
F-OWL: an Inference Engine for the Semantic Web 1

Youyong Zou, Tim Finin and Harry Chen

Computer Science and Electrical Engineering
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore MD 21250

{yzou1,finin, hchen4 }@cs.umbc.edu

Abstract. Understanding and using the data and knowledge encoded in seman-
tic web documents requires an inference engine. F-OWL is an inference engine
for the semantic web language OWL language based on F-logic, an approach to
defining frame-based systems in logic. F-OWL is implemented using XSB and
Flora-2 and takes full advantage of their features. We describe how F-OWL
computes ontology entailment and compare it with other description logic
based approaches. We also describe TAGA, a trading agent environment that
we have used as a test bed for F-OWL and to explore how multiagent systems
can use semantic web concepts and technology.

1 Introduction

The central idea of the Semantic Web [Berners-Lee 2001] is to publish documents on
the World Wide Web defined and linked in a way that make them both human
readable and machine understandable. Human readable means documents in the
traditional sense which are intended for machine display and human consumption.
Machine understandable means that the data has explicitly been prepared for machine
reasoning and reuse across various applications. Realizing the semantic web vision
requires well defined languages that can model the meaning of information on the
Web as well as applications and services to publish, discover, process and annotate
information encoded in them. This involves aspects from many areas, including
knowledge representation and reasoning, databases, information retrieval, digital
libraries, multi-agent systems, natural language processing and machine learning. The
Web Ontology Language OWL [Patel-Schneider, 2003] is part of the growing stack
of W3C recommendations related to the Semantic Web. OWL has its origins in
DAML+OIL [Hendler 2000] and includes a set of three increasingly complex sub-
languages: OWL-Lite, OWL-DL and OWL-Full.

OWL has a model-theoretic semantics that provides a formal meaning for OWL
ontologies and instance data expressed in them. In addition, to support OWL-Full, a

1 This work was partially supported by the Defense Advanced Research Projects Agency
under contract F30602-97-1-0215 and by the National Science Foundation under award IIS-
0242403.

second model-theoretic semantics has been developed as an extension to the RDF's
semantics, grounding the meaning of OWL ontologies as RDF graphs. An OWL
inference engine’s core responsibilities are to adhere to the formal semantics in proc-
essing information encoded in OWL, to discover possible inconsistencies in OWL
data, and to derive new information from known information. A simple example
demonstrates the power of inference: Joe is visiting San Francisco and wants to find
an Italian restaurant in his vicinity. His wireless PDA tries to satisfy his desire by
searching for a thing of type restaurant with a cuisineType property with the value
Italian. The goodPizza restaurant advertises its cuisine type as Pizza. These cannot
be matched as keywords or even using a thesaurus, since Italian and Pizza are not
equivalent in all contexts. The restaurant ontology makes things clearer: Pizza
rdfs:SubClassOf ItalianCuisine. By using an inference engine, Joe’s PDA can suc-
cessfully determine that the restaurant goodPizza is what he is looking for. F-OWL,
an inference engine for OWL language, is designed to accomplish this task.

In the next section, we outline the functional requirement of the OWL inference
engine. Section three describes F-OWL, the OWL inference engine in Frame Logic
that we have developed. Section four explained how F-OWL is used in a multi-agent
test bed for trading agents. Chapters five and six conclude this paper with a discus-
sion of the work and results and an outline of some potential future research.

2 OWL Engine

An inference engine is needed for the processing of the knowledge encoded in the
semantic web language OWL. An OWL inference engine should have following
features:

• Checking ontology consistency. An OWL concept ontology (e.g., terms de-
fined in the “Tbox”) imposes a set of restrictions on the model graph. The
OWL inference Engine should check the syntax and usage of the OWL terms
and ensure that the OWL instances (e.g., assertions in the “Abox”) meet all of
the restrictions.

• Computing entailments. Entailment, including satisfiability and subsumption,
are essential inference tasks for an OWL inference engine.

• Processing queries. OWL inference engines need powerful, yet easy-to-use,
language to support queries, both from human users (e.g., for debugging) and
software components (e.g., for software agents).

