledge property of the Σ+-protocol is controlled by the parameter lz.

Next, we sketch the key features underlying the proof of knowledge and
zero-knowledge property of the Σ+-protocol. Let us therefore consider the Σ+-
protocol on input ((ψM , y), x).

First, we look at the proof of knowledge property, i.e., the features that allow
us to construct a knowledge extractor. In step 1, the verifier chooses a multi-
exponentiation ϑ(·, ·) by executing the steps of the generator Dϑ(2, k) (as defined
in the previous section). The description of ϑ(·, ·) is sent to the prover. In step
2, the prover first computes y

.=ϑ(x, x), where x is the preimage of y under ψM

and x is random value to ensure that y does not reveal information about x.
Now, we observe that the remainder of step 2 and steps 3, 4, and 7 essentially
correspond to two Σ-protocols run in parallel for each of the homomorphisms ψ
and ϑ. (For the matter of this observation, we may forget about the commitment
commit(·, ·) used in steps 2 and 7, and assume that the message sent at the end
of step 2 is (t, t).) These two Σ-protocols are run in parallel as one would do in
a proof of equality in groups of known order to demonstrate that the preimage
of y equals the first component of the preimage of y (cf. [16]). In fact, in all
evaluations of ψM and ϑ (see steps 2 and 7) the argument of ψM and the first
argument of ϑ are equal. This allows us to obtain a knowledge extractor for the
Σ+-protocol as follows. As the Σ-protocol uses essentially the same verification
equations (step 7) as the Σ+-protocol, the knowledge extractor can retrieve from
a convincing prover a pseudo-preimage (
c,
s) of y under ψM and a pseudo-
preimage (
c, (
s,
s)) of y under ϑ. That is, we have

y�c = ψM (
s) = h�s (2)

y�c = ϑ(
s,
s) = g�sg�s
1 . (3)

As we run the two Σ-protocols in parallel as described above, the same integers

c and
s occur in (2) and (3). Now, as ϑ was chosen according to Dϑ(2, k),
Theorem 3 implies that in (3) we must have
c |
s and
c |
s. Thus, (if we,
e.g., additionally assert that gcd(
c, | image(ψM)|) = 1) the knowledge extractor
can compute a preimage x .=
s/
c of y under ψM . Finally we note, that the
Σ+-protocol is not a proof of knowledge for the multi-exponentiation ϑ; the role
of ϑ is just to enable the construction of the knowledge extractor for ψM .

It remains to discuss the statistical zero-knowledge property of the Σ+-
protocol. We have seen that for the knowledge extractor to work, the prover
needs to provide to the verifier the values (t, s) and (t, (s, s)) that fulfill the ver-
ification equations in step 7. As these are the same verification equations as for
the Σ-protocol, we can use the standard zero-knowledge simulation technique for
the Σ-protocol, i.e., given (ψM , y) and (ϑ, y) we can simulate tuples (t, c, s) and
(t, c, (s, s)) fulfilling the respective verification equations. This approach works
fine for given (ψM , y) and (ϑ, y), respectively. However, in the Σ+-protocol (ϑ, y)
are chosen within the protocol. Thus, for the Σ+-protocol to be zero-knowledge,

168 Endre Bangerter, Jan Camenisch, and Ueli Maurer

P ((ψM , y), x) V (ψM , y)

1.

(n, g)← DS(k)

ρ ∈U [0, 2k�n/4�]; g1 .= gρ mod n

ϑ(x1, x2)
.
= gx1

1 gx2 mod n

2. (g1, g, n)�
x ∈U [0, �n/4�]; y

.
=ϑ(x, x)

r ∈U [−2lz c+�x, 2lz c+�x]; t .=ψM (r)

r ∈U [−2lzc+�n/4�], 2lz c+�n/4�]; t
.
=ϑ(r, r)

Choose ry; ȳ
.
= commit(y, ry)

Choose rt; t̄
.
=commit(t, rt)

(ȳ, t̄, t) � 3.

c ∈U C = {0, . . . , c+}
4. c�
s
.
= r + cx

s
.
= r + cx

(s, s) � 5.

6. ρ�
If g1 �≡ gρ (mod n), then halt.

((t, rt), (y, ry))� 7.

