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Abstract. Understanding and using the data and knowledge encoded in seman-
tic web documents requires an inference engine. F-OWL is an inference engine 
for the semantic web language OWL language based on F-logic, an approach to 
defining frame-based systems in logic.  F-OWL is implemented using XSB and 
Flora-2 and takes full advantage of their features.  We describe how F-OWL 
computes ontology entailment and compare it with other description logic 
based approaches. We also describe TAGA, a trading agent environment that 
we have used as a test bed for F-OWL and to explore how multiagent systems 
can use semantic web concepts and technology. 

1   Introduction 

The central idea of the Semantic Web [Berners-Lee 2001] is to publish documents on 
the World Wide Web defined and linked in a way that make them both human 
readable and machine understandable. Human readable means documents in the 
traditional sense which are intended for machine display and human consumption. 
Machine understandable means that the data has explicitly been prepared for machine 
reasoning and reuse across various applications. Realizing the semantic web vision 
requires well defined languages that can model the meaning of information on the 
Web as well as applications and services to publish, discover, process and annotate 
information encoded in them. This involves aspects from many areas, including 
knowledge representation and reasoning, databases, information retrieval, digital 
libraries, multi-agent systems, natural language processing and machine learning. The 
Web Ontology Language OWL [Patel-Schneider, 2003] is part of the growing stack 
of W3C recommendations related to the Semantic Web. OWL has its origins in 
DAML+OIL [Hendler 2000] and includes a set of three increasingly complex sub-
languages: OWL-Lite, OWL-DL and OWL-Full. 

OWL has a model-theoretic semantics that provides a formal meaning for OWL 
ontologies and instance data expressed in them.  In addition, to support OWL-Full, a 

                                                           
1 This work was partially supported by the Defense Advanced Research Projects Agency 
under contract F30602-97-1-0215 and by the  National Science Foundation under award IIS-
0242403. 



second model-theoretic semantics has been developed as an extension to the RDF's 
semantics, grounding the meaning of OWL ontologies as RDF graphs. An OWL 
inference engine’s core responsibilities are to adhere to the formal semantics in proc-
essing information encoded in OWL, to discover possible inconsistencies in OWL 
data, and to derive new information from known information. A simple example 
demonstrates the power of inference: Joe is visiting San Francisco and wants to find 
an Italian restaurant in his vicinity. His wireless PDA tries to satisfy his desire by 
searching for a thing of type restaurant with a cuisineType property with the value 
Italian.  The goodPizza restaurant advertises its cuisine type as Pizza. These cannot 
be matched as keywords or even using a thesaurus, since Italian and Pizza are not 
equivalent in all contexts. The restaurant ontology makes things clearer: Pizza 
rdfs:SubClassOf  ItalianCuisine. By using an inference engine,  Joe’s PDA can suc-
cessfully determine that the restaurant goodPizza is what he is looking for. F-OWL, 
an inference engine for OWL language, is designed to accomplish this task.  

In the next section, we outline the functional requirement of the OWL inference 
engine.  Section three describes F-OWL, the OWL inference engine in Frame Logic 
that we have developed.  Section four explained how F-OWL is used in a multi-agent 
test bed for trading agents. Chapters five and six conclude this paper with a discus-
sion of the work and results and an outline of some potential future research. 

2 OWL Engine 

An inference engine is needed for the processing of the knowledge encoded in the 
semantic web language OWL. An OWL inference engine should have following 
features: 

• Checking ontology consistency. An OWL concept ontology (e.g., terms de-
fined in the “Tbox”) imposes a set of restrictions on the model graph. The 
OWL inference Engine should check the syntax and usage of the OWL terms 
and ensure that the OWL instances (e.g., assertions in the “Abox”) meet all of 
the restrictions. 

• Computing entailments. Entailment, including satisfiability and subsumption, 
are essential inference tasks for an OWL inference engine.  

• Processing queries.  OWL inference engines need  powerful, yet easy-to-use, 
language to support queries, both from human users (e.g., for debugging) and 
software components (e.g., for software agents). 

• Reasoning with rules. Rules can be used to control the inference capability, to 
describe business contracts, or to express complex constrictions and relations 
not directly supported by OWL. An OWL inference engine should provide a 
convenient interface to process rules that involve OWL classes, properties and 
instance data. 