• Reasoning with rules. Rules can be used to control the inference capability, to
describe business contracts, or to express complex constrictions and relations
not directly supported by OWL. An OWL inference engine should provide a
convenient interface to process rules that involve OWL classes, properties and
instance data.

• Handling XML data types. XML data types can be used directly in OWL to
represent primitive kinds of data types, such as integers, floating point num-
bers, strings and dates. New complex types can be defined using base types

and other complex types. An OWL inference Engine must be able to test the
satisfiability of conjunctions of such constructed data types.

The OWL language is rooted in description logic (DL), a family of knowledge rep-

resentation languages designed for encoding knowledge about concepts and concept
hierarchies. Description Logics are generally given a semantics that make them sub-
sets of first-order logic. Therefore, several different approaches based on those logics
have been used to design OWL inference engines:

• Using a specialized description logic reasoner. Since OWL is rooted in de-

scription logic, it is not surprising that DL reasoners are the most widely used
tools for OWL reasoning. DL reasoners are used to specify the terminological hi-
erarchy and support subsumption. It has the advantage of being decidable. Three
well-known systems are FaCT [Horrocks, 1999], Racer [Haarslev 2001] and Pel-
let. They implement different types of description logic. Racer system imple-
ments SHIQ(D) using a Tableaux algorithm. It is a complete reasoner for OWL-
DL and supports both Tbox and Abox reasoning. The FaCT system implements
SHIQ, but only support Tbox reasoning. Pellet implements SHIN(D) and in-
cludes a complete OWL-lite consistency checker supporting both Abox and Tbox
queries.

• Using full first order logic (FOL) theorem prover. OWL statements can be
easily translated into FOL, enabling one to use existing FOL automated theorem
provers to do the inference. Examples of this approach include Hoolet (using the
Vampire [Riazanov, 2003] theorem prover) and Surnia (using Otter theorem
prover). In Hoolet, for example, OWL statements are translated into a collection
of axioms which is then given to the Vampire theorem prover for reasoning.

• Using a reasoner designed for a FOL subset. A fragment of FOL and general
logic based inference engine can also be used to design the OWL inference en-
gine. Horn Logic is most-widely used because of its simplicity and availability of
tools, including Jena, Jess, Triple and F-OWL (using XSB). Other logics, like
higher-order logic in F-OWL (using Flora), can also be used.

As the following sections describe, F-OWL has taken the third approach. An ob-

vious advantage is that many systems have been developed that efficiently reason
over expressive subsets of FOL and are easy to understand and use.

3 F-OWL

F-OWL is a reasoning system for RDF and OWL that is implemented using the XSB
logic programming system [Sagonas, 1994] and the Flora-2 [Kifer, 1995] [Yang
2000] extension that provides an F-logic frame-based representation layer. We have
found that XSB and Flora-2 not only provide a good foundation in which to imple-
ment an OWL reasoner but also facilitate the integration of other reasoning mecha-
nisms and applications, such as default reasoning and planners.

XSB is a logic programming system developed at Stony Brook University. In addi-

tion to providing all the functionality of Prolog, XSB contains several features not
usually found in Logic Programming systems, including tabling, non-stratified nega-
tion, higher order constructs, and a flexible preprocessing system. Tabling is useful
for recursive query computation, allowing programs to terminate correctly in many
cases where Prolog does not. This allows, for example, one to include “if and only if”
type rules directly. XSB supports for extensions of normal logic programs through
preprocessing libraries including a sophisticated object-oriented interface called
Flora-2. Flora-2 is itself a compiler that compiles from a dialect of Frame logic into
XSB, taking advantage of the tabling, HiLog [Chen 1995] and well-founded seman-
tics for negation features found in XSB. Flora-2 is implemented as a set of run-time
libraries and a compiler that translates a united language of F-logic and HiLog into
tabled Prolog code. HiLog is the default syntax that Flora-2 uses to represent function
terms and predicates. Flora-2 is a sophisticated object-oriented knowledge base lan-
guage and application development platform. The programming language supported
by Flora-2 is a dialect of F-logic with numerous extensions, which include a natural
way to do meta-programming in the style of HiLog and logical updates in the style of
Transaction Logic. Flora-2 was designed with extensibility and flexibility in mind,
and it provides strong support for modular software design through its unique feature
of dynamic modules.

