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Joint Base Station Scheduling∗

Thomas Erlebach † Riko Jacob ‡ Matúš Mihal’ák § Marc Nunkesser‡

Gábor Szabó‡ Peter Widmayer‡

Abstract
Consider a scenario where radio base stations need to send data to users with wireless

devices. Time is discrete and slotted into synchronous rounds. Transmitting a data item
from a base station to a user takes one round. A user can receive the data item from any
of the base stations. The positions of the base stations and users are modeled as points
in Euclidean space. If base station b transmits to user u in a certain round, no other user
within distance at most ‖b−u‖2 from b can receive data in the same round due to interference
phenomena. The goal is to minimize, given the positions of the base stations and users, the
number of rounds until all users have received their data.

We call this problem the Joint Base Station Scheduling Problem (JBS) and consider it on
the line (1D-JBS) and in the plane (2D-JBS). For 1D-JBS, we give an efficient 2-approximation
algorithm and polynomial time optimal algorithms for special cases. We model transmissions
from base stations to users as arrows (intervals with a distinguished endpoint) and show that
their conflict graphs, which we call arrow graphs, are a subclass of the class of perfect graphs.

For 2D-JBS, we prove NP-hardness and show that some natural greedy heuristics do not
achieve approximation ratio better than O(log n), where n is the number of users.

1 Introduction
We consider different combinatorial aspects of problems that arise in the context of load bal-
ancing in time division networks. These problems turn out to be related to interval scheduling
problems and interval graphs.

The general setting is that users with mobile devices are served by a set of base stations.
In each time slot (round) of the time division multiplexing each base station serves at most
one user. Traditionally, each user is assigned to a single base station that serves him until he
leaves its cell or his demand is satisfied. The amount of data that a user receives depends on
the strength of the signal that he receives from his assigned base station and on the interfer-
ence, i.e. all signal power that he receives from other base stations. In [4], Das et al. propose a
novel approach: Clusters of base stations jointly decide which users they serve in which round
in order to increase network performance. Intuitively, this approach increases throughput,
when in each round neighboring base stations try to serve pairs of users such that the mutual
interference is low. We turn this approach into a discrete scheduling problem in one and two
dimensions (see Figure 1.1), the Joint Base Station Scheduling problem (JBS).

In one dimension (see Figure 1.1(a)) we are given a set of n users as points {u1, . . . , un} on a
line and we are given positions {b1, . . . , bm} of m base stations. Note that such a setting could
correspond to a scenario where the base stations and users are located along a straight road.
In our model, when a base station bj serves a user ui this creates interference in an interval
of length 2|bj − ui| around the midpoint bj. In each round each base station can serve at most
one user such that at the position of this user there is no interference from any other base
station. The goal is to serve all users in as few rounds as possible. In two dimensions users
and base stations are represented as points in the plane. When base station bj serves user ui

this creates interference in a disk with radius ‖bj − ui‖2 and center bj (see Figure 1.1(c)).
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(a) This figure describes a possible situation
in some time slot (round). Base station b2
serves user u2, b3 serves user u6. Users u3, u4

and u5 are blocked and cannot be served.
Base station b1 cannot serve u1 because this
would create interference at u2

b1 b2 b3u1 u2 u3 u4 u5 u6

(b) Arrow representation of (a)
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(c) A possible situation in some time
slot in the 2D case. Users u2, u4, u7

and u12 are served. Base station b5
cannot serve user u1 here, because
this would create interference at u4

as indicated by the dashed circle

Figure 1.1: The JBS-problem in one and two dimensions

The one-dimensional problem is closely related to interval scheduling problems, except that
the particular way how interference operates leads to directed intervals (arrows). For these
we allow that their tails can intersect (intersecting tails correspond to interference that does
not affect the users at the heads of the arrows). We present results on this special interval
scheduling problem. Similarly, the problem is related to interval graphs, except that we have
conflict graphs of arrows together with the conflict rules defined by the interference (arrow
graphs).

The problem of scheduling data transmissions in the smallest number of discrete rounds
can be expressed as the problem of coloring the corresponding arrow graph with the smallest
number of colors, where the colors represent rounds. In this paper, we prove that arrow graphs
are perfect and can be colored optimally in O(n log n) time. For the one-dimensional JBS
problem with evenly spaced base stations we give a polynomial-time dynamic programming
algorithm. For another special case of the one-dimensional JBS problem, where 3k users must
be served by 3 base stations in k rounds, we also give a polynomial-time optimal algorithm.
For the general one-dimensional JBS problem, we show that for any fixed k the question
whether all users can be served in k rounds can be solved in nO(k) time. From the perfectness
of arrow graphs and the existence of a polynomial-time algorithm for computing maximum
weighted cliques in these graphs we derive a 2-approximation algorithm for JBS based on an
LP relaxation and rounding. We show that this result can also be generalized to a more realistic
model where the interference region extends beyond the receiver. For the two-dimensional
JBS problem, we show that it is NP-complete, while deciding whether all users can be served
in one round can be done in polynomial time. We analyze an approximation algorithm for a
constrained version of the problem, and present lower bounds on the quality of some natural
greedy algorithms for the general two-dimensional JBS problem.

1.1 Related Work
Das et al. [4] propose an involved model for load balancing that takes into account different
fading effects and calculates the resulting signal to noise ratios at the users for different sched-
ules. In each round only a subset of all base stations is used in order to keep the interference
low. The decision which base stations to use is taken by a central authority. The search
for this subset is formulated as a (nontrivial) optimization problem that is solved by complete
enumeration and that assumes complete knowledge of the channel conditions. The authors
perform simulations on a hexagonal grid, propose other algorithms, and reach the conclusion
that the approach has the potential to increase throughput.

There is a rich literature on interval scheduling and selection problems (see [6, 12] and
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the references given there for an overview). Our problem is more similar to a setting with
several machines where one wants to minimize the number of machines required to schedule
all intervals. A version of this problem where intervals have to be scheduled within given
time windows is studied in [3]. Inapproximability results for the variant with a discrete set of
starting times for each interval are presented in [2].

1.2 Problem Definitions and Model
We fully define the problems of interest in this section. Throughout the paper we use standard
graph-theoretic terminology, see e.g. [14]. In the one-dimensional case we are given positions
of base stations B = {b1, . . . , bm} and users U = {u1, . . . , un} on the line in left-to-right order.
Conceptually, it is more convenient to think of the interference region that is caused by some
base station bj serving a user ui as an interference arrow of length 2|bj − ui| with midpoint
bj pointing to the user as shown in Figure 1.1(b). The interference arrow for the pair (ui, bj)
has its head at ui and its midpoint at bj. We denote the set of all arrows resulting from
pairs P ⊆ U × B by A(P ). If it is clear from the context, we call the interference arrows just
arrows. If two users are to be scheduled in the same round, then each of them must not get
any interference from any other base station. Thus, two arrows are compatible if no head is
contained in the other arrow; otherwise, we say that they are in conflict. (Formally, the head
ui of the arrow for (ui, bj) is contained in the arrow for (uj , bk) if ui is contained in the closed
interval [bk − |uj − bk|, bk + |uj − bk|].) If we want to emphasize which user is affected by the
interference from another transmission, we use the term blocking, i.e. arrow ai blocks arrow
aj if aj ’s head is contained in ai. For each user we have to decide from which base station she
is served. This corresponds to a selection of an arrow for her. Furthermore, we have to decide
in which round each selected arrow is scheduled under the side constraint that all arrows in
one round must be compatible. For this purpose it is enough to label the arrows with colors
that represent the rounds.

For the two-dimensional JBS problem we have positions in R
2 and interference disks d(bi, uj)

with center bi and radius ‖bi − uj‖2 instead of arrows. We denote the set of interference disks
for the user base-station pairs from a set P by D(P ). Two interference disks are in conflict if
the user that is served by one of the disks is contained in the other disk; otherwise, they are
compatible. The problems can now be stated as follows:

1D-JBS

Input: User positions U = {u1, . . . , un} ⊂ R and base station positions B = {b1, . . . , bm} ⊂ R.

Output: A set P of n user base-station pairs such that each user is in exactly one pair, and a
coloring C : A(P ) → N of the set A(P ) of corresponding arrows such that any two arrows
ai, aj ∈ A(P ), ai 6= aj, with C(ai) = C(aj) are compatible.

Objective: Minimize the number of colors used.

2D-JBS

Input: User positions U = {u1, . . . , un} ⊂ R
2 and base station positions B = {b1, . . . , bm} ⊂ R

2.