• Handling XML data types. XML data types can be used directly in OWL to 
represent primitive kinds of data types, such as integers, floating point num-
bers, strings and dates. New complex types can be defined using base types 



and other complex types. An OWL inference Engine must be able to test the 
satisfiability of conjunctions of such constructed data types.  

 
The OWL language is rooted in description logic (DL), a family of knowledge rep-

resentation languages designed for encoding knowledge about concepts and concept 
hierarchies. Description Logics are generally given a semantics that make them sub-
sets of first-order logic. Therefore, several different approaches based on those logics 
have been used to design OWL inference engines: 

 
• Using a specialized description logic reasoner.  Since OWL is rooted in de-

scription logic, it is not surprising that DL reasoners are the most widely used 
tools for OWL reasoning. DL reasoners are used to specify the terminological hi-
erarchy and support subsumption. It has the advantage of being decidable. Three 
well-known systems are FaCT [Horrocks, 1999], Racer [Haarslev 2001] and Pel-
let. They implement different types of description logic. Racer system imple-
ments SHIQ(D) using a Tableaux algorithm. It is a complete reasoner for OWL-
DL and supports both Tbox and Abox reasoning.  The FaCT system implements 
SHIQ, but only support Tbox reasoning.  Pellet implements SHIN(D) and  in-
cludes a complete OWL-lite consistency checker supporting both Abox and Tbox 
queries.  

• Using full first order logic (FOL) theorem prover.  OWL statements can be 
easily translated into FOL, enabling one to use existing FOL automated theorem 
provers to do the inference. Examples of this approach include Hoolet (using the 
Vampire [Riazanov, 2003] theorem prover) and Surnia (using Otter theorem 
prover).  In Hoolet, for example, OWL statements are translated into a collection 
of axioms which is then given to the Vampire theorem prover for reasoning.  

• Using a reasoner designed for a FOL subset. A fragment of FOL and general 
logic based inference engine can also be used to design the OWL inference en-
gine. Horn Logic is most-widely used because of its simplicity and availability of 
tools, including Jena, Jess, Triple and F-OWL (using XSB). Other logics, like 
higher-order logic in F-OWL (using Flora), can also be used.  

 
As the following sections describe, F-OWL has taken the third approach.  An ob-

vious advantage is that many systems have been developed that efficiently reason 
over expressive subsets of FOL and are easy to understand and use.   

3  F-OWL 

F-OWL is a reasoning system for RDF and OWL that is implemented using the  XSB 
logic programming system [Sagonas, 1994] and the Flora-2 [Kifer, 1995] [Yang 
2000] extension that provides an F-logic frame-based representation layer.  We have 
found that XSB and Flora-2 not only provide a good foundation in which to imple-
ment an OWL reasoner but also facilitate the integration of other reasoning mecha-
nisms and applications, such as default reasoning and planners. 



 
XSB is a logic programming system developed at Stony Brook University. In addi-

tion to providing all the functionality of Prolog, XSB contains several features not 
usually found in Logic Programming systems, including tabling, non-stratified nega-
tion, higher order constructs, and a flexible preprocessing system.  Tabling is useful 
for recursive query computation, allowing programs to terminate correctly in many 
cases where Prolog does not. This allows, for example, one to include “if and only if” 
type rules directly.   XSB supports for extensions of normal logic programs through 
preprocessing libraries including a sophisticated object-oriented interface called 
Flora-2. Flora-2 is itself a compiler that compiles from a dialect of Frame logic into 
XSB, taking advantage of the tabling, HiLog [Chen 1995] and well-founded seman-
tics for negation features found in XSB. Flora-2 is implemented as a set of run-time 
libraries and a compiler that translates a united language of F-logic and HiLog into 
tabled Prolog code. HiLog is the default syntax that Flora-2 uses to represent function 
terms and predicates. Flora-2 is a sophisticated object-oriented knowledge base lan-
guage and application development platform. The programming language supported 
by Flora-2 is a dialect of F-logic with numerous extensions, which include a natural 
way to do meta-programming in the style of HiLog and logical updates in the style of 
Transaction Logic. Flora-2 was designed with extensibility and flexibility in mind, 
and it provides strong support for modular software design through its unique feature 
of dynamic modules. 