F-OWL is the OWL inference engine that uses a Frame-based System to reason
with OWL ontologies. F-OWL is accompanied by a simple OWL importer that reads
an OWL ontology from a URI and extracts RDF triples out of the ontology. The ex-
tracted RDF triples are converted to format appropriate for F-OWL’s frame style and
fed into the F-OWL engine. It then uses flora rules defined in flora-2 language to
check the consistency of the ontology and extract hidden knowledge via resolution.

A model theory is a formal theory that relates expressions to interpretation. The
RDF model theory [Hayes 2003] formalizes the notion of inference in RDF and pro-
vides a basis for computing deductive closure of RDF graphs. The semantics of
OWL, an extension of RDF semantics, defines bindings, extensions of OWL interpre-
tations that map variables to elements of the domain:

• The vocabulary V of the model is composed of a set of URI’s.
• LV is the set of literal values and XL is the mapping from the literals to LV.
• A simple interpretation I of a vocabulary V is defined by:
• A non-empty set IR of resources, called the domain or universe of I.
• A mapping IS from V into IR
• A mapping IEXT from IR into the power set of IR X (IR union LV) i.e. the set

of sets of pairs <x,y> with x in IR and y in IR or LV. This mapping defines the
properties of the triples. IEXT(x) is a set of pairs which identify the arguments
for which the property is true, i.e. a binary relational extension, called the ex-
tension of x.

Informally this means that every URI2 represents a resource that might be a page
on the Internet but not necessarily; it might also be a physical object. A property is a
relation; this relation is defined by an extension mapping from the property into a set.
This set contains pairs where the first element of a pair represents the subject of a
triple and the second element represents the object of a triple. With this system of
extension mapping the property can be part of its own extension without causing
paradoxes.

Take the triple:goodPizza :cuisineType :Pizza from the pizza restaurant in the in-
troduction as example. In the set of URI’s there will be terms (i.e., classes and prop-
erties) like: #goodPizza, #cuisineType, #pizza, #Restanrant, #italianCuisine, etc.
These are part of the vocabulary V. The set IR of resources include instances that
represent resources on the internet or elsewhere, like #goodPizza, , etc. For example
the class #Restanrant might represent the set of all restaurants. The URI refers to a
page on the Internet where the domain IR is defined. Then there is the mapping IEXT
from the property #cuisineType to the set {(#goodPizza, #Pizza),(#goodPizza, #Ital-
ianCuisine)} and the mapping IS from V to IR: :goodPizza #goodPizza,
:cuisineTYpe #cuisineType.

A rule A B is satisfied by an interpretation I if and only if every binding that sat-
isfies the antecedent A also satisfies the consequent B. An ontology O is satisfied by
an interpretation I if and only if the interpretation satisfies every rules and facts in the
ontology. A model is satisfied if none of the statements within contradict each other.
An ontology O is consistent if and only if it is satisfied by at least one interpretation.
An ontology O2 is entailed by an ontology O1 if and only if every interpretation that
satisfies O1 also satisfies O2.

One of the main problems in OWL reasoning is ontology entailment. Many OWL
reasoning engines, such as Pellet and SHOQ, follow an approach suggested by Ian
Horrocks [Horrocks 2003]. By taking advantage of the close similarly between OWL
and description logic, the OWL entailment can be reduced to knowledge base satisfi-
ability in the SHOIN(D) and SHIF(D). Consequently, existing mature DL reasoning
engines such as Racer [Haarslev 2001] can provide reasoning services to OWL. Ora
Lassila suggested a “True RDF processor” [Lassila 2002] in his implementation of
Wilbur system [Lassila 2001] in which entailment is defined via the generation of a
deductive closure from an RDF graph composed of triples. The proving of entailment
becomes the building and searching of closure graph.

With the support of forward/backward reasoning from XSB and frame logic from
Flora, F-OWL takes the second approach to compute the deductive closure of a set of
RDF or OWL statements. The closure is a graph consisting of every triples <subject,
predicate, object> that satisfies {subject, object } ⇒ IEXT(I(predicate)). This is de-
fined as:

<subject,predicate,object> ⇒ KB ⇔ {subject,object} ⇒ IEXT(I(predicate))

2 The W3C says of URIs: “Uniform Resource Identifiers (URIs, aka URLs) are short strings

that identify resources in the web: documents, images, downloadable files, services, elec-
tronic mailboxes, and other resources.” By convention, people understand many URIs as de-
noting objects in the physical world.