Output: A set P of n user base-station pairs such that each user is in exactly one pair, and
a coloring C : D(P) → N of the set D(P) of corresponding disks such that any two disks
di, dj ∈ D(P), di 6= dj, with C(di) = C(dj) are compatible.

Objective: Minimize the number of colors used.

For simplicity we will write ci instead of C(ai) in the rest of the paper. From the problem
definitions above it is clear that both the 1D- and the 2D-JBS problems consist of a selection
problem and a coloring problem. In the selection problem we want to select one base station for
each user in such a way that the arrows (disks) corresponding to the resulting set P of user
base-station pairs can be colored with as few colors as possible. We call a selection P feasible if
it contains exactly one user base-station pair for each user. Determining the cost of a selection
is then the coloring problem. This can also be viewed as a problem in its own right, where we
no longer make any assumption on how the set of arrows (for the 1D problem) is produced.
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The conflict graph G(A) of a set A of arrows is the graph in which every vertex corresponds to
an arrow and there is an edge between two vertices if the corresponding arrows are in conflict.
We call such conflict graphs of arrows arrow graphs. The arrow graph coloring problem asks
for a proper coloring of such a graph. It is similar in spirit to the coloring of interval graphs. As
we will see in Section 2.1, the arrow graph coloring problem can be solved in time O(n log n).
We finish this section with a simple lemma that leads to a definition:

Lemma 1.1. For each 1D-JBS instance there is an optimal solution in which each user is served
either by the closest base station to her left or by the closest base station to her right.

Proof. This follows by a simple exchange argument: Take any optimal solution that does not
have this form. Then exchange the arrow where a user is not served by the closest base station
in some round against the arrow from the closest base station on the same side (which must
be idle in that round). Shortening an arrow without moving its head can only resolve conflicts.
Thus, there is also an optimal solution with the claimed property.

The two possible arrows by which a user can be served according to this lemma are called
user arrows. It follows that for a feasible selection one has to choose one user arrow from each
pair of user arrows.

2 Case on the Line—1D-JBS
As mentioned above, solving the 1D-JBS problem requires selecting an arrow for each user
and coloring the resulting arrow graph with as few colors as possible. Trying to understand
when a selection of arrows leads to an arrow graph with small chromatic number, we first
study the coloring problem for arrow graphs.

2.1 Coloring Arrow Graphs
In this section we consider the arrow graph coloring problem: Given a set A = {a1, . . . , an} of
interference arrows, color it with the minimum number of colors in such a way that no two
arrows of the same color are in conflict. We present a simple greedy algorithm that colors
G(A) optimally in time O(n log n). It is a modification of the standard greedy algorithm [14] for
coloring interval graphs. We remark that the existence of an O(n log n) coloring algorithm for
arrow graphs follows also from the fact that arrow graphs are a special case of trapezoid graphs
(cf. Section 2.3). The algorithm we describe in the following can be viewed as an adaptation of
the coloring algorithm for trapezoid graphs due to Felsner et al. [7]. We present the algorithm
here to make the paper more self-contained and because the description and analysis of the
algorithm may be helpful to better understand the properties of arrow graphs.

We assume for simplicity that the arrows are given in left-to-right order of their left end-
points. This sorting can also be seen as the first step of the algorithm. Then the algorithm
scans the arrows from left to right in this sorted order. In step i it checks whether there are
colors that have already been used and that can be assigned to ai without creating a conflict. If
there are such candidate colors, it considers for each such color c the rightmost right endpoint
rc among the arrows that have been assigned color c so far, and chooses for ai a color c for
which rc is rightmost (breaking ties arbitrarily). If there is no candidate color, the algorithm
assigns a new color to ai.

We show that this greedy algorithm produces an optimal coloring by showing that any
optimal solution can be transformed into the solution produced by the algorithm.

Lemma 2.1. Let C be an optimal coloring for a set of arrows A = {a1, . . . , an}. The coloring C
can be transformed into the coloring produced by the greedy algorithm without introducing new
colors.

Proof. We show the lemma by induction on the index of the arrows. The induction hypothesis
is: There exists an optimal coloring that agrees with the greedy coloring up to arrow k − 1. The
induction start is trivial. In the kth step let C = (c1, . . . , cn) be such an optimal coloring and let
H = (h1, . . . , hn) be the greedy coloring, i.e. we have h1 = c1, h2 = c2, . . . , hk−1 = ck−1. We consider
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Figure 2.1: Possible configuration for the two cases. Dotted lines mean that the arrows could
be extended

the coloring C ′ = (c′1, . . . , c
′
n) that is obtained from C by exchanging the colors ck and hk for the

arrows ak, . . . , an. More precisely, we define

c′i =











ci, if i < k or ci 6∈ {ck, hk}

hk, if i ≥ k and ci = ck

ck, if i ≥ k and ci = hk.

By definition we have c′k = hk, and it remains to show that C ′ is a proper coloring and, therefore,
the induction hypothesis is also true for k. If ck = hk we have C ′ = C which is a proper coloring.
Otherwise, we have to show that all pairs of arrows ai, aj that are in conflict receive different
colors in C ′, i.e., c′i 6= c′j. If i, j < k or k ≤ i, j this is obvious by the fact that C is a coloring.
Hence, we assume i < k < j; the case j = k is implied by H being a proper coloring.

If hk is a new color, i.e. different from all of c1, . . . , ck−1, then, because of the greedy algorithm,
also ck is a new color. Hence, it is impossible that we have c′i = c′j.

Now assume for a contradiction that we indeed have c = c′i = c′j and the arrows ai and aj

are in conflict. By the ordering of the arrows we know that ai and ak overlap. Observe that
c ∈ {ck, hk} because C is a coloring. This leaves us with two cases:
Case 1 c = ck: Since C is a coloring, the arrows ai and ak are compatible, i.e. ai is directed left
and ak is directed right. Such a configuration is depicted in Figure 2.1. By the definition of the
greedy algorithm, we know that hk is a color of a compatible arrow. Since hk 6= ck = ci, there
must exist an arrow al, l < k, that ends not before ai and has color hk, i.e. cl = hk (and al is
compatible with ak). Since aj is in conflict with ai (the head of aj is within ai), there is also a
conflict between aj and al. We have c′j = ck, implying cj = hk, hence we get the contradiction
cj = hk = cl in the optimal coloring C.
Case 2 c = hk: Because H is a coloring, ai and ak have to be compatible. Since ai ends before
ak and is in conflict with aj, also aj is in conflict with ak. Because c′j = hk we know by definition
of C ′ that cj = ck, hence there is a conflict in C, a contradiction.

The running time of the algorithm depends on the time the algorithm spends in every step
on identifying an allowed color that was previously assigned to an arrow with the rightmost
right endpoint. By maintaining two balanced search trees (one tree for each direction of arrows)
storing the most recently colored arrows of the used colors (one arrow per color) in the order
of their right endpoints, we can implement this operation in logarithmic time. Together with
Lemma 2.1 we get the following theorem.

Theorem 2.2. The greedy algorithm optimally colors a given set of arrows {a1, . . . , an} in O(n log n)
time.

2.2 1D-JBS with Evenly Spaced Base Stations
Now consider the 1D-JBS problem under the assumption that the base stations are evenly
spaced. We are given m base stations {b1, . . . , bm} and n users {u1, . . . , un} on a line, where
the distance between any two neighboring base stations is the same. This assumption can be
viewed as an abstraction of the fact that in practice, base stations are often placed in regular
patterns and not in a completely arbitrary fashion.

Let d denote the distance between two neighboring base stations. The base stations partition
the line into two rays and a set of intervals {v1, . . . , vm−1}. In this section we additionally require
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Figure 2.2: Dynamic programming approach

that no user to the left of the leftmost base station be further away from it than distance d,
and that the same hold for the right end. We define a solution to be non-crossing if there are
no two users u and w in the same interval such that u is to the left of w, u is served from the
right, and w from the left.

Lemma 2.3. For instances of 1D-JBS with evenly spaced base stations, there is always an
optimal solution that is non-crossing.

Proof. Take any optimal solution s that is not non-crossing. We show that such a solution can
be transformed into another optimal solution s′ that is non-crossing. Let u and w be two users
such that u and w are in the same interval, u is to the left of w, and u is served by the right
base station br in round t1 by arrow ar and w is served by the left base station bl in round t2 by
arrow al; trivially, t1 6= t2. Modify s in such a way that at t1 base station br serves w and at t2
base station bl serves u. This new solution is still feasible because first of all both the left and
the right involved arrows al and ar have become shorter. This implies that both al and ar can
only block fewer users. On the other hand, the head of al has moved left and the head of ar

has moved right. It is impossible that they are blocked now because of this movement: In t1
this could only happen if there were some other arrows containing w, the new head of ar. Such
an arrow cannot come from the left, because then it would have blocked also the old arrow. It
cannot come from br because br is busy. It cannot come from a base station to the right of br,
because such arrows do not reach any point to the left of br (here we use the assumption that
the rightmost user is no farther to the right of the rightmost base station than d, and that the
base stations are evenly spaced). For t2 the reasoning is symmetric.