If the equalities

ȳ = commit(y, ry); t̄ = commit(t, rt)

ψM (s) = tyc; ϑ(s, s) ≡ tyc (mod n)

hold, then output 1; else output 0

Fig. 1. Description Σ+-Protocol.

we additionally need to simulate the choices of y. Choices of y can be easily
simulated when ϑ(x1, x2) = gx1

1 gx2 is formed correctly, i.e., g1 ∈ 〈g〉. Then, over
the choices of x, y = ϑ(x, x) = gx

1 g
x is a uniform random element in 〈g〉 (we

recall that x ∈U [0,
n/4�] is statistically close to uniform on Z|g|). However, a
dishonest verifier could choose a malformed ϑ such that y = ϑ(x, x) would leak
information about the preimage x and thus ruin the zero-knowledge property
of the Σ+-protocol. To overcome this problem, we use the commitment scheme
commit(·, ·) as follows. In step 2, the prover does not know whether ϑ is correctly
chosen, and thus only sends the commitments to t and y instead of these values
themselves. Then, in steps 5 and 6 the verifier convinces the prover that ϑ is
correctly formed., i.e., that g1 ∈ 〈g〉. To this end, it sends the discrete logarithm

Efficient Proofs of Knowledge of Discrete Logarithms 169

ρ of g1 with respect to g to the prover. Finally, when the prover is convinced
of the correctness of ϑ, it opens the commitments from step 2 and reveals the
values t and y. It is important that the verifier reveals the discrete logarithm ρ
only after the prover has answered the challenge (steps 3 and 4). This is because
for Theorem 3 to be applicable in the construction of the knowledge extractor,

s and
s in (3) and thus s and s in step 4 of the protocol need to be computed
by the prover without being given the discrete logarithm ρ. (In fact, Theorem 3
does not hold when one is given the discrete logarithms (with respect to some
base element) of the gi defining ϑ).

Note that the simulator sketched above only works when the cardinality of
C is bounded by some polynomial in the security parameter. This is because the
simulator needs to be able to guess the challenge value for which it computes
the simulated view. However, applying Damg̊ard’s technique [19], we turn the
Σ+-protocol into a concurrent-zero knowledge protocol simply by additionally
committing to t in step 2 and correspondingly open the commitment in step 6.

Now, along the lines sketched above one can prove the following theorem.
Theorem 4. Let Ψ be a collection of simple-exponentiation homomorphisms
and c+(k) be a positive integer parameter such that for any ψM ∈ Ψ(k), c+(k)
is smaller than the smallest prime dividing | image(ψM)|. Then the Σ+-protocol
with challenge set C .= {0, . . . , c+(k)} is a computational proof of knowledge
for R[Ψ]. The computational validity property holds under the computational
binding property of the commitment scheme and the Strong RSA assumption.
The knowledge error is 1/|C|+ 1/p(k), where p(·) is an arbitrary polynomial.

Let us conclude with a technical remark. Consider the DF scheme and the
Σ+-protocol computed for, e.g., common input a simple-exponentiation
ψM (x) = hx and an image element y. We note that the knowledge extractors
of both schemes rely on obtaining a pseudo-preimage (
c,
s) of y under ψM ,
i.e., y�c = h�s such that the divisibility
c |
s (which allows one to compute
a preimage of y) holds. (In fact, the Σ+-protocol can guarantee the divisibility
under weaker conditions.) Technically, this is the reason why the Σ+-protocol
works in all cases where the DF scheme is known to work. In particular, the Σ+-
protocol can also be used to obtain so called interval or range proofs [5]. Finally,
the DF scheme is often considered under different conditions than formulated in
Theorem 4, allowing one, e.g., only to prove that one knows b and z such that
y = bhz with b2 = 1. Given the foregoing observation, it is clear that such proofs
can also be obtained using the Σ+-protocol.

References

1. G. Ateniese. Efficient verifiable encryption (and fair exchange) of digital signatures.
In Proc. 6th ACM Conference on Computer and Communications Security, pp.
138–146. ACM press, Nov. 1999.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Advances in Cryptology –
CRYPTO 2000, vol. 1880 of Lecture Notes in Computer Science, pp. 255–270.
Springer Verlag, 2000.

170 Endre Bangerter, Jan Camenisch, and Ueli Maurer

3. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Advances in Cryptology – EUROCRYPT ’97, vol. 1233
of LNCS, pp. 480–494. Springer Verlag, 1997.

4. M. Bellare and O. Goldreich. On defining proofs of knowledge. In Advances in
Cryptology – CRYPTO ’92, vol. 740 of Lecture Notes in Computer Science, pp.
390–420. Springer-Verlag, 1992.

5. F. Boudot. Efficient proofs that a committed number lies in an interval. In Ad-
vances in Cryptology – EUROCRYPT 2000, vol. 1807 of Lecture Notes in Computer
Science, pp. 431–444. Springer Verlag, 2000.

6. S. Brands. Rapid demonstration of linear relations connected by boolean operators.
In Advances in Cryptology – EUROCRYPT ’97, vol. 1233 of Lecture Notes in
Computer Science, pp. 318–333. Springer Verlag, 1997.

7. J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal Of Cryptology, 1(2):107 – 118, 1998.

8. J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In Advances in Cryp-
tology – EUROCRYPT 2001, vol. 2045 of LNCS, pp. 93–118. Springer Verlag,
2001.

9. J. Camenisch and A. Lysyanskaya. An identity escrow scheme with appointed
verifiers. In Advances in Cryptology – CRYPTO 2001, vol. 2139 of LNCS, pp.
388–407. Springer Verlag, 2001.

10. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In Advances in Cryptology – CRYPTO
2002, vol. 2442 of LNCS, pp. 61–76. Springer Verlag, 2002.

11. J. Camenisch and M. Michels. A group signature scheme with improved efficiency.
In Advances in Cryptology – ASIACRYPT ’98, vol. 1514 of LNCS, pp. 160–174.
Springer Verlag, 1998.

12. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology – CRYPTO 2003, vol. 2729 of
LNCS, pp. 126–144, 2003.

13. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In Advances in Cryptology – CRYPTO ’97, vol. 1296 of Lecture Notes in Computer
Science, pp. 410–424. Springer Verlag, 1997.

14. J. L. Camenisch. Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. PhD thesis, ETH Zürich, 1998. Diss. ETH No. 12520,
Hartung Gorre Verlag, Konstanz.

15. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-knowledge.
pp. 235–244. ACM Press, 2000.

16. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in
Cryptology – CRYPTO ’92, vol. 740 of Lecture Notes in Computer Science, pp.
89–105. Springer-Verlag, 1993.

17. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocol. PhD
thesis, University of Amsterdam, 1997.

18. R. Cramer and I. Damg̊ard. Zero-knowledge proof for finite field arithmetic, or:
Can zero-knowledge be for free? In Advances in Cryptology – CRYPTO ’98, vol.
1642 of Lecture Notes in Computer Science, pp. 424–441, Berlin, 1998. Springer
Verlag.

19. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model.
In Advances in Cryptology – EUROCRYPT 2000, vol. 1807 of Lecture Notes in
Computer Science, pp. 431–444. Springer Verlag, 2000.

Efficient Proofs of Knowledge of Discrete Logarithms 171

20. I. Damg̊ard. On sigma-protocols. Lecture Notes, 2002.
21. I. Damg̊ard and E. Fujisaki. An integer commitment scheme based on groups with

hidden order. In Advances in Cryptology – ASIACRYPT 2002, vol. 2501 of LNCS.
Springer, 2002.

22. I. Damg̊ard and M. Koprowski. Generic lower bounds for root extraction and sig-
nature schemes in general groups. In Advances in Cryptology – EUROCRYPT’02,
vol. 2332 of Lecture Notes in Computer Science, pp. 256–271 Springer Verlag, 2002.

23. C. Dwork, M. Naor, and A. Sahai. Concurrent zero knowledge. In Proc. 30th
Annual ACM Symposium on Theory of Computing (STOC), 1998.

24. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Advances in Cryptology – CRYPTO ’97, vol. 1294 of
Lecture Notes in Computer Science, pp. 16–30. Springer Verlag, 1997.

25. E. Fujisaki and T. Okamoto. A practical and provably secure scheme for pub-
licly verifiable secret sharing and its applications. In Advances in Cryptology –
EUROCRYPT ’98, vol. 1403 of LNCS, pp. 32–46. Springer Verlag, 1998.

26. M. Girault. An identity-based identification scheme based on discrete logarihtms
modulo a composite number. In Advances in Cryptology – EUROCRYPT ’90, vol.
473 of Lecture Notes in Computer Science, pp. 481–486. Springer-Verlag, 1991.

27. L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In Advances
in Cryptology – EUROCRYPT ’88, vol. 330 of Lecture Notes in Computer Science,
pp. 123–128. Springer Verlag, 1988.

28. P. MacKenize and M. K. Reiter. Two-party generation of DSA signatures. In
Advances in Cryptology – CRYPTO 2001, vol. 2139 of LNCS, pp. 137–154. Springer
Verlag, 2001.

29. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology – CRYPTO ’91, vol. 576 of Lecture Notes in
Computer Science, pp. 129–140. Springer Verlag, 1992.

30. G. Poupard and J. Stern. Security analysis of a practical “on the fly” authentication
and signature generation. In Advances in Cryptology – EUROCRYPT ’98, vol. 1403
of Lecture Notes in Computer Science, pp. 422–436. Springer Verlag, 1998.

31. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, Feb.
1978.

32. C. P. Schnorr. Efficient signature generation for smart cards. Journal Of Cryptol-
ogy, 4(3):239–252, 1991.

	1 Introduction
	2 Preliminaries
	3 The Pseudo-preimage Problem
	4 Efficient Proofs of Knowledge Using Auxiliary Pseudo-preimages
	4.1 Preliminaries: The Σ-Protocol and Its Properties
	4.2 Σ-Protocol with Auxiliary Pseudo-preimages: Basic Idea
	4.3 Σ-Protocol with Auxiliary Pseudo-preimages: Applied to Multi-exponentiations in Hidden Order Groups

	5 The Σ+-Protocol
	5.1 Preliminaries
	5.2 The Σ+-Protocol and Its Properties

	References