Where KB is the knowledge base, I(x) is the interpretation of a particular graph, and
IEXT(x) is the binary relational extension of property as defined in [Hayes 2002].

F-OWL is written in the Flora-2 extension to XSB and consists of the following
major sets of rules:

• A set of rules that reasons over the data model of RDF/RDF-S and OWL;
• A set of rules that maps XML DataTypes into XSB terms;
• A set of rules that performs ontology consistency checks; and
• A set of rules that provides an interface between the upper Java API calls to the

lower layer Flora-2/XSB rules.

F-OWL provides command line interface, a simple graphical user interface and a
Java API to satisfy different requirements. Using F-OWL to reason over the ontology
typically consists of the following four steps:

• Loading additional application-related rules into the engine;
• Adding new RDF and OWL statements (e.g., ontologies or assertions) to the en-

gine. The triples (subject, predicate, object) on the OWL statements are translated
into 2-ply frame style: subject(predicate, object)@model;

• Querying the engine. The RDF and OWL rules are recursively applied to gener-
ate all legal triples. If a query has no variables, a True answer is returned when
an interpretation of the question is found. If the question includes variable, the
variables is replaced with values from the interpretation and returned;

• The ontology and triples can be removed if desired. Else, the XSB system saves
the computed triples in indexed tables, making subsequent queries faster.

4 F-OWL in TAGA

Travel Agent Game in Agentcities (TAGA) [Zou 2003] is a travel market game de-
veloped on the foundation of FIPA technology and the Agentcities infrastructure. One
of its goals is to explore and demonstrate how agent and semantic web technology
can support one another and work together.

TAGA extends and enhances the Trading Agent Competition scenario to work in
Agentcities, an open multiagent systems environment of FIPA compliant systems.
TAGA makes several contributions: auction services are added to enrich the Agent-
cities environment, the use of the semantic web languages RDF and OWL improve
the interoperability among agents, and the OWL-S ontology is employed to support
service registration, discovery and invocation. The FIPA and Agentcities standards
for agent communication, infrastructure and services provide an important foundation
in building this distributed and open market framework. TAGA is intended as a plat-
form for research in multiagent systems, the semantic web and/or automated trading
in dynamic markets as well as a self contained application for teaching and experi-
mentation with these technologies. It is running as a continuous open game at

http://taga.umbc.edu/ and source code is available on Sourceforge for research and
teaching purposes.

The agents in TAGA use OWL in various ways in communication using the FIPA
agent content language (ACL) and also use OWL-S as the service description lan-
guage in FIPA’s directory facilitators. Many of the agents in the TAGA system use F-
OWL directly to represent and reason about content presented in OWL. On receiving
an ACL message with content encoded in OWL, a TAGA agent parses the content
into triples, which are then loaded into the F-OWL engine for processing.

When an agent receives an incoming ACL message, it computes the meaning of
the message from the ACL semantics, the protocols in effect, the content language
and the conversational context. The agent’s subsequent behavior, both internal (e.g.,
updating its knowledge base) and external (e.g., generating a response) depends on
the correct interpretation of the message’s meaning. Thus, a sound and, if possible,
complete understanding the semantics of the key communication components (i.e.,
ACL, protocol, ontologies, content language, context) is extremely important. In
TAGA, the service providers are independent and autonomous entities, which making
it difficult to enforce a design decision that all use exactly the same ontology or pro-
tocol. For example, the Delta Airline service agent may have its own view of travel
business and uses class and property terms that extend an ontology used in the indus-
try. This situation parallels that for the semantic web as a whole – some amount of
diversity is inevitable and must be panned for lest our systems become impossibly
brittle.

Many of the agents implemented in TAGA system use F-OWL to represent and
reason about the message content presented in RDF or OWL. Upon receiving an
ACL message with content in RDF or OWL, a TAGA agent parses the content into
triples, which are then loaded into the FOWL engine for processing.