The selection of arrows in any non-crossing solution can be completely characterized by a
sequence of m − 1 division points, such that the ith division point is the index of the last user
that is served from the left in the ith interval. (The case where all users in the ith interval are
served from the right is handled by choosing the ith division point as the index of the rightmost
user to the left of the interval, or as 0 if no such user exists.) A brute-force approach could
now enumerate over all possible O(nm−1) division point sequences (dps) and color the selection
of arrows corresponding to each dps with the greedy algorithm.

Dynamic Programming
We can solve the 1D-JBS problem with evenly spaced base stations more efficiently by a dy-
namic programming algorithm that runs in polynomial time. The idea of the algorithm is to
consider the base stations and thus the intervals in left-to-right order. We consider the cost
χi(di−1, di) of an optimal solution up to the ith base station conditioned on the position of the
division points di−1 and di in the intervals vi−1 and vi, respectively, see Figure 2.2.

Definition 2.4. We denote by χi(α, β) the minimum number of colors needed to serve users
u1 to uβ using the base stations b1 to bi under the condition that base station bi serves exactly
users uα+1 to uβ and ignoring the users uβ+1, . . . , un.

Let Λ(vi) denote the set of potential division points for interval vi, i.e., the set of the indices
of users in vi and of the rightmost user to the left of vi (or 0 if no such user exists). The values
χ1(d0, d1) for d0 = 0 (all users to the left of b1 must be served by b1 in any solution) and d1 ∈ Λ(v1)
can be computed directly by using the greedy coloring algorithm. For i ≥ 1, we compute the
values χi+1(di, di+1) for di ∈ Λ(vi), di+1 ∈ Λ(vi+1) from the table for χi(·, ·). If we additionally
fix a division point di−1 for interval vi−1, we know exactly which selected arrows intersect
interval vi regardless of the choice of other division points. Observe that this only holds for
equidistant base stations and no “far out” users. For this selection, we can determine with

6



the greedy coloring algorithm of Section 2.1 how many colors are needed to color the arrows
intersecting vi. Let us call this number c(i, di−1, di, di+1) for interval vi and division points
di−1, di and di+1. We also know how many colors we need to color the arrows intersecting
intervals v0 to vi−1. For a fixed choice of division points di−1, di and di+1 we can combine the
two colorings corresponding to χi(di−1, di) and c(i, di−1, di, di+1): Both of these colorings color
all arrows of base station bi, and these arrows must all have different colors in both colorings.
No other arrows are colored by both colorings, so χi(di−1, di) and c(i, di−1, di, di+1) agree up to
redefinition of colors. We can choose the best division point di−1 and get

χi+1(di, di+1) = min
di−1∈Λ(vi−1)

max {χi(di−1, di), c(i, di−1, di, di+1)}

The running time is dominated by the calculation of the c(·) values. There are O(m · n3) such
values, and each of them can be computed in time O(n log n) using the coloring algorithm.
The optimal solution can be found in the usual way by tracing back where the minimum
was achieved from χm(x, n). Here the x is chosen among the users of the interval before the
last base station such that χm(x, n) is minimum. For the traceback it is necessary to store
in the computation of the χ values where the minimum was achieved. The traceback yields a
sequence of division points that defines the selection of arrows that gives the optimal schedule.
Altogether, we have shown the following theorem:
Theorem 2.5. The base station scheduling problem for evenly spaced base stations can be
solved in time O(m · n4 log n) by dynamic programming.

Note that the running time can also be bounded by O(m · u4
max log umax), where umax is the

maximum number of users in one interval.

2.3 Relation to Other Graph Classes and Perfectness
We have shown in Section 2.1 that optimal colorings of arrow graphs can be computed effi-
ciently. We will make use of additional properties of arrow graphs in the design of algorithms
for 1D-JBS in the following sections. Therefore, let us briefly discuss the relationship between
arrow graphs and other known graph classes.1 We refer to [1, 13] for definitions and further
information about the graph classes mentioned in the following.

First, it is easy to see that arrow graphs are a superclass of interval graphs: Any interval
graph can be represented as an arrow graph with all arrows pointing in the same direction.

An arrow graph can be represented as the intersection graph of triangles on two horizontal
lines y = 0 and y = 1: Simply represent an arrow with left endpoint ` and right endpoint r that
points to the right (left) as a triangle with corners (`, 0), (r, 0), and (r, 1) (with corners (r, 1), (`, 1),
and (`, 0)). It is easy to see that two triangles intersect if and only if the corresponding arrows
are in conflict. See Figure 2.3 for an example.

Intersection graphs of triangles with endpoints on two parallel lines are called PI∗ graphs.
They are a subclass of trapezoid graphs, which are the intersection graphs of trapezoids that
have two sides on two fixed parallel lines. Trapezoid graphs are in turn a subclass of co-
comparability graphs, a well-known class of perfect graphs. Therefore, the containment in
these known classes of perfect graphs implies the perfectness of arrow graphs. Consequently,
the size of a maximum clique in an arrow graph always equals its chromatic number.

As arrow graphs are a subclass of trapezoid graphs, we can apply known efficient algorithms
for trapezoid graphs to arrow graphs. Felsner et al. [7] give algorithms with running-time
O(n log n) for chromatic number, weighted independent set, clique cover, and weighted clique
in trapezoid graphs with n vertices, provided that the trapezoid representation is given. The
coloring algorithm provided there is very similar to the algorithm explained in Section 2.1. We
sum up the discussed properties of arrow graphs in the following theorem.
Theorem 2.6. Arrow graphs are perfect. In arrow graphs chromatic number, weighted indepen-
dent set, clique cover, and weighted clique can be solved in time O(n log n).

One can also show that arrow graphs are AT-free (i.e., do not contain an asteroidal triple)
and weakly chordal.

1The connections between arrow graphs and known graph classes such as PI∗ graphs, trapezoid graphs, co-
comparability graphs, AT-free graphs, and weakly chordal graphs were observed by Ekki Köhler, Jeremy Spinrad, Ross
McConnell, and R. Sritharan at the seminar “Robust and Approximative Algorithms on Particular Graph Classes”, held
in Dagstuhl Castle during May 24–28, 2004.
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Figure 2.3: An arrow graph (top) and its representation as a PI∗ graph (bottom)
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Figure 2.4: Far away users u10, u11 and u12 are served by b3 in rounds 1, 2 and 3, respectively.
The solid arrows depict the selection of users for b2 and b3. The dotted arrows depict the
resulting selection for b1. Users u1, u8 and u9 will be scheduled in a round of Type 2 (not
shown).

2.4 Serving 3k Users with 3 Base Stations in k Rounds
We study another special case of the general setting. We are given 3 base stations b1, b2 and
b3, and 3k users with k far away users among them, i.e., users to the left of b1 or to the right
of b3 whose interference arrows contain b2; the problem is to decide whether the users can be
served in k rounds.

Observe that in every round every base station has to serve a user. We know that a far
away user has to be served by its unique neighboring base station. Since the arrows of far
away users contain b2, all users between b1 and b2 have to be served in rounds in which far
away users of b3 are served, and all users between b2 and b3 have to be served in rounds in
which far away users of b1 are served. In particular, every round must be of one of the following
two types:

Type 1: b3 serves a far away user, b2 serves a user between b1 and b2, and b1 serves a user that
is not a far away user.

Type 2: b1 serves a far away user, b2 serves a user between b2 and b3, and b3 serves a user that
is not a far away user.

For every user, it is uniquely determined whether she will be served in a round of Type 1 or
Type 2.

The schedule can be constructed in the following way. Suppose we have k1 far away users
at b1 and k3 far away users at b3, k = k1 + k3. First, we serve the far away users of b3 in rounds
1, . . . , k3 in the order of increasing distance from b3. Next, we match the resulting arrows with
arrows produced by b2 serving users between b1 and b2 (cf. Figure 2.4). We apply a best fit
approach. For every round i = 1, 2, . . . , k3, we find the user closest to b2 that can be served
together with the corresponding far away user served by b3, and schedule the corresponding
transmission in that round. Note that with this selection the size of the arrows of b2 grows with
the number of the round in which they are scheduled. Now we have to serve the remaining k3

users (that are not far away users of b1) with b1. We use a best fit approach again, i.e., for every
round i = 1, 2, . . . , k3, we schedule the user with maximum distance from b1 (longest arrow)
among the remaining users. This completes the description of how we obtain a schedule for
the rounds in which a far away user of b3 is served. The schedule for the remaining users (the

8



far away users of b1, and the users that must be scheduled in a round in which a far away
user of b1 is scheduled) can be found similarly, starting with the far away users of b1.