F-OWL is the OWL inference engine that uses a Frame-based System to reason 
with OWL ontologies. F-OWL is accompanied by a simple OWL importer that reads 
an OWL ontology from a URI and extracts RDF triples out of the ontology. The ex-
tracted RDF triples are converted to format appropriate for F-OWL’s frame style and 
fed into the F-OWL engine. It then uses flora rules defined in flora-2 language to 
check the consistency of the ontology and extract hidden knowledge via resolution.  

A model theory is a formal theory that relates expressions to interpretation. The 
RDF model theory [Hayes 2003] formalizes the notion of inference in RDF and pro-
vides a basis for computing deductive closure of RDF graphs. The semantics of 
OWL, an extension of RDF semantics, defines bindings, extensions of OWL interpre-
tations that map variables to elements of the domain:  

 
• The vocabulary V of the model is composed of a set of URI’s.  
• LV is the set of literal values and XL is the mapping from the literals to LV.  
• A simple interpretation I of a vocabulary V is defined by: 
• A non-empty set IR of resources, called the domain or universe of I.  
• A mapping IS from V into IR 
• A mapping IEXT from IR into the power set of IR X (IR union LV) i.e. the set 

of sets of pairs <x,y> with x in IR and y in IR or LV. This mapping defines the 
properties of the triples. IEXT(x) is a set of pairs which identify the arguments 
for which the property is true, i.e. a binary relational extension, called the ex-
tension of x.  

 



Informally this means that every URI2 represents a resource that might be a page 
on the Internet but not necessarily; it might also be a physical object. A property is a 
relation; this relation is defined by an extension mapping from the property into a set. 
This set contains pairs where the first element of a pair represents the subject of a 
triple and the second element represents the object of a triple. With this system of 
extension mapping the property can be part of its own extension without causing 
paradoxes.  

Take the triple:goodPizza :cuisineType :Pizza from the pizza restaurant in the in-
troduction as example.  In the set of URI’s there will be terms (i.e., classes and prop-
erties) like: #goodPizza, #cuisineType, #pizza, #Restanrant, #italianCuisine, etc. 
These are part of the vocabulary V.  The set IR of resources include instances that 
represent  resources on the internet or elsewhere, like #goodPizza, , etc. For example 
the class #Restanrant might represent the set of all restaurants. The URI refers to a 
page on the Internet where the domain IR is defined.  Then there is the mapping IEXT 
from the property #cuisineType to the set {(#goodPizza, #Pizza),(#goodPizza, #Ital-
ianCuisine)} and the mapping IS from V to IR: :goodPizza  #goodPizza, 
:cuisineTYpe  #cuisineType. 

A rule A B is satisfied by an interpretation I if and only if every binding that sat-
isfies the antecedent A also satisfies the consequent B. An ontology O is satisfied by 
an interpretation I if and only if the interpretation satisfies every rules and facts in the 
ontology. A model is satisfied if none of the statements within contradict each other. 
An ontology O is consistent if and only if it is satisfied by at least one interpretation. 
An ontology O2 is entailed by an ontology O1 if and only if every interpretation that 
satisfies O1 also satisfies O2. 

One of the main problems in OWL reasoning is ontology entailment. Many OWL 
reasoning engines, such as Pellet and SHOQ, follow an approach suggested by Ian 
Horrocks [Horrocks 2003]. By taking advantage of the close similarly between OWL 
and description logic, the OWL entailment can be reduced to knowledge base satisfi-
ability in the SHOIN(D) and SHIF(D).  Consequently, existing mature DL reasoning 
engines such as Racer [Haarslev 2001] can provide reasoning services to OWL. Ora 
Lassila suggested a “True RDF processor” [Lassila 2002] in his implementation of 
Wilbur system [Lassila 2001] in which entailment is defined via the generation of a 
deductive closure from an RDF graph composed of triples. The proving of entailment 
becomes the building and searching of closure graph.  

With the support of forward/backward reasoning from XSB and frame logic from 
Flora, F-OWL takes the second approach to compute the deductive closure of a set of 
RDF or OWL statements. The closure is a graph consisting of every triples <subject, 
predicate, object> that satisfies {subject, object } ⇒ IEXT(I(predicate)). This is de-
fined as:   

 
<subject,predicate,object> ⇒ KB ⇔  {subject,object} ⇒ IEXT(I(predicate)) 
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Where KB is the knowledge base, I(x) is the interpretation of a particular graph, and 
IEXT(x) is the binary relational extension of property as defined in [Hayes 2002]. 