The message’s meaning (communicative act, protocol, content language, ontolo-
gies and context) all play a part in the interpretation. For example, when an agent
receives a query message that uses the query protocol, the agent searches its knowl-
edge base for matching answers and returns an appropriate inform message. TAGA
uses multiple models to reflect the multiple namespaces and ontologies used in the
system. The agent treats each ontology as an independent model in the F-OWL en-
gine.

F-OWL has many usages in TAGA, including the following.

• As knowledge base. Upon receiving an ACL message with content encoded in

OWL, agents in TAGA parse the content into triples and feeds them into their F-
OWL engine. The information can be easily retrieved by submitting queries in
various query languages.

• As reasoning engine. The agent can answer more questions with the help of F-
OWL engine, for example, the restaurant can answer the question “what is the
average price of a starter” after it understands that “starter” is sameAs “appe-
tizer”.

• As a service matchmaker. FIPA platforms provide a directory facilitator ser-
vice which matches service requests against descriptions of registered services.
We have extended this model by using OWL-S as a service description language.

F-OWL manages the service profiles and tries to find the best match based on de-
scription in the service request.

• As an agent interaction coordinator. The interaction protocol can be encoded
into an ontology file using OWL language. F-OWL will advise the agents what
to respond based on received messages and context.

5 Discussion

This section describes the design and implementation of F-OWL, an inference engine
for OWL language. F-OWL uses a Frame-based System to reason with OWL ontolo-
gies. F-OWL supports consistency checking of the knowledge base, extracts hidden
knowledge via resolution and supports further complex reasoning by importing rules.
Based on our experience in using F-OWL in several projects, we found it to be a fully
functional inference engine that was relatively easy to use and able to integrate with
multiple query languages and rule languages.

There have been lots of works on the OWL inference engine, from semantic web
research community and description logic community. The following table compares
F-OWL with some of them:

Table 1: Comparison of F-OWL and other OWL Inference Engine

 F-OWL Racer FaCT Pellet Hoolet Surnia Triple
Logic Horn,

Frame,
Higher
Order

Descript
ion

Logic

DL DL Full FOL Full FOL Horn
Logic

Support OWL-Full OWL-
DL

OWL-
DL

OWL-
DL OWL-DL OWL-

Full RDF

Based on XSB/Flor
a Lisp Lisp Java Vampire Otter XSB

XML
Datatype Yes Yes No Yes No No No

Decidable No Yes Yes Yes No No Yes
Complete
consistency
checker

No
Yes

(OWL-
Lite)

Yes
Yes(O
WL-
Lite)

No No No

Interface Java,
GUI,

Command
Line

DIG,
Java,
GUI

DIG,
Com-
mand
Line

DIG,
Java Java Python Java

Query Frame
style,

RDQL

Racer
query
lan-

guage

 RDQL
Horn
logic
style

Known
Limitation Poor

scaling No Abox
support Poor

scaling
Poor

scaling

Only
sup-
port
RDF

The first thing to notice in Table 1 is that the description logic based system can only
support reasoning over OWL-Lite and OWL-DL statements but not OWL-Full.
OWL-Full is a full extension of RDF, which needs the supporting of terminological
cycle. For example, a class in OWL-Full can also be an individual or property. The
cyclic terminological definitions can be recognized and understood in horn logic or
frame logic system.

Table 1 shows that only three DL-based owl inference engines, which are all use a
Tableau based algorithms [Baader 2000], are decidable and support complete consis-
tency checking (at least in OWL-Lite). However, [Balaban 1993] argues that DL only
forms a subset of F-Logic. The three kinds of formulae in the description logic can be
transformed into first class objects and n-ary relationships. F-Logic is able to provide
a full account for DL without losing any semantics and descriptive nature. We under-
stand that our current F-OWL approach is neither decidable nor complete. However, a
complete F-Logic based OWL-DL reasoner is feasible.

The table also shows that F-OWL system doesn’t scale well when dealing with
large datasets, because of the incompleteness of the reasoner. Actually, none of the
OWL inference engines listed here scales well when dealing with the OWL test case
wine ontology3 which defines thousands of classes and properties and a relatively
modest number of individuals. Further research is needed to improve the performance
and desirability.