We claim that if there exists a valid schedule with k rounds for the given instance of the
problem, our algorithm produces a valid schedule. Without loss of generality, we consider only
the schedule for the rounds in which the far away users of b3 are served; the reasoning for the
rounds with far away users of b1 is analogous. Consider any valid schedule with k3 rounds
for the 3k3 users that must be served in rounds in which far away users of b3 are served; call
this schedule the optimal schedule. We can assume that the far away users are served by
b3 in the optimal schedule in the same round as in our schedule (the schedule produced by
our algorithm). We will show that we can transform the optimal schedule into our schedule
without losing validity.

First, we transform the optimal schedule in such a way that, in addition to the user served
by b3, also the user served by b2 is the same as in our schedule in every round. Consider
the first round i in which the optimal schedule does not serve the same user with b2 as our
schedule. Assume that b2 serves user x in our schedule, but user y 6= x in the optimal schedule.
(Note also that the algorithm cannot get stuck while selecting a user to be served by b2 in
round i, since y is a candidate.) Note that y must be to the left of x, due to the best-fit rule our
algorithm applies. The optimal schedule must serve x in some round j 6= i. If it serves x with
b2, we know that j > i, and we can simply exchange the users served by b1 and b2 in rounds
i and j in the optimal schedule. If the optimal schedule serves x with b1 in round j, we can
let the optimum serve y with b1 in round j and x with b2 in round i. In both cases, we have
transformed the optimal schedule so that it also serves x with b2 in round i, without losing
validity. Repeating this transformation, we obtain an optimal schedule that seves the same
users with b2 and b3 as our schedule in every round.

It remains to handle the users served by b1. Consider the first round i in which the optimal
schedule differs from our schedule. Assume that b1 serves user w in our schedule, but user z in
the optimal schedule. Note that, by the best-fit approach, the arrow for (w, b1) must be at least
as long as the arrow for (z, b1). The optimal schedule must serve w in some later round, say,
round j, also with b1. We can change the optimal schedule by letting b1 serve user w in round i
and user z in round j; this does not affect the validity of the schedule, since the arrow for z is
not longer than the arrow for w (and thus round j remains valid) and since the arrow produced
by the transmission of b2 is shorter in round i than in round j (and thus serving w in round
i must be valid if serving w in round j was valid). By repeating this transformation, we have
transformed the optimal schedule into our schedule, without losing validity. This shows that
our algorithm produces a valid schedule if one exists. The time complexity of our algorithm is
dominated by the time for sorting the users, O(n log n). After the sorting, the schedule can be
computed in linear time.

Theorem 2.7. For the setting with 3 base stations and 3k users on a line with k far away users,
there is an O(n log n) time algorithm that computes a valid schedule with k rounds if there is one.

2.5 Exact Algorithm for the k-Decision Problem
In this section we present an exact algorithm for the decision variant k-1D-JBS of the 1D-JBS
problem: For given k and an instance of 1D-JBS, decide whether all users can be served in at
most k rounds. We present an algorithm for this problem that runs in O(m · n2k+1 log n) time.

We use the result from Section 2.3 that arrow graphs are perfect. Thus the size of the
maximum clique of an arrow graph equals its chromatic number.

The idea of the algorithm, which we call Ak−JBS, is to divide the problem into subproblems,
one for each base station, and then combine the partial solutions to a global one.

For base station bi, the corresponding subproblem Si considers only arrows that intersect
bi and arrows for which the alternative user arrow2 intersects bi. Call this set of arrows Ai.
We call Si−1 and Si+1 neighbors of Si. A solution to Si consists of a feasible selection of arrows
from Ai of cost no more than k, i.e. the selection can be colored with at most k colors. To find
all such solutions we enumerate all possible selections that can lead to a solution in k rounds.
For Si we store all such solutions {s1

i , . . . , s
I
i } in a table Ti. We only need to consider selections

in which at most 2k arrows intersect the base station bi. All other selections need more than
2For every user there are only two user arrows that we need to consider (Lemma 1.1). If we consider one of them,

the other one is the alternative user arrow.
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Figure 2.5: A clique of size greater than k at point p together with the different types of arrows
at this point

k rounds, because they must contain more than k arrows pointing in the same direction at bi.
Therefore, the number of entries of Ti is bounded by

∑2k

j=0

(

n

j

)

= O(n2k). We need O(n log n)

time to evaluate a single selection with the coloring algorithm of Section 2.1. Selections that
cannot be colored with at most k colors are marked as irrelevant and ignored in the rest of the
algorithm. We build up the global solution by choosing a set of feasible selections s1, . . . , sm in
which all neighbors are compatible, i.e. they agree on the selection of common arrows. It is
easy to see that in such a global solution all subsolutions are pairwise compatible.

We can find such a set of compatible neighbors by going through the tables in left-to-right
order and marking every solution in each table as valid if there is a compatible, valid solution
in the table of its left neighbor, or as invalid otherwise. A solution si marked as valid in table Ti

thus indicates that there are solutions s1, . . . , si−1 in T1, . . . , Ti−1 that are compatible with it
and pairwise compatible. In the leftmost table T1, every feasible solution is marked as valid.
When the marking has been done for the tables of base stations b1, . . . , bi−1, we can perform
the marking in the table Ti for bi in time O(n2k+1) as follows. First, we go through all entries of
the table Ti−1 and, for each such entry, in time O(n) discard the part of the selection affecting
pairs of user arrows that intersect only bi−1 but not bi, and enter the remaining selection into
an intermediate table Ti−1,i. The table Ti−1,i stores entries for all selections of arrows from pairs
of user arrows intersecting both bi−1 and bi. An entry in Ti−1,i is marked as valid if at least one
valid entry from Ti−1 has given rise to the entry. Then, the entries of Ti are considered one by
one, and for each such entry si the algorithm looks up in time O(n) the unique entry in Ti−1,i

that is compatible with si to see whether it is marked as valid or not, and marks the entry in
Ti accordingly. If in the end the table Tm contains a solution marked as valid, a set of pairwise
compatible solutions from all tables exists and can be retraced easily.

The overall running time of the algorithm is O(m · n2k+1 · log n). There is a solution to k-1D-
JBS if and only if the algorithm finds such a set of compatible neighbors.

Lemma 2.8. There exists a solution to k-1D-JBS if and only if Ak−JBS finds a set of pairwise
compatible solutions.

Proof. (⇒) Every arrow intersects at least one base station. A global solution directly provides
us with a set of compatible subsolutions Σopt = {sopt

1 , . . . , sopt
m }. Since the global solution has

cost at most k, so have the solutions of the subproblems. Hence, the created entries will appear
in the tables of the algorithm and will be considered and marked as valid. Thus there is at
least one set of compatible solutions that is discovered by the algorithm.

(⇐) We have to show that the global solution constructed from the partial ones has cost
at most k. Suppose for a contradiction that there is a point p where the clique size is bigger
than k and therefore bigger than the clique at bi (the left neighboring base station of p) and the
clique at bi+1 (the right neighboring base station of p). We divide the arrows intersecting point
p into 5 groups as in Figure 2.5. Arrows of type a (b) have their head between bi and bi+1 and
their tail to the left (right) of bi (bi+1). Arrows of type c (d) have their tail between bi and bi+1 and
their head to the left (right) of bi (bi+1). Finally, type e arrows intersect both bi and bi+1. For the
clique at p to be bigger than that at bi some arrows not considered at bi have to create conflicts.
The only such arrows (considered at bi+1 but not at bi) are of type d (observe that arrows of
type a, b and e are considered both at the table for bi and at the table for bi+1). If their presence
increases the clique size at p, then no type c arrow can be in the maximum clique at p (observe
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Figure 2.6: Setting S1 with two base stations bl and br and one user u in between, where both
the solution of the ILP and the solution of the LP relaxation have cost 1. S2 is constructed
recursively by adding to the setting of S1 two (scaled) copies of S1 in the tail positions of the
arrows. Here the cost of the relaxed LP is 1.5 and the integral cost is 2. The recursive approach
for general n is shown in the right picture. Using setting S1 and putting two (properly scaled)
settings Sn−1 as depicted in the picture, we get a setting Sn where k∗(n), the cost of the LP
relaxation for Sn, is 0.5 + k∗(n − 1) = 0.5 + n/2, whereas the cost of the ILP is n

that arrows of type c and d are compatible). Therefore, the clique at p cannot be bigger than
the clique at bi+1, a contradiction.