F-OWL is written in the Flora-2 extension to XSB and consists of the following 
major sets of rules:  

 
• A set of rules that reasons over the data model of RDF/RDF-S and OWL; 
• A set of rules that maps XML DataTypes into XSB terms; 
• A set of rules that performs ontology consistency checks; and 
• A set of rules that provides an interface between the upper Java API calls to the 

lower layer Flora-2/XSB rules. 
 

F-OWL provides command line interface, a simple graphical user interface and a 
Java API to satisfy different requirements. Using F-OWL to reason over the ontology 
typically consists of the following four steps: 

 
• Loading additional application-related rules into the engine;  
• Adding new RDF and OWL statements (e.g., ontologies or assertions) to the en-

gine. The triples (subject, predicate, object) on the OWL statements are translated 
into 2-ply frame style: subject(predicate, object)@model; 

• Querying the engine. The RDF and OWL rules are recursively applied to gener-
ate all legal triples. If a query has no variables, a True answer is returned when 
an interpretation of the question is found. If the question includes variable, the 
variables is replaced with values from the interpretation and returned; 

• The ontology and triples can be removed if desired. Else, the XSB system saves 
the computed triples in indexed tables, making subsequent queries faster. 

 

4   F-OWL in TAGA 

Travel Agent Game in Agentcities (TAGA) [Zou 2003] is a travel market game de-
veloped on the foundation of FIPA technology and the Agentcities infrastructure. One 
of its goals is to explore and demonstrate how agent and semantic web technology 
can support one another and work together.  

TAGA extends and enhances the Trading Agent Competition scenario to work in 
Agentcities, an open multiagent systems environment of FIPA compliant systems. 
TAGA makes several contributions: auction services are added to enrich the Agent-
cities environment, the use of the semantic web languages RDF and OWL improve 
the interoperability among agents, and the OWL-S ontology is employed to support 
service registration, discovery and invocation. The FIPA and Agentcities standards 
for agent communication, infrastructure and services provide an important foundation 
in building this distributed and open market framework. TAGA is intended as a plat-
form for research in multiagent systems, the semantic web and/or automated trading 
in dynamic markets as well as a self contained application for teaching and experi-
mentation with these technologies. It is running as a continuous open game at 



http://taga.umbc.edu/ and source code is available on Sourceforge for research and 
teaching purposes. 

The agents in TAGA use OWL in various ways in communication using the FIPA 
agent content language (ACL) and also use OWL-S as the service description lan-
guage in FIPA’s directory facilitators. Many of the agents in the TAGA system use F-
OWL directly to represent and reason about content presented in OWL.  On receiving 
an ACL message with content encoded in OWL, a TAGA agent parses the content 
into triples, which are then loaded into the F-OWL engine for processing.  

When an agent receives an incoming ACL message, it computes the meaning of 
the message from the ACL semantics, the protocols in effect, the content language 
and the conversational context. The agent’s subsequent behavior, both internal (e.g., 
updating its knowledge base) and external (e.g., generating a response) depends on 
the correct interpretation of the message’s meaning. Thus, a sound and, if possible, 
complete understanding the semantics of the key communication components (i.e., 
ACL, protocol, ontologies, content language, context) is extremely important.   In 
TAGA, the service providers are independent and autonomous entities, which making 
it difficult to enforce a design decision that all use exactly the same ontology or pro-
tocol.  For example, the Delta Airline service agent may have its own view of travel 
business and uses class and property terms that extend an ontology used in the indus-
try.  This situation parallels that for the semantic web as a whole – some amount of 
diversity is inevitable and must be panned for lest our systems become impossibly 
brittle. 

Many of the agents implemented in TAGA system use F-OWL to represent and 
reason about the message content presented in RDF or OWL.  Upon receiving an 
ACL message with content in RDF or OWL, a TAGA agent parses the content into 
triples, which are then loaded into the FOWL engine for processing.  

The message’s meaning (communicative act, protocol, content language, ontolo-
gies and context) all play a part in the interpretation. For example, when an agent 
receives a query message that uses the query protocol, the agent searches its knowl-
edge base for matching answers and returns an appropriate inform message. TAGA 
uses multiple models to reflect the multiple namespaces and ontologies used in the 
system. The agent treats each ontology as an independent model in the F-OWL en-
gine.  