Comparing with other OWL inference engines, F-OWL has several unique fea-
tures: tabling, support for multiple logical models or reasoning, and a pragmatic ori-
entation.

Tabling. XSB’s tabling mechanism gives F-OWL the benefits of a forward chain-
ing system in a backward chaining environment. The triples in a model are computed
only when the system needs to know whether or not they are in the model. Once it is
established that a triple is in the current model, it is added to the appropriate table,
obviating the need to prove that it is in the model again. This mechanism can have a
significant impact on the system’s performance. While the first few queries may take
a long time, subsequent queries tend to be very fast. This is an interesting compro-
mise between a typical forward-only reasoning system and backward-only reasoning
systems.

Multiple logics. F-OWL supports Horn logic, frame logic and a kind of higher-
order logic; all inherited from the underlying XSB and Flora substrates. Working
together, these logic frameworks improve F-OWL’s performance and capabilities. For
example, the F-logic supports non-monotonic (default) reasoning. Another example is
higher-order logic. The semantics of higher-order logics, in general, are difficult and
in many cases not suitable for practical applications. XSB’s Hilog, however, is a
simple syntactic extension of first-order logic in which variables can appear in the
position of a predicate. In many cases, this simplifies the expression of the state-
ments, rules and constraints, improving the writability and readability of F-OWL and
associated programs.

3 The wine ontology is used as a running example in the W3C's OWL Web Ontology Language

Guide and is available at http://www.w3.org/TR/owl-guide/wine.owl.

Pragmatic approach. The aim of F-OWL system is to be a practical OWL rea-
soner, not necessary a complete OWL reasoner. So F-OWL system provides various
interface to access the engine and supports multiple query and rule languages.
In the open web environment, it is generally assumed that the data are not complete
and not all facts are known. We will research how this fact affects the implementation
of inference engine. In the semantic web an inference engine may not necessarily
serve to generate proofs but should be able to check proofs. We will work on using F-
OWL to resolve trust and proof in semantic web.

In a stand-alone system inconsistencies are dangerous but can be controlled to a
certain degree. However, controlling the inconsistencies in the Semantic Web is a lot
more difficult. During the communication, ontology definition origin from other
agents, who is unknown beforehand, may be asserted. Therefore special mechanisms
are needed to deal with inconsistent and contradictory information in the Semantic
Web. There are two steps: detecting the inconsistency and resolving the inconsis-
tency.

The detection of the inconsistency is based on the declaration of inconsistency in
the inference engine. The restriction, which imposes the possible values and relation
that the ontology elements can have, leads to the inconsistency. For example,
owl:equivalentClass: imposes a restriction on the resource which the subject is same
class as. owl:disjointWith imposes a restriction on the resource which the subject is
different from. The triples (a owl:equivalentClass b) and (a owl:disjointWith b) is not
directly lead to an inconsistency until applying the detection rule: (A
owl:equivalentClass B) & (A owl:disjointWith B) inconsistency.

When inconsistencies are detected, Namespaces can help tracing the origin of the
inconsistencies. John posted “all dogs are human” at his web site, while “all dogs are
animal” appears in daml.org’s ontology library. It is clear that the second is more
trustable. Every web site are identified and treated unequivocally in the semantic web.
The inference engine contacts trust system to evaluate the creditability of the name-
spaces. [Klyne 2002] and [Golbeck 2003] enlist lots of works and brilliant ideas
about how to maintain the trust system in the semantic web. Once having the trust
evaluation result, the agent could take three different actions: (a) accept the one sug-
gested by the inference engine; (b) reject both as none of them is trustable; (c) ask the
human user to select.

6 Conclusion

This paper describes the design and implementation of F-OWL, an inference engine
for OWL language. F-OWL uses a Frame-based System to reason with OWL ontolo-
gies. F-OWL supports consistency checking, extracts hidden knowledge via resolu-
tion and supports further complex reasoning by importing rules. While using it in
TAGA user case, we find that F-OWL is a full functional inference engine and easy
to use with the support of multiple query languages and rule languages.