Theorem 2.9. Problem k-1D-JBS can be solved in time O(m · n2k+1 · log n).

2.6 Approximation Algorithm
In this section we present an approximation algorithm for 1D-JBS that relies on the properties
of arrow graphs from Theorem 2.6. Let A denote the set of all user arrows of the given instance
of 1D-JBS. From the perfectness of arrow graphs it follows that it is equivalent to ask for a
feasible selection Asel ⊆ A minimizing the chromatic number of its arrow graph G(Asel) (among
all feasible selections) and to ask for a feasible selection Asel minimizing the maximum clique
size of G(Asel) (among all feasible selections). Exploiting this equivalence, we can express
the 1D-JBS problem as an integer linear program as follows. We introduce two indicator
variables li and ri for every user i that indicate whether she is served by the left or by the
right base station, i.e. if the user’s left or right user arrow is selected. Moreover, we ensure
by the constraints that no cliques in G(Asel) are large and that each user is served. The ILP
formulation is as follows:

min k (2.1)
s.t.

∑

li∈C

li +
∑

ri∈C

ri ≤ k ∀ cliques C in G(A) (2.2)

li + ri = 1 ∀i ∈ {1, . . . , |U |} (2.3)
li, ri ∈ {0, 1} ∀i ∈ {1, . . . , |U |} (2.4)
k ∈ N (2.5)

The natural LP relaxation is obtained by allowing li, ri ∈ [0, 1] and k ≥ 0. Given a solution
to this relaxation, we can use a rounding technique to get an assignment of users to base
stations that has cost at most twice the optimum, i.e., we obtain a 2-approximation algorithm.
Let us denote by opt the optimum number of colors needed to serve all users. Then opt ≥ k,
because the optimum integer solution is a feasible fractional solution. Construct now a feasible
solution from a solution to the relaxed problem by rounding li := bli + 0.5c, ri := 1 − li. Before
the rounding the size of every (fractional) clique is at most k; afterwards the size can double in
the worst case (because the value of each individual variable can at most double). Therefore,
the cost of the rounded solution is at most 2k ≤ 2opt. Figure 2.6 gives an example where the
cost of an optimal solution to the relaxed program is indeed smaller than the cost of an optimal
integral solution by a factor arbitrarily close to 2.

One issue that needs to be discussed is how the relaxation can be solved in time polynomial
in n and m, as there can be an exponential number of constraints (2.2). (Figure 2.7 shows that
this can really happen. The potentially exponential number of maximal cliques in arrow graphs
distinguishes them from interval graphs, which have only a linear number of maximal cliques.)
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Figure 2.8: Example for interference segments

Fortunately, we can still solve such an LP in polynomial time with the ellipsoid method of
Khachiyan [11] applied in a setting similar to [10]. This method only requires a separation
oracle that provides us for any values of li, ri with a violated constraint, if one exists. It is
easy to check for a violation of constraints (2.3) and (2.4). For constraints (2.2), we need to
check if for given values of li, ri the maximum weighted clique in G(A) is smaller than k. By
Theorem 2.6 this can be done in time O(n log n). Summarizing, we get the following theorem:

Theorem 2.10. There is a polynomial-time 2-approximation algorithm for the 1D-JBS problem.

2.7 Different Interference Models
Until now we have analyzed the discrete interference model where the interference region has
no effect beyond the targeted user. One step towards a more realistic model is to consider
the interference region, produced by a base station sending a signal to a user, to span also
beyond the targeted user. For the 1-dimensional case this can be modeled by using interference
segments with the user somewhere between the endpoints of this segment (the small black
circles on the segments in Figure 2.8) and the base station in the middle of the segment. The
conflict graph of such interference segments is another special case of trapezoid graphs. For
an example see Figure 2.8.

To see why the transformation to trapezoid graphs is correct, one should consider a seg-
ment with a user between its endpoints as two arrows pointing to the user from the left and
the right, and then the triangle transformation (from Section 2.3) results in the trapezoid rep-
resentation presented above. Hence for this generalization of the 1D-JBS problem we have a
2-approximation algorithm using the same technique as in Section 2.6.

3 General Case in the Plane—2D-JBS
Here we analyze the two-dimensional version (2D-JBS) of the base station scheduling prob-
lem. The decision variant k-2D-JBS of the problem asks for a given k and an instance of
2D-JBS whether the users can be served in at most k rounds. We show that k-2D-JBS is NP-
complete for any k ≥ 3. For the case k = 1, we give a polynomial algorithm. Then we present
a constant-factor approximation algorithm for a constrained version of 2D-JBS. At the end of
the section, we show logarithmic lower bounds on the approximation ratio of several natural
greedy approaches.
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3.1 NP-Completeness of the k-2D-JBS Problem
In this section we show that the decision variant of the joint base station scheduling problem
in the plane (k-2D-JBS) is NP-complete. We provide a reduction from the general k-colorability
problem. Our reduction follows the methodology presented in [9] for unit disk k-colorability.
We present the realization of the auxiliary graphs using 2D-JBS instances and show their
correctness.

We recall the definition of the graph k-colorability problem presented in [8].

Graph k-Colorability: Given a graph G = (V, E) and a positive integer k ≤ |V |. Is G k-colorable,
i.e., does there exist a function f : V → {1, 2, . . . , k} such that f(u) 6= f(v) whenever
{u, v} ∈ E?

Given any graph G, it is possible to construct in polynomial time a corresponding 2D-JBS
instance that can be scheduled in k rounds if and only if G is k-colorable. We use an embedding
of G into the plane which allows us to replace the edges of G with suitable base station chains
with several users in a systematic fashion such that k-colorability is preserved. The output
vertices of the auxiliary graphs represent the vertices of the original graph G.

In the following we recall the auxiliary graph structures from [9] used for the embedding
and we show their realization using JBS instances. In the resulting JBS instances we make
frequent use of cliques joined to single vertices (see Figure 3.1(a)). A clique of size k − 1 is
realized by a disk with k − 1 users on the perimeter and one base station b1 in the middle of
the disk. We call this disk the inner disk of base station b1 and the users on its perimeter the
inner users. A vertex uk connected to this clique is represented by a user on a bigger disk. We
call this disk the outer disk of base station b1 and the user(s) on its perimeter the outer user(s).
To force this base station b1 to serve users only inside the disk d(b1, uk) we place an auxiliary
base station b′1 with k users around it such that the distance from b1 to any outer user of any
other base station will be greater than the distance from b1 to any user of b′1 (see Figure 3.2).
To simplify the drawings in what follows for the JBS instances we omit the auxiliary base
stations and the users around them. Furthermore we draw the cliques as disks labeled with
their size (see Figure 3.1(b)). In the computations the factor 2 for the number of base stations
and number of users comes from counting also the auxiliary base stations and their users. We
present now the definitions of the auxiliary graph structures from [9] and their realization by
JBS instances together with their properties.

Definition 3.1. A k-wire of length l, denoted by W l
k, consists of l + 1 vertices Wv0 , Wv1 , . . . , Wvl

and l (k − 1)-cliques WC1, WC2, . . . , WCl such that for each 1 ≤ i ≤ l all vertices of the clique
WCi are connected to both Wvi−1 and Wvi

. The vertices Wv0 and Wvl
are the output vertices of

the k-wire (see Figure 3.3(a)).

The realization of the k-wire by a JBS instance is given in Figure 3.4(a). In this and the
following JBS instances we have to show that the number of users remains polynomial as a
function of the number of vertices of the original graph G and the transformation from G can
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be done in polynomial time. We also have to show that the assignment of the users to base
stations is uniquely defined if we want to preserve k-colorability.

Observation 3.2. A JBS instance for a W l
k has the following properties:

1. It has m = 2(l + 1) base stations and n = 2k · (l + 1) users.

2. It can be scheduled in k rounds, but not in k − 1.

3. Every k-scheduling assigns to every base station only its inner and outer users.

4. Every k-scheduling assigns the two output vertices v0 and vl to the same round.

Proof. It is easy to observe that a W l
k cannot be scheduled in less than k rounds since the

lower bound on the number of necessary rounds is d n
m
e = k. We also know that there is a

valid k-schedule for a W l
k since the schedule that assigns to every base station its inner and

outer users needs exactly k-rounds. Since the number of users n is k ·m we know that all valid
k-schedules have to use all base stations in every round.