F-OWL has many usages in TAGA, including the following. 
 
• As knowledge base. Upon receiving an ACL message with content encoded in 

OWL, agents in TAGA parse the content into triples and feeds them into their F-
OWL engine. The information can be easily retrieved by submitting queries in 
various query languages. 

• As reasoning engine.  The agent can answer more questions with the help of F-
OWL engine, for example, the restaurant can answer the question “what is the 
average price of a starter” after it understands that “starter” is sameAs “appe-
tizer”. 

• As a service matchmaker. FIPA platforms provide a directory facilitator ser-
vice which matches service requests against descriptions of registered services. 
We have extended this model by using OWL-S as a service description language.  



F-OWL manages the service profiles and tries to find the best match based on de-
scription in the service request.   

• As an agent interaction coordinator. The interaction protocol can be encoded 
into an ontology file using OWL language. F-OWL will advise the agents what 
to respond based on received messages and context. 

5 Discussion 

This section describes the design and implementation of F-OWL, an inference engine 
for OWL language. F-OWL uses a Frame-based System to reason with OWL ontolo-
gies. F-OWL supports consistency checking of the knowledge base, extracts hidden 
knowledge via resolution and supports further complex reasoning by importing rules. 
Based on our experience in using F-OWL in several projects, we found it to be a fully 
functional inference engine that was relatively easy to use and able to integrate with 
multiple query languages and rule languages. 

There have been lots of works on the OWL inference engine, from semantic web 
research community and description logic community. The following table compares 
F-OWL with some of them: 

 
Table 1: Comparison of F-OWL and other OWL Inference Engine 

 F-OWL Racer FaCT Pellet Hoolet Surnia Triple 
Logic Horn, 

Frame, 
Higher 
Order 

Descript
ion 

Logic 

DL DL Full FOL Full FOL Horn 
Logic 

Support OWL-Full OWL-
DL 

OWL-
DL 

OWL-
DL OWL-DL OWL-

Full RDF 

Based on  XSB/Flor
a Lisp Lisp Java Vampire Otter XSB 

XML 
Datatype Yes Yes No Yes No No No 

Decidable  No Yes Yes Yes No No Yes 
Complete 
consistency 
checker 

No 
Yes 

(OWL-
Lite) 

Yes 
Yes(O
WL-
Lite) 

No No No 

Interface  Java, 
GUI, 

Command 
Line 

DIG, 
Java, 
GUI 

DIG, 
Com-
mand 
Line 

DIG, 
Java Java Python Java 

Query Frame 
style, 

RDQL 

Racer 
query 
lan-

guage 

 RDQL   
Horn 
logic 
style 

Known 
Limitation Poor 

scaling  No Abox 
support  Poor 

scaling 
Poor 

scaling 

Only 
sup-
port 
RDF 



   
The first thing to notice in Table 1 is that the description logic based system can only 
support reasoning over OWL-Lite and OWL-DL statements but not OWL-Full.  
OWL-Full is a full extension of RDF, which needs the supporting of terminological 
cycle. For example, a class in OWL-Full can also be an individual or property. The 
cyclic terminological definitions can be recognized and understood in horn logic or 
frame logic system. 

Table 1 shows that only three DL-based owl inference engines, which are all use a 
Tableau based algorithms [Baader 2000], are decidable and support complete consis-
tency checking (at least in OWL-Lite). However, [Balaban 1993] argues that DL only 
forms a subset of F-Logic. The three kinds of formulae in the description logic can be 
transformed into first class objects and n-ary relationships. F-Logic is able to provide 
a full account for DL without losing any semantics and descriptive nature. We under-
stand that our current F-OWL approach is neither decidable nor complete. However, a 
complete F-Logic based OWL-DL reasoner is feasible.  

The table also shows that F-OWL system doesn’t scale well when dealing with 
large datasets, because of the incompleteness of the reasoner. Actually, none of the 
OWL inference engines listed here scales well when dealing with the OWL test case 
wine ontology3 which defines thousands of classes and properties and a relatively 
modest number of individuals. Further research is needed to improve the performance 
and desirability.   

Comparing with other OWL inference engines, F-OWL has several unique fea-
tures: tabling, support for multiple logical models or reasoning, and a pragmatic ori-
entation. 