In the open web environment, it is generally assumed that the data are not com-
plete and not all facts are known. We will research how this fact affects the imple-
mentation of inference engine. In the semantic web an inference engine may not nec-

essarily serve to generate proofs but should be able to check proofs. We will work on
using F-OWL to resolve trust and proof in semantic web in the future.

References

[Baader 2000] Franz Baader and Ulrike Sattler: “An Overview of Tableau Algorithms for
Description Logics”, Proceeding of Tableau 2000, RWTH Achen.

[Balaban 1993] Mira Balaban: “The F-Logic Approach for Description Languages”, Ben-
Gurion University of Negev Technical Report FC-93-02, 1993.

 [Berners-Lee 2001] Tim Berners-Lee, James Hendler and Ora Lassila: ”The Semantic Web”,
Scientific America , May 2001.

[Chen 1995] Weidong Chen, Michael Kifer and David Warren: “Logical Foundations of Ob-
ject-Oriented and Frame-Based Languages”, Journal of ACM, May 1995.

[Golbeck 2003] Jennifer Golbeck, Bijan Parsia, and James Hendler: “Trust networks on the
semantic web”, Proceedings of Cooperative Intelligent Agents 2003, Helsinki, Finland, Au-
gust 2003.

[Haarslev 2001] Volker Haarslev and Ralf Moller: ”Racer system description”, Proceeding of
International Joint Conference on Automated Reasoning, Volume 2083, page 701-705,
Springer 2001

[Hayes 2003] Pat Hayes, RDF Semantics , W3C working Draft, 2003.
[Hendler 2000] James Hendler and Deborah L. McGuinness, “The DARPA Agent Markup

Language.” IEEE Intelligent Systems, Trends and Controversies, page. 6-7, Novem-
ber/December 2000.

[Horrocks, 1999] I. Horrocks. FaCT and iFaCT. In P. Lambrix, A. Borgida, M. Lenzerini, R.
Möller, and P. Patel-Schneider, editors, Proceedings of the International Workshop on De-
scription Logics (DL'99), pages 133-135, 1999.

[Horrocks, 2003] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. In Dieter Fensel, Katia Sycara, and John Mylopoulos, edi-
tors, Proc. of the 2003 International Semantic Web Conference (ISWC 2003), number 2870
in Lecture Notes in Computer Science, pages 17-29. Springer, 2003.

[Kifer, 1995] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. JACM, 42(4):741--843, Jul. 1995.

[Klyne 2002] G.Klyne: "Framework for Security and Trust Standards”, SWAD-Europe, De-
cember 2002.

[Lassila 2001] Ora Lassila: Enabling Semantic Web Programming by Integrating RDF and
Common lisp”, Proceeding of first Semantic Web Working Symposium, Stanford Univer-
sity, 2001.

[Lassila 2002] Ora Lassila: ”Taking the RDF Model Theory Out for a Spin”, First International
Semantic Web Conference (ISWC 2002), Sardinia (Italy), June 2002.

[Patel-Schneider 2003] Peter F. Patel-Schneider, Pat Hayes and Ian Horrocks, OWL Web
Ontology Language Semantics and Abstract Syntax, W3C working Draft, 2003.

[Riazanov, 2003] A.Riazanov, Implementing an Efficient Theorem Prover, PhD thesis, Uni-
versity of Manchester, 2003.

 [Sagonas, 1994] Kostantinos Sagonas, Terrance Swift, and David S. Warren: XSB as an effi-
cient deductive database engine, In ACM Conference on Management of Data (SIGMOD),
1994.

[Yang, 2000] Guizhen Yang and Michael Kifer. FLORA: Implementing an efficient DOOD
system using a tabling logic engine. Proceedings of Computational Logic --- CL-2000,
number 1861 in LNAI, pp 1078--1093. Springer, July 2000.

[Zou, 2003] Youyong Zou, Tim Finin, Li Ding, Harry Chen, and Rong Pan, TAGA: Trading
Agent Competition in Agentcities, Workshop on Trading Agent Design and Analysis, held
in conjunction with the Eighteenth International Joint Conference on Artificial Intelligence,
Monday, 11 August, 2003, Acapulco MX.

[Zou, 2004] Youyong Zou, Agent-Based Services for the Semantic Web, Ph.D. Dissertation,
University of Maryland, Baltimore County, August, 2004.