To prove that the only valid k-scheduling assigns to every base station only its inner and
outer users we need the auxiliary base stations and the k users around them. First we prove
that every base station (including the auxiliary ones) must serve its own inner users. Suppose
that some base station bj serves an inner user of base station bi (i 6= j) in round l. In round
l base station bi cannot serve any other inner user since they are all at the same distance
around bi and hence only one of them can be served in a round. Base station bi cannot serve
any user that is farther away than its inner users in round l because the interference disk
would block the inner user that is served by base station bj. Hence base station bi has to stay
idle in round l which contradicts the validity of this schedule as a k-scheduling. We still have
to prove that no base station serves the outer users of other base stations. Suppose that base
station bi serves the outer user of another base station, w.l.o.g. let this other base station be
bi+1. The auxiliary base station b′i is placed in such a way that the distance di,i is less than
the distance di,i+1 (see Figure 3.2) and thus the interference disk d(bi, vi+1) would block the
auxiliary base station b′i from serving its inner users. This contradicts the fact that in a valid
k-scheduling every base station is active in every round.

The last property holds since the interference that the outer users (v0, . . . , vl) produce forces
every valid k-schedule to schedule them in the same round.

Definition 3.3. A k-chain of length l, denoted by K l
k, consists of a W l

k together with an addi-
tional vertex connected with one of the output vertices. This new vertex and the vertex at the
other end of the original k-wire are the output vertices of the k-chain (see Figure 3.3(b)).

The realization of the k-chain using a JBS instance is given in Figure 3.4(b).

Observation 3.4. A JBS instance for a K l
k has the following properties:

1. It has m = 2(l + 2) base stations and n = 2k · (l + 2) users.

2. It can be scheduled in k rounds, but not in k − 1.

3. Every k-scheduling assigns to every base station only its inner and outer users.

4. Every k-scheduling assigns the two output vertices v0 and vl+1 to different rounds.

Proof. By the same argument as for the W l
k one can prove the second property. From the

properties of a k-wire we know that every valid k-schedule schedules the outer users v0 . . . vl in
the same round. User vl cannot be served by the right-most base station because then the base
station to the left of it would have to stay idle in that round. Thus a valid k-schedule will assign
to every base station only its inner and outer users. The user vl is in the interference region of
the user vl+1, hence it forces every k-schedule to schedule them in different rounds.

Definition 3.5. A k-clone of size s ≥ 2 and length l, denoted by C l
k, consists of the l(s − 1)

vertices Cv1 , Cv2 , . . . , Cvl(s−1)
, the l(s − 1) + 1 (k − 1)-cliques CC0, CC1, . . . , CCl(s−1) and s output

vertices o0, o1, . . . , os−1. Each Cvi
, i = 1, . . . , l(s − 1) is connected to all vertices of CCi−1 and

CCi. Furthermore, each output vertex oi, i = 0, . . . , s− 1 is connected to all vertices of CCl·i (see
Figure 3.3(c)).
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Figure 3.5: Helper gadgets for realizing the k-crossing with JBS instances

The realization of the k-clone C5
k of size 3 using a JBS instance is given in Figure 3.4(c).

Observation 3.6. A JBS instance for a C l
k of size s has the following properties:

1. It has m = 2(s + (s − 1)l + 1) base stations and n = 2k · (s + (s − 1)l + 1) users.

2. It can be scheduled in k rounds, but not in k − 1.

3. Every k-scheduling assigns to every base station only its inner and outer users.

4. Every k-scheduling assigns the output vertices o0 . . . os−1 to the same round.

Proof. The proof is the same as for a k-wire.

Definition 3.7. A k-crossing, denoted by Hk (k ≥ 3), is represented by the graph in Fig-
ure 3.3(d). The vertices v0, v1, v2, v3 are the output vertices of the k-crossing.

We can realize the k-crossing using the following helper gadgets: for a (k − 2)-clique con-
nected to 4 vertices we can use the JBS instance from Figure 3.5(a). For a (k − 2)-clique
connected to 3 vertices we can use the same gadget having just 3 k-wires instead of 4. For
a high degree node like v4 or v0 (from Figure 3.3(d)) we can use the JBS instance from Fig-
ure 3.5(b). The edges connecting the vertices can be realized with JBS instances for k-chains.
The k-chains can be bent, they do not have to be vertical or horizontal.

Observation 3.8. The JBS instance for a k-crossing Hk has the following properties:

1. It has m (constant) base stations and n = k · m users.
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2. It can be scheduled in k-rounds, but not in k − 1.

3. Every k-scheduling assigns to every base station only its inner and outer users.

4. Every k-coloring (scheduling) f satisfies f(v0) = f(v2) and f(v1) = f(v3).

5. There exist k-colorings f1 and f2 which satisfy f1(v0) = f1(v2) = f1(v1) = f1(v3) and f2(v0) =
f2(v2) 6= f2(v1) = f2(v3).

Proof. The JBS instance for Hk is constructed in such a way that all base stations are fully
loaded with k users. Hence it is obvious that it cannot be scheduled in less than k rounds.
Similarly to the proof for the k-wire one can show that the only valid k-scheduling serves with
every base station only its own inner and outer users. Since this JBS instance is a realization
of the original k-crossing auxiliary graph we know that every k-coloring satisfies the last two
properties.

In what follows we give the main idea how to embed a general graph G into the plane using
the auxiliary graph structures presented above. High degree vertices vi are broken into an
independent set of vertices vi,1 . . . vi,d (d ≥ 2 is the degree of vi). Each such vertex vi,j is then
connected to one of the neighbors of vi. The vertices are placed on a line such that the modified
vertices coming from the same original vertex are placed next to one another. The original edges
are replaced by horizontal and vertical lines connecting the corresponding vertices (or modified
vertices). The properties that must hold in order to do the replacements without conflicting
with each other are:

• All edges consist of horizontal and vertical line-segments.

• Between parallel line segments, vertices, and crossings certain minimal distances are
preserved.

• These minimal distances ensure that at most two line segments cross in one point.

• For each given graph this embedding can be computed in polynomial time.
As an example in Figure 3.6 we show the embedding for an input graph G. The replacement
vertices for a high degree node can be realized with a k-clone, the crossings with a k-crossing,
the vertical and horizontal line segments with k-wires and k-chains. In [9] a systematic way is
presented for doing these replacements using unit disk graphs and the same works here using
instead JBS instances of the auxiliary graph structures.
Theorem 3.9. The k-2D-JBS problem is NP-complete for any fixed k ≥ 3.

Proof. Let G = (V, E) be any graph and k ≥ 3. The construction of the corresponding embedding
using JBS instances with its conflict graph Ĝ = (V̂ , Ê) can be done in polynomial time. All that
remains to be shown is that

G is k-colorable ⇔ Ĝ is k-colorable. (3.1)

The proof is given in [9] and is based on the properties of the auxiliary graph structures.
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A direct consequence of the reduction used in proving Theorem 3.9 is the following corollary.

Corollary 3.10. The coloring step of the k-2D-JBS problem is NP-complete for any fixed k ≥ 3.

Proof. In the reduction presented for the k-2D-JBS problem the selection of serving base sta-
tions for every user in the auxiliary graphs is uniquely determined by the construction. Hence
the same reduction also works for just the coloring part of the k-2D-JBS problem.

3.2 Base Station Assignment for One Round
The previous section showed that even if we have users assigned to the base stations as they
are served in an optimal solution, the k-2D-JBS problem cannot be solved in polynomial time
unless P=NP. Now we consider the complementary problem: knowing for every user the round
in which she is served in a particular optimal solution, find an assignment of the users to the
base stations such that a valid optimal schedule is obtained. We will see that this problem
is solvable in polynomial time, which actually shows that, in some sense, the assignment
problem is easier than the coloring one.

Knowing for every user the round in which she is served, we can consider every round as
an independent problem by taking into account only the users scheduled in the corresponding
round. We study therefore the problem of deciding whether we can serve all the users in one
round.

We start with a simple observation that is valid also for the general 2D-JBS problem. Con-
sider an empty disk d = d(b, u) in the given setting of users U and base stations B, i.e. a disk
containing only user u. We claim that every optimal solution can use d to serve u without
changing the disks selected for other users. To see this, imagine u is served by some other
base station b′ in an optimal solution. Then b has to be idle in this round, because u is the
closest user of b and therefore serving anybody else would block u. Moreover, d does not con-
tain any other user, therefore we can serve u with b instead of b′ in the same round without
blocking anybody else.