Tabling. XSB’s tabling mechanism gives F-OWL the benefits of a forward chain-
ing system in a backward chaining environment. The triples in a model are computed 
only when the system needs to know whether or not they are in the model.  Once it is 
established that a triple is in the current model, it is added to the appropriate table, 
obviating the need to prove that it is in the model again.  This mechanism can have a 
significant impact on the system’s performance. While the first few queries may take 
a long time, subsequent queries tend to be very fast.  This is an interesting compro-
mise between a typical forward-only reasoning system and backward-only reasoning 
systems. 

Multiple logics. F-OWL supports Horn logic, frame logic and a kind of higher-
order logic; all inherited from the underlying XSB and Flora substrates. Working 
together, these logic frameworks improve F-OWL’s performance and capabilities. For 
example, the F-logic supports non-monotonic (default) reasoning. Another example is 
higher-order logic. The semantics of higher-order logics, in general, are difficult and 
in many cases not suitable for practical applications.  XSB’s Hilog, however, is a 
simple syntactic extension of first-order logic in which variables can appear in the 
position of a predicate.  In many cases, this simplifies the expression of the state-
ments, rules and constraints, improving the writability and readability of F-OWL and 
associated programs. 
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Guide and is available at http://www.w3.org/TR/owl-guide/wine.owl. 



Pragmatic approach. The aim of F-OWL system is to be a practical OWL rea-
soner, not necessary a complete OWL reasoner. So F-OWL system provides various 
interface to access the engine and supports multiple query and rule languages. 
In the open web environment, it is generally assumed that the data are not complete 
and not all facts are known. We will research how this fact affects the implementation 
of inference engine. In the semantic web an inference engine may not necessarily 
serve to generate proofs but should be able to check proofs. We will work on using F-
OWL to resolve trust and proof in semantic web.  

In a stand-alone system inconsistencies are dangerous but can be controlled to a 
certain degree. However, controlling the inconsistencies in the Semantic Web is a lot 
more difficult. During the communication, ontology definition origin from other 
agents, who is unknown beforehand, may be asserted. Therefore special mechanisms 
are needed to deal with inconsistent and contradictory information in the Semantic 
Web. There are two steps: detecting the inconsistency and resolving the inconsis-
tency. 

The detection of the inconsistency is based on the declaration of inconsistency in 
the inference engine. The restriction, which imposes the possible values and relation 
that the ontology elements can have, leads to the inconsistency. For example, 
owl:equivalentClass: imposes a restriction on the resource which the subject is same 
class as. owl:disjointWith  imposes a restriction on the resource which the subject is 
different from. The triples (a owl:equivalentClass b) and (a owl:disjointWith b) is not 
directly lead to an inconsistency until applying the detection rule: (A 
owl:equivalentClass B) & (A owl:disjointWith B) inconsistency.  

When inconsistencies are detected, Namespaces can help tracing the origin of the 
inconsistencies. John posted “all dogs are human” at his web site, while “all dogs are 
animal” appears in daml.org’s ontology library. It is clear that the second is more 
trustable. Every web site are identified and treated unequivocally in the semantic web. 
The inference engine contacts trust system to evaluate the creditability of the name-
spaces. [Klyne 2002] and [Golbeck 2003] enlist lots of works and brilliant ideas 
about how to maintain the trust system in the semantic web. Once having the trust 
evaluation result, the agent could take three different actions: (a) accept the one sug-
gested by the inference engine; (b) reject both as none of them is trustable; (c) ask the 
human user to select.  

6 Conclusion 

This paper describes the design and implementation of F-OWL, an inference engine 
for OWL language. F-OWL uses a Frame-based System to reason with OWL ontolo-
gies. F-OWL supports consistency checking, extracts hidden knowledge via resolu-
tion and supports further complex reasoning by importing rules. While using it in 
TAGA user case, we find that F-OWL is a full functional inference engine and easy 
to use with the support of multiple query languages and rule languages. 

In the open web environment, it is generally assumed that the data are not com-
plete and not all facts are known. We will research how this fact affects the imple-
mentation of inference engine. In the semantic web an inference engine may not nec-



essarily serve to generate proofs but should be able to check proofs. We will work on 
using F-OWL to resolve trust and proof in semantic web in the future. 
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