We can adapt this idea to our setting. Suppose we can serve all the users in one round.
Observe that every optimal solution is a set of empty disks. Consider the set of all possible
empty disks formed by B and U (for every base station there is at most one empty disk,
determined by the closest user to the base station3). For every user u ∈ U there must be at
least one empty disk serving u (e.g., the disk from an optimal solution). We know that we can
use any of these disks in any optimal solution, therefore we can pick any empty disk into our
optimal solution. So our algorithm simply computes all empty disks and then selects for each
user u an arbitrary empty disk serving u; if some user u does not have an empty disk, the users
cannot be served in one round.

The algorithm can clearly be implemented to run in polynomial time. Using standard tech-
niques from computational geometry [5], e.g., computing in O(n log n) time a Voronoi diagram
for the user points and then a point location data structure so that the closest user of a base
station can be determined in O(log n) time, we obtain a running-time of O((m + n) log n).

Lemma 3.11. The problem of deciding whether all users in a given 2D-JBS instance can be
scheduled in one round can be solved in time O((n + m) log n).

Corollary 3.12. Given the sets U1, . . . , Ur of users scheduled in rounds 1, . . . , r in an optimal
solution, the problem of assigning base stations to the users such that we obtain a valid schedule
of users Ui in round i can be solved in polynomial time.

3.3 Approximation Algorithms
Looking for algorithms for the general 2D-JBS problem, we first analyze an approximation
algorithm for a restricted setting where base stations have a limited transmission range and
are not too close to each other. Then we discuss several greedy approaches and give lower
bounds on their approximation ratios. The linear programming approach (as for 1D-JBS)
cannot be applied directly: The conflict graph of a set of interference disks is not perfect, as is
shown in Figure 3.7.

3There is no empty disk at b if there are 2 or more closest users at the same distance from b.
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Figure 3.7: A cycle of length 5 in the conflict graph of interference disks (left). Note that it is
not clear, however, whether an optimal solution to the selection problem will ever yield such
a conflict graph; a different selection for this instance yields a conflict graph with five isolated
vertices (right)

3.3.1 Bounded Geometric Constraints

We consider instances where the base stations are at least a distance ∆ from each other and
have limited power to serve a user, i.e., every base station can serve only users that are at most
Rmax away from it. We also assume that for every user there is at least one base station that
can reach the user. We present a simple algorithm achieving an approximation ratio depending
only on the parameters ∆ and Rmax.

Consider the following greedy approach: For round 1, 2, . . ., the algorithm repeatedly picks
an arbitrary user base-station pair (u, b), where u is an unserved user, such that the transmis-
sion from b to u can be added to the current round without creating a conflict. If no such user
base-station pair exists, the next round starts. The algorithm terminates when all users have
been served.

We can analyze the approximation ratio achieved by this greedy algorithm as follows. As-
sume that the algorithm schedules the users in k rounds. Let u be a user served in round k,
and let b be the base station serving u. Since u was not served in rounds 1, 2, . . . , k−1, we know
that in each of these rounds, at least one of the following is true:

• b serves another user u′ 6= u.

• u is contained in an interference disk d(b′, u′) for some user u′ 6= u that is served in that
round.

• b cannot transmit to u because the disk d(b, u) contains another user u′ that is served in
that round.

In each of these cases, we see that a user u′ is served, and that the distance between u and u′

is at most 2Rmax (since every interference disk has radius at most Rmax). Therefore, the disk
with radius 2Rmax centered at u contains at least k users (including u). Let B ′ be the set of
base stations that serve these k users in the optimal solution. The base stations in B ′ must
be located in a disk with radius 3Rmax centered at u. As any two base stations are separated
by a distance of ∆, we know that disks with radius ∆/2 centered at base stations are interior-
disjoint. Furthermore, the disks with radius ∆/2 centered at the base stations in B ′ are all
contained in a disk with radius 3Rmax + ∆/2 centered at u. Therefore, we have

|B′| ≤
(3Rmax + ∆/2)2π

(∆/2)2π
=

(6Rmax + ∆)2

∆2
.

Furthermore, we know that the optimal solution needs at least k/|B ′| rounds. This yields the
following theorem.

Theorem 3.13. There exists an approximation algorithm with approximation ratio ( 6Rmax+∆
∆ )2

for 2D-JBS in the setting where any two base stations are at least ∆ away from each other and
every base station can serve only users within distance at most Rmax from it.
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Figure 3.8: A greedy approach serves n users placed on a common interference disk in n time
steps. An optimum algorithm can serve the users in one time step by assigning ui to base
station bi, which lies on a halfline determined by b0 and ui

3.3.2 General 2D-JBS

We present lower bounds on the approximation ratios of three natural greedy approaches for
the general 2D problem. The algorithms proceed round by round and use certain greedy rules
to determine the user base-station pairs to be scheduled in the current round.

First, consider the greedy algorithm that serves as many users as possible in every round,
i.e., in each round it chooses a maximum independent set in the conflict graph of all inter-
ference disks corresponding to user base-station pairs involving unserved users. We refer to
this algorithm as the maximum-independent-set algorithm. The maximum independent set
problem is NP-hard in general graphs, and we do not know its complexity for arrow graphs;
nevertheless, we believe that it is interesting to determine the approximation ratio that can be
achieved using this greedy approach, even if it is not clear whether the approach can actually
be implemented in polynomial time.

Furthermore, as in the previous section, we consider greedy algorithms that, in each round,
repeatedly choose an interference disk of an unserved user that can be scheduled in the cur-
rent round without creating a conflict. The algorithm that chooses among the interference
disks of all unserved users a disk of smallest radius is the smallest-disk-first algorithm, and
the algorithm choosing a disk containing the fewest other unserved users is the fewest-users-
in-disk algorithm.

For the smallest-disk-first algorithm, there is a simple example (see Figure 3.8) showing
that this approach has approximation ratio Ω(n). All the user points in this example, however,
lie on the perimeter of a common interference disk. As such a configuration appears to be a
rare case in practice, this leads us to consider instances of 2D-JBS in general position, defined
as follows.

Definition 3.14. We say that sets of points (U, B) ⊂ R
2 × R

2 are in general position if no two
points from U lie on a circle centered at some point in B.

For points in general position we can show a lower bound of Ω(log n) on the approximation
ratio of all three considered greedy algorithms. Our construction of 2D-JBS instances leading
to this lower bound is sketched in Figure 3.9. Conceptually, the arrangement of users and base
stations can be viewed as a tree, where the edges of the tree are indicated by solid and dashed
lines in the figure. The dashed lines represent a distance ∆, while the solid lines represent
much shorter distances εi � ∆. The structure of the tree is such that, after contracting the
dashed edges, one obtains a binomial tree. The base stations in the figure are labelled by
b0, b1, . . . in the order of a depth-first search traversal of the tree. Users are vertices of degree 2
and are adjacent to two base stations; our convention is to label a user adjacent to bi and bj

with ui,j.
The base station at the root of the tree is b0. The aim of the construction is to have the

greedy algorithms use b0 to serve the d users u0,1, u0,2, u0,4, . . . , u0,2i , . . . , u0,2d−1, which are the
children of b0, in d consecutive rounds, whereas they can be served in a single round by an
optimum algorithm by using the d base stations b1, b2, b4, . . . , b2i , . . . , b2d−1. We show how to
construct a tree Td with this property for every value of d. In the following, the term “greedy
algorithm” should be taken to refer to the smallest-disk-first algorithm. Afterwards we will
discuss how the two other greedy algorithms behave on the constructed instances.
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Figure 3.9: Outline of the construction of instances that greedy algorithms cannot handle
efficiently

For d = 1, we simply put the user u0,1 between base stations b0 and b1 at a position closer to
b0, see Figure 3.9(a). For d = 2, we have to ensure that user u0,2 is not served by b2 in the first
round. Therefore we occupy b2 in the first round by another user u2,3, which will be selected
by the greedy algorithm (see Figure 3.9(b)).

Similarly, for general d, we construct the tree Td from two trees Td−1, see Figure 3.9(c). We
want to ensure that the user u0,2d−1 is not served in the first d−1 rounds; hence, we make base
station b2d−1 (which could serve u0,2d−1 from below) busy for d − 1 rounds by creating a copy of
Td−1 rooted at b2d−1. Equivalently, the tree Td can be viewed as putting trees T0, T1, T2, . . . , Td−1

below the users u0,1, . . . , u0,2d−1. Note also that every base station in the tree Td is the root of
a tree Tk for some k. With this construction, we obtain a tree with levels of users and base
stations, where level i consists of the users and base stations whose distance to the root (in
terms of the number of edges) is of the form 2i − 1 or 2i. All users in a level have the same
y-coordinate, and the same holds for the base stations in a level. We set ε1 < ε2 < . . . < εd and
∆ in such a way that εd � ∆ and Wd � ε1, where Wd is the width of the tree Td (see Figure 3.9).
When constructing a tree Td from two trees Td−1, we always leave a free space of width Wd−1

between these two trees. We adjust ∆ such that serving a user ui,j from level ` by base station
bj blocks all the users on level `+1. Also, we adjust Wd such that a disk centered at any user u
from level i with radius ε1 contains all other users from level i. Figure 3.10 depicts the desired
property. To ensure that the points are in general position, we can adjust the x-coordinates of
all users by a small perturbation that is much smaller than any of the values εi.

The tree is constructed in such a way that the greedy algorithm will pick the disks formed
by base stations and users at distance εi in the i-th round, 1 ≤ i ≤ d. Let Gi denote the set of
these disks chosen in the i-th round. An optimal algorithm can serve all users on some level
` in one round by using the base stations from below, at the expense of blocking all users on
level `+1. Thus, it can serve all users in two rounds by serving the odd levels in one round and
the even levels in the other. Consequently, the approximation ratio of the greedy algorithm is
Ω(d). The number nd of users in the tree Td can be calculated by solving the simple recursion
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at b2 blocks all users on the level below b2

nd = 2nd−1 + 1 (which follows from the recursive construction of the tree), where n1 = 1. This
gives n = nd = 2d − 1 users and thus d = log (n + 1).

As every disk from Gi does not contain any unserved user, Gi is also a possible choice for
the fewest-users-in-disk greedy algorithm. Thus we have shown the following.

Lemma 3.15. There are instances (U, B) of 2D-JBS in general position for which the smallest-
disk-first greedy algorithm and the fewest-users-in-disk greedy algorithm have approximation
ratio Ω(log n), where n = |U |.

Furthermore, we can show that Gi is a maximum independent set among the interference
disks of all unserved users after the first i − 1 rounds of the algorithm, implying that the
greedy algorithm maximizing the number of served users in each round can produce the same
solution as the two other greedy algorithms on this instance.

To show this, we consider an arbitrary maximum independent set Mi among the inter-
ference disks of all unserved users (after serving G1, . . . , Gi−1 in previous rounds) and show
|Mi| = |Gi|. The inequality |Mi| ≥ |Gi| is obvious. To show the second inequality, we proceed as
follows. Define an active base station as a base station with unserved neighboring user(s) be-
low the base station. A base station such that all neighboring users below it have been served
is called passive. We present several transformations on Mi (exchanging one interference disk
by another) that preserve the size of Mi and the independence of the disks and lead to a new
maximum independent set where only active base stations are used to serve users. This shows
the desired inequality |Mi| ≤ |Gi|, since in Gi all active base stations serve a user.

First, we transform Mi so that base stations serve only neighboring users. Suppose there
is user u on level i that is served by a non-neighboring base station b in Mi. We perform a case
study depending on the position of b.

1. Suppose b is below u (i.e., from level i, i + 1, . . .). Consider the bottom neighbor b′ of u
(from level i, cf. Figure 3.11(a)). We claim that b′ is idle (i.e., b′ does not serve any user);
b′ cannot serve any user above b′, because this would block u (u is the closest user above
b′); b′ cannot serve any of its bottom neighbors (from level i+1) because all the users from
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Figure 3.11: Transformations for the maximum-independent-set algorithm

level i + 1 are blocked by the disk d(b, u); b′ cannot serve any of the users from a level
greater than i + 1 because this would block u. Therefore we can serve u by b′ (no new
interference is created because the disk d(b′, u) blocks only the users on level i + 1, which
were blocked also by the disk d(b, u)).

2. Suppose b is above u (i.e., from level i− 1, i− 2, . . .) and to the left of u (see Figure 3.11(b)).
Consider the upper neighbor b′ of u (b′ is from level i − 1; note also that b must be to the
left of b′, by construction of the instance); b′ cannot serve any user above it, because that
would block u; b′ cannot serve any user that is to the right of u and below b′ for the same
reason; b′ cannot serve any user from level greater than i for the same reason; b′ cannot
serve any neighboring user to the left of u because these users are blocked by the disk
d(b, u); b′ cannot serve any user from level i to the left of its leftmost neighbor because then
it would block u (as the horizontal distance is at least the width of the tree rooted at b′).
Therefore, b′ is idle and can serve u instead of b without introducing any new interference.

3. Suppose b is above u (i.e., from level i−1, i−2, . . .) and to the right of u (see Figure 3.11(c)).
Suppose b is the rightmost base station with the property of serving a user and being to
the right and above of her. Consider the smallest subtree Tk containing both u and b. The
children subtrees of Tk are of the form T1, T2, . . . , Tk−1. Let Tk−i be the child subtree of Tk

containing u and let Tk−j be the child subtree of Tk containing b. Note that i > j, therefore
the horizontal distance from b to u is at least Wk−j . Thus, b also blocks all users on level i
in the tree Tk−j, in particular, user u′, which is the user in Tk−j whose position in Tk−j is
identical to the position of u in Tk−i (note that, because the root of Tk−j has more children
than that of Tk−i, there must be such a user u′, and u′ hasn’t been served in previous
rounds). We will show that u′ is only in the interference disk d := d(b, u), and therefore
we can use b to serve u′ instead of u (the interference disk gets smaller). Now if b is still
to the right of u′ we are left with a smaller tree Tk−j containing both b and u′ and we can
apply the same transformation rule 3 again until b is to the left of u′, when we can apply
the transformation 2.
It remains to show that u′ is only in the interference disk d. Suppose for a contradiction
that u′ is also in another disk d′′ = d(b′′, u′′). Consider the case where b′′ is above u′. If user
u′′ is above b′′ then u′′ is a neigbor of b′′ (transformation 1 has been applied) and therefore
if d′′ blocks u′ then it blocks also the whole level i, u included. So u′′ must be below b′′.
Then u′′ has to be from level i (u′′ being on level greater than i blocks the whole level i). If
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u′′ is a child of b′′ then also u′ is, and therefore u′′ is blocked by d. Therefore b′′ is not a
neighbor of u′′ and b′′ is to the right of u′′ (we have applied transformation 2 already), and
therefore d′′ does not block any user to the left of u′′. Thus u′′ is to the left of u′ and to the
right of u. But then u′′ is blocked by the disk d.
Consider the case where b′′ is below u′. If u′′ is above b′′, we know that u′′ is the upper
neighbor of b′′ (we have applied transformation 1 already), and therefore u′′ is the only
user above b′′ that is blocked by d′′, a contradiction to the assumption that d′′ contains u′.
If u′′ is below b′′, for d′′ to reach u′ the radius has to be at least ε1 more than the distance
from b′′ to u′. Therefore, d′′ blocks the whole level i, u included.

Now we have a maximum independent set Mi where base stations serve only neighboring
users. If base station b′ serves a neighbor below, then clearly b′ is active. If b′ is passive and
serves its upper neighbor u, then consider b′′ (cf. Figure 3.11(a)), the upper neighbor of u, which
is active. We claim that b′′ is idle. Because b′ is passive and u is its upper neighbor, u has to be
the first unserved user (in left-to-right order) among the children of b′′. Therefore, if b′′ were to
serve any other user, it would block u. Thus, we can use b′′ to serve u instead of b′. Finally, we
have obtained a maximum independent set where only active base stations serve users.

Theorem 3.16. There are instances (U, B) of 2D-JBS in general position for which the maximum-
independent-set algorithm, the smallest-disk-first greedy algorithm, and the fewest-users-in-disk
algorithm have approximation ratio Ω(log n), where n = |U |.

We note that the algorithm maximizing the number of served users in every round achieves
approximation ratio O(log n), as can be shown by applying the standard analysis of the greedy
set covering algorithm.

4 Conclusion and Open Problems
In this paper we study the 1D- and 2D-JBS problems that arise in the context of coordinated
scheduling in packet data systems. These problems can be split into a selection and a coloring
problem. In the one-dimensional case, we have shown that the coloring problem leads to the
class of arrow graphs, for which we have discussed its relation to other graph classes and
algorithms. For the selection problem we propose an approach based on LP relaxation and
rounding. For the 2D-problem, we have shown its NP-completeness. Several problems remain
unsolved. In particular, it is open whether the 1D-JBS problem is NP-complete. For 2D-JBS
it would be interesting to design approximation algorithms whose approximation ratio does
not depend on the ratio Rmax

∆ . Moreover, algorithmic results for more refined models would be
interesting.
